
On Q-Resolution and CDCL QBF Solving

Mikoláš Janota

Microsoft Research, Cambridge, United Kingdom,
mikolas.janota@gmail.com

Abstract. The proof system Q-resolution and its variations provide the
underlying proof systems for the DPLL-based QBF solvers. While (long-
distance) Q-resolution models a conflict driven clause learning (CDCL)
QBF solver, the inverse relation is not well understood. This paper shows
that CDCL solving not only does not simulate Q-resolution, but also that
this is deeply embedded in the workings of the solver. This contrasts
with SAT solving, where CDCL solvers have been shown to simulate
resolution.

1 Introduction

Conflict driven clause learning (CDCL) has been established as an efficient
and practical method for SAT solving [26]. The relation between CDCL and
propositional resolution has been extensively studied. It has been shown that,
under various assumptions, modern SAT solvers simulate propositional resolu-
tion [4,27,2,5].

CDCL, with certain modifications, enables also solving quantified Boolean
formulas (QBF) [30,11,22]. Analogously, propositional resolution also has its
quantified counterpart Q-resolution [18] and a popular extension long distance
Q-resolution [30,3]. As of today, the relation between CDCL solving and the
underlying proof systems leaves a number of open questions.

The objective of this paper is to explore the relation between CDCL solv-
ing and (long-distance) Q-resolution. In particular, the paper gives a negative
answer to the question whether a CDCL solver can simulate any Q-resolution
proof. By this is meant that there is an infinite enumerable family of formulas
Φ1, . . . , Φn, . . . , for which there exist Q-resolution refutations polynomial in n
but any CDCL solver requires computation time super-polynomial (or even ex-
ponential) in n. In fact, it is shown that not even tree-like Q-resolution can be
simulated by CDCL.

QBF solving brings in the complication that propagation can also be per-
formed on the universal variables, which is done with the aid of solution driven
cube learning (SDCL). When combined, CDCL and SDCL influence one another
because order of propagation determines which clauses/cubes are learned. While
the presented result focuses on CDCL solving, we show that it is still relevant
in a restricted form for solving with the combined learning and some hints for
future work are explored.



The paper is organized as follows. The paper reviews notation and basic
concepts in Section 2. Section 3 reviews the family of formulas CRn, which are
studied in the remainder of the paper. This section also builds on a previous
result, which shows that level-ordered refutations of the said formula must be
exponential [16]. Here we strengthen this result by showing that also any deriva-
tion of unit clauses must already be exponential (Section 3.1). This will let us
study runs of the solver only until the first unit clause is derived. Section 4
studies properties of unit propagation on the studied family of formulas CRn.
Section 5 uses these properties to show exponential behavior on CRn. Section 6
reviews a polynomial tree-like, ordered Q-resolution refutation of CRn. Finally,
Section 7 discusses results of the paper and Section 8 concludes the paper.

Two distinctive proof techniques are used in the paper. The construction
and motivation for the formula CRn relies on the concept of two-player games
perspective for QBF. This is somewhat similar to Ehrenfeucht-Fräıssé games [10]
used in other domains (e.g. [21]). Second is to force the QBF solver to derive
level-order proofs, which must be necessarily exponential on CRn. Further, we
show that not only they are exponential for the whole formula but as early as
a unit clause is derived. This greatly simplifies the lower-bound proof because
propagation in a QBF solver is simpler with no unit clauses in its database.

2 Preliminaries

A literal is a Boolean variable or its negation. The literal complementary to a
literal l is denoted as l̄, i.e. x̄ = ¬x, ¬x = x. A clause is a disjunction of zero or
more non-complementary literals. A formula in conjunctive normal form (CNF)
is a conjunction of clauses. Whenever convenient, a clause is treated as a set of
literals and a CNF formula as a set of sets of literals. For a literal l = x or l = ¬x,
we write var(l) for x. For a clause C, we write var(C) to denote {var(l) | l ∈ C}
and for a CNF ψ, var(ψ) denotes {l | l ∈ var(ψ), C ∈ ψ}

A complementary concept to clause, is cube, which is a conjunction of zero
or more non-complementary literals.

2.1 Quantified Boolean Formulas

Quantified Boolean Formulas (QBFs) [17] extend propositional logic by enabling
quantification over Boolean variables. Any propositional formula φ is also a QBF
with all variables free. If Φ is a QBF with a free variable x, the formulas ∃x. Φ
and ∀x. Φ are QBFs with x bound, i.e. not free. Note that we disallow expressions
such as ∃x.∃x. x. Whenever possible, we write ∃x1 . . . xk instead of ∃x1 . . . ∃xk;
analogously for ∀. For a QBF Φ = ∀x. Ψ we say that x is universal in Φ and
is existential in ∃x. Ψ . Analogously, a literal l is universal (resp. existential) if
var(l) is universal (resp. existential).

The application of an assignment τ is defined for a QBF Φ if all variables of
dom(τ) are free in Φ, and, it is defined as (Qx. Φ)τ = Φτ forQ ∈ {∃,∀}. QBFs can
be seen as compact representations of propositional formulas. In particular, the



formula ∀x. Ψ is satisfied by the same truth assignments as Ψ [x�0]∧Ψ [x�1] and
∃x. Ψ by Ψ [x�0]∨Ψ [x�1]. Since ∀x∀y. Φ and ∀y∀x. Φ are semantically equivalent,
we allow writing ∀X for a set of variables X; analogously for ∃. A QBF with no
free variables is false (resp. true), iff it is semantically equivalent to the constant
0 (resp. 1).

A QBF is closed if it does not contain any free variables. A QBF is in prenex
form if it is of the form Q1X1 . . .QkXk. φ, where Qi ∈ {∃,∀}, Qi 6= Qi+1, and
φ is propositional. The propositional part φ is called the matrix and the rest
the prefix. If a variable x is in the set Xi, we say that x is at level i and write
lv(x) = i; we write lv(l) for lv(var(l)).

We write QCNF for the class of QBFs in prenex form where the matrix is in
CNF. Unless specified otherwise, QBFs are assumed to be closed and with CNF
matrix.

2.2 Q-resolution

Q-resolution (Q-Res), by Kleine Büning et al. [18], is a resolution-like calculus
that operates on QBFs in prenex form where the matrix is a CNF. The rules are
given in Figure 1.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈ C is
existential, then lv(x) < lv(u).

Fig. 1. The rules of Q-Res [18]

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang
and Malik [30] and was formalized into a calculus by Balabanov and Jiang [3]. It
merges complementary literals of a universal variable u into the special literal u∗.
These special literals prohibit certain resolution steps. In particular, different
literals of a universal variable u may be merged only if lv(x) < lv(u), where x
is the resolution variable. The rules are given in Figure 2. In practice, solvers
do not maintain a literal of the form u∗ but rather two complementary literals,
e.g. e∨u∨¬u∨ z. Such clauses arise naturally by learning and give propagation
due to universal reduction (see below). An alternative formulation via no-goods
is suggested by Klieber [20,19].

For a clause C, a universal literal l ∈ C is blocked by an existential literal
k ∈ C iff lv(l) < lv(k). ∀-reduction is the operation of removing from a clause C
all universal literals that are not blocked by some literal.

For a QCNF P . φ, a Q-resolution proof of a clause C is a sequence of clauses
C1, . . . , Cn where Cn = C and any Ci in the sequence is part of the given



(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

Variable x is existential. If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 =
l2 6= z∗. U1, U2 contain only universal literals with var(U1) = var(U2). For each
u ∈ var(U1) we require lv(x) < lv(u). If for w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u
then w1 = ¬w2, w1 = u∗ or w2 = u∗. U is defined as {u∗ | u ∈ var(U1)}.

Fig. 2. The rules of LD-Q-Res [3]

matrix φ; or was obtained from one of the preceding clauses by ∀-reduction; or
it is a Q-resolvent of some pair of preceding clauses. A Q-resolution proof is
called a refutation iff C is the empty clause, denoted ⊥.

In this article Q-resolution and plain resolution proofs are treated as con-
nected directed acyclic graphs (DAG). Any graph representing a resolution or
Q-resolution proof has one and only one node with in-degree 0, which we call
the root (the final clause in the proof). All the nodes with out-degree 0 are la-
beled with clauses from the original formula and we call them leafs of the proof
or axiom clauses. Any non-axiom clause has two outgoing edges pointing to its
respective antecedents.

A Q-resolution proof is called tree-like if the corresponding graph forms a
tree (rooted in the final clause). It is known that at the propositional level, tree
resolution does not p-simulate DAG resolution [7].

A Q-resolution proof is called ordered, if there exists a sequence of variables
S such that for any path from a leaf to the root the sequence of variables being
eliminated form a sub-sequence of S. Sometimes ordered propositional resolution
is referred to as Davis-Putnam resolution as it corresponds to the Davis-Putnam
algorithm. It is known that at the propositional level, ordered resolution does
not p-simulate unrestricted resolution [13,1].

Definition 1 (level-ordered proof). Let π be a Q-resolution proof of a QCNF
formula Φ. We say that π is level-ordered iff the following holds. Consider an
arbitrary path from the root to some leaf and some resolution steps on that path
on literals x1 and x2 such that the resolution on x1 is closer to the root. Then,
lv(x1) ≤ lv(x2).

Remark 1. Janota and Silva define level-order refutations [16], which the above
definition generalizes for an arbitrary proof.



2.3 CDCL and SDCL Solving

Basic understanding of CDCL+SDCL QCNF solving is assumed; for further
details see [12,22]. We assume that a solver’s state is uniquely determined by
a sequence of decisions D, a trail T , and a database of clauses and cubes. The
input formula is always in the database of clauses.

For the purpose of this paper we only assume CDCL, i.e. universal variables
are handled by traditional chronological backtracking and there are no cubes in
the database. SDCL is also briefly discussed for completeness.

The trail T and decisions D are modeled as sequences of literals, where D is
a subsequence of T . Any literal l in T but not in D is said to be propagated, and
is obtained by unit propagation from D. For a literal l we write T (l) to denote
the value of l in T , i.e. T (l) = 1 if l ∈ T and T (l) = 0 if l̄ ∈ T .

CDCL A conflict is reached whenever unit propagation gives an existential lit-
eral two opposing values. This corresponds to violating a clause in the database.
Upon a conflict, clause learning is invoked. Learning performs Q-resolution
steps in the reverse chronological order of propagations. We assume that any
∀-reduction is carried out as soon as possible.

The learning process stops when the derived clause C fulfills the unique
implication point property, which for QBF has the following conditions [30].
There exists a literal l ∈ C such that all the following properties are fulfilled:

1. l is existential and it has the highest decision level in C.
2. l is at a decision level where the decision is an existential literal.
3. All universal literals with quantification level smaller than l are decided at

a decision level smaller than l.

CDCL QBF solving is simulated by long-distance Q-resolution. More pre-
cisely, if a solver decides given formula as false, a long-distance Q-resolution
refutation can be constructed for it in time polynomial to the running time of
the solver.

Certain propagation can yield long-distance resolution steps, which can be
avoided by modifying the UIP scheme [11], this however potentially leads to
exponential blowup [28]. For the purpose of this paper, this difference is not
important as we later see that long-distance steps do not occur in the considered
formula.

SDCL Solution driven cube learning (SDCL) is symmetrical to CDCL with
the difference that the initial cube database is empty and new cubes are also
created when the current assignment gives a model to the initial formula. Hence,
in SDCL initially the solver has an empty database of cubes. Once it reaches an
assignment µ that satisfies the original matrix, it uses it to generate a cube. This
is done by conjoining the literals that form the assignment µ. The cube is then
existentially reduced and inserted into the database. Such cube is from now on
used for propagation. If a cube is fully satisfied by the current assignment, this



a1

b1

a1

bN

aN

b1

aN

bN

Fig. 3. Completion principle

constitutes a losing situation for the universal player. Hence, unit cubes are used
for propagation and fully satisfied cubes to jumpstart learning just as conflicting
clauses do. See [22] for further details. We note that symmetrical approaches to
SDCL+CDCL solving exist [29,14].

Model for the Paper For the results in the paper we are assuming a CDCL
solver with no SDCL. This means that the solver makes decisions along the
quantifier prefix until it either reaches a conflict and then it applies clause learn-
ing, or, it satisfies the matrix and then it backtracks to the last universal variable
and flips its polarity (if such exists). We do not make any assumptions about
restarts, i.e., restarts may be issued arbitrarily.

3 Formula

The formula used to show the main result is taken from Janota and Silva [16].1

Its construction derives from a principle named completion principle. Two sets
are considered: A = {a1, . . . , an}, B = {b1, . . . , bn} and their Cartesian-product
A×B. Let us visualize the cross-product as in Figure 3. The following game is
played. In the first round, the ∃-player deletes one and only one cell from each
column. In the second round, the ∀-player chooses one of the two rows. The
∀-player wins if the chosen row contains either the complete set A or the set B.

There is the following winning strategy for the ∀-player. If the ∃-player wants
to make sure that the bottom row (the bi row) does not contain the complete
set B, it must delete at least one element from each of the n copies of B. Hence,
for the j-th copy of B there is an element aj that was not deleted and thus
forming the complete set A. Hence, the winning strategy for the ∀-player is to
look at the bottom row and see if it contains a complete copy of B. If it does,
the ∀-player selects the bottom row and otherwise he selects the top row.

Let us construct a formula based on this principle. For each column (i, j)
introduce a variable xij that determines which cell is deleted by the ∃-player in
the first round. For the ∀-player introduce a single universal variable z, which
determines the selected row. Further, add clauses that make sure that whenever
one of the sets A or B is complete, the formula becomes false.

In the remainder of the paper we denote the set of variables xij , i, j ∈ 1..n
by X , and ai, bi, i ∈ 1..n by L (the letter L is chosen to evoke “last”).

1 See http://sat.inesc-id.pt/~mikolas/cdcl16 for a formula generator.

http://sat.inesc-id.pt/~mikolas/cdcl16


The formula CRn is defined by the prefix ∃X ∀z∃L and the following matrix.

xij ∨ z ∨ ai, i, j ∈ 1..n (1)

¬xij ∨ ¬z ∨ bj , i, j ∈ 1..n (2)∨
i∈1..n

¬ai (3)∨
i∈1..n

¬bi (4)

The first two types of clauses (1) and (2) represent the effects of the moves.
The last two clauses (3) and (4) disable setting all ai and bi to true, respectively.
Hence, the whole formula CRn is false because once z is set according to the
strategy outlined above, the variables L must be set such that variables from
one of the sets ai and bi will be all true. Consequently, one of the clauses (3)
and (4) must be falsified.

3.1 Lower Bounds for Level-ordered Q-Resolution

An exponential lower-bound for level-ordered resolution for CRn is known [16].

Proposition 1. [16, Prop. 5] Any level-ordered Q-resolution refutation of CRn
is exponential in n.

For the purpose of this paper a stronger result is needed. Here we show that
any level-ordered proof of any unit clause is already exponential.

Lemma 1. Let π be a level-ordered Q-resolution proof from CRn, where π is a
proof of a unit clause {l} with var(l) ∈ L. Let P be a path from the root of π to
some clause C where P does not contain any resolutions on L. Let πC ⊆ π be
the proof of C.

Then, πC contains one of the clauses (3), (4).

Proof. We consider the following cases:

1. πC contains at least one resolution step on L. Then one of (3), (4) must
appear in πC since they are the only clauses containing negative occurrences
of the L variables.

2. πC does not contain any resolution step on L. Then, if there are no clauses
(3), (4), than all axiom clauses are of type (1) or (2). This would be a
contradiction with the requirement that π proves a unit clause since the
variable z would always remain blocked as there are no more L resolutions
on the path from the root of π to C.

ut

Lemma 2. Let π be a level-ordered Q-resolution proof from CRn, where π is a
proof of a unit clause {l} with var(l) ∈ L. Let P be a path from the root of π to
some clause C where P does not contain any resolutions on L and P is maximal
in that respect.

Then, C contains at least n− 1 different X variables.



Proof. Observe that all L variables are treated symmetrically in the formula so
without loss of generality, consider l ∈ {ak,¬ak} for some k ∈ 1..n.

Let πC ⊆ π be the proof of C. From Lemma 1, one of the clauses (3), (4)
must appear in πC .

Let us assume that (3) is in πC . Since π is level-ordered and it derives the
clause {l}, all ai with i ∈ 1..n, i 6= k must be resolved away in πC . This means
that πC contains the clause xij ∨ z ∨ ai for each i ∈ 1..n, i 6= k. Since πC has no
resolutions on X , the corresponding X variables also appear in C.

If (4) is in πC , the reasoning is analogous to the above. ut

Proposition 2. Let π be a level-ordered Q-resolution proof from CRn, where π
is a proof of a unit clause {l} with var(l) ∈ L. Then π is exponential in n.

Proof. Pick an assignment τ to all the X variables. Construct a path P from
the root of π that contains ∀-reductions and X resolutions only and is maximal
in that respect such that it respects the assignment τ .

Due to Lemma 2, P ends in a clause C containing at least n− 1 X variables.
There are 2n

2

assignments to X variables and C covers at most 2n
2−(n−1) of

those. Hence, there are at least 2n
2

/2n
2−(n−1) = 2n−1 clauses in π. ut

Proposition 3. Let π be a level-ordered Q-resolution proof from CRn, where π
is a proof of a unit clause {l} with var(l) ∈ X . Then π is exponential in n.

Proof. Since xij and ¬xij are treated symmetrically in CRn, any level-ordered
sub-exponential proof of xij could be rewritten to a level-ordered sub-exponential
proof of ¬xij . Resolving the two would give a level-ordered sub-exponential refu-
tation of CRn, which would be a contradiction with Proposition 1. ut

Corollary 1. Let C be a unit or empty clause with a level-ordered Q-resolution
proof π from CRn. Then π is exponential with respect to n.

4 Properties of Propagation on CRn

To be able to reason about the clauses that are learned during solving of CRn,
several properties of unit propagation are needed. A crucial property of the input
formula is that there are no clauses enabling propagation “across quantification
levels”. Namely, while decisions are being made on the X variables, no propa-
gation happens in the L variables. These get value only once z gets a value. For
this purpose we introduce the concept of mixed clauses.

Definition 2 (mixed clause). We say that a clause is mixed if it contains
both X variables and L variables, i.e., if var(C) ∩ X 6= ∅ and var(C) ∩ L 6= ∅.

The following lemma shows that Q-resolution does not enable us to derive
mixed clauses without the variable z.

Lemma 3. Let π be an arbitrary Q-resolution proof from CRn. For any mixed
clause C ∈ π it holds that z ∈ var(C).



Proof (By induction on the derivation depth.). The hypothesis holds for all the
axiom clauses of CRn.

Let C be a new mixed clause derived by resolution from some clauses D1

and D2, for which the hypothesis holds. Since C is mixed, at least one of D1,
D2 must be mixed. Therefore C also contains z.

Let C be derived by ∀-reduction from an existing clause D. Since L variables
block ∀-reduction of z, the clauses C and D do not contain L variables and
therefore are not mixed. ut

Remark 2. The above-lemma can be easily generalized. Indeed, if the input for-
mula only contains mixed clauses that have a universal variable in the middle,
that variable cannot be reduced unless all the variables at the higher quantifi-
cation level are resolved away.

The following lemma is crucial for our result. As long as there are no unit
clauses, there cannot be propagation across quantification levels since all the
mixed clauses need z to have a value to give propagation.

Lemma 4. Let T be the trail for a CDCL solver in a state before any unit
clauses are learned. If var(T ) ⊆ X then there is no propagation on L variables.

Proof. Since CRn does not contain any unit clauses and no unit clauses have been
learned so far, any propagation on L must come from a clause in the database
that has at least two literals. Since var(T ) ⊆ X , such clause would have to contain
an X variable. However, due to Lemma 3, any mixed clauses contain also the z
variable, which is unassigned and therefore cannot give a unit L clause. There
is no propagation on z since we’re assuming only CDCL (not SDCL). ut

5 Exponential Lower Bound for CDCL QBF Learning

This section shows that a run of a CDCL solver on the formula CRn is exponential.
This is done by showing that the proofs of all learned clauses are level-ordered.
Due to Corollary 1, it is sufficient to show that the proofs of learned clauses are
level-ordered until a unit clause is learned. Indeed, even if the solver derives some
non-level-ordered proofs after the first unit clause has been learned, the proof
of the unit clause is already exponential. Therefore, the solver must perform an
exponential number of steps to derive the unit clause. Note also that the input
formula has no unit clauses as long as n ≥ 2.

Note that the reasoning below needs to account for all the clauses derived
during learning, not just the learned clauses. We start by a couple of technical
lemmas characterizing the learning process.

Lemma 5. Let T be the trail for a CDCL solver in a state before any unit
clauses are learned. Let T be such that it leads to a conflict and let C be some
clause that is derived during the learning of the pertaining learned clause. If
l ∈ C with var(l) = z, then T (l) = 0.



Proof. By construction, C is derived by resolution steps on clauses that partic-
ipated in the propagation leading to the conflict.

While z is not assigned, propagation is only on clauses that contain X vari-
ables only because any clauses that contain also some L variables also contain z
due to Lemma 3.

Once z is assigned, all clauses that contain a literal l with var(l) = z and
T (l) = 1 cannot be used during propagation (they are effectively deleted from
the propagation process). ut

The above lemma immediately gives us the consequence that there are no
long-distance resolution steps in learned clauses.

Corollary 2. For the formula CRn, a CDCL solver never learns clauses derived
by long-distance Q-resolution steps.

Lemma 6. Let T be a trail for a CDCL solver in a state before any unit clauses
are learned. Let T be such that it leads to a conflict and let C be some clause
that is derived during the learning of the pertaining learned clause.

Let C be such that it does not contain any propagated L literals, but it con-
tains some L literals. Then C is a UIP.

Proof. Due to the precondition, all L are decisions in C therefore there must be
one literal k with var(k) ∈ L with the highest decision level as all L variables
are decided after X variables due to Lemma 4. From Lemma 5, if C contains the
variable z, then the corresponding literal is set to 0. This fulfills the conditions
for C be a UIP. ut

Proposition 4. Let T be the trail for a CDCL solver in a state before any unit
clauses are learned. Let T be such that it leads to a conflict and let C be some
clause that is derived during the learning of the pertaining learned clause.

If C contains any L variables, then it is derived by resolution steps only on
the L variables.

Proof. The hypothesis is trivially true for all the axiom clauses.
If var(T ) ⊆ X then the derivation of the learned clause only contains X

variables due to Lemma 4.
If var(T ) ∩ (L∪{z}) 6= ∅ then consider the following cases:

1. C contains some L literal, forced to 0 by propagation. Then, resolution is
performed on one such literal as propagation on L takes place later chrono-
logically than propagation on X variables due to Lemma 4.

2. C does not contain any L literal, then the hypothesis is trivially satisfied.
3. C does not contain any propagated L literal, then C is a UIP due to

Lemma 6.
ut

Finally we need to show that as long as clauses containing L variables are
only derived by resolution steps on L, the corresponding proofs are level-ordered.
For such we utilize the following two observations.



Observation 1 Let C be derived by a resolution step over an X variable from
clauses with level-ordered proofs. Then the proof of C is also level-ordered.

Observation 2 A proof that contains resolution steps only on L variables is
level-ordered.

Proposition 5. Let T be the trail that leads to a conflict for a CDCL solver
in a state before any unit clauses are learned. The proof of the corresponding
learned clauses is level-ordered.

Proof. Prove from Proposition 4 by induction on derivation depth.

The hypothesis is trivially true for axiom clauses and is trivially preserved
by ∀-reduction. Split on the following two cases.

1. If a clause C is derived by resolution on a L variable, then both antecedents
must contain at least one L variable, From Proposition 4, the antecedents
are derived only by L resolutions only. Therefore, the proof is level-ordered
(Observation 2).

2. If a clause C is derived by resolution on an X variable, then the derivation
of C is level-ordered because the antecedents are level-ordered (IH) and due
to Observation 1.

ut

Remark 3. Proving that learned clauses are themselves level-ordered is not itself
inductive. The solver could learn a clause containing an L variable while using
X resolutions and then use this learned clause in a level-ordered manner.

Theorem 1. Solving CRn by a CDCL QBF solver requires time exponential in n.

Proof. Due to Proposition 5, proof of any learned clause is level-ordered while
no unit clauses are learned. Consider the first unit clause learned by the solver.
Due to Corollary 1, the Q-resolution proof of the clause is exponential in n.
Therefore, the solver must have carried out an exponential number of steps to
learn this clause.

Observe that restarting the solver does not affect in any way the above results.
Indeed, the whole proof hinges on the fact that learned clauses are always level-
ordered independently of the content of the current trail—as long as the trail
observes the condition that a variable is decided only if all the variables that
precede it in the prefix are valued. More broadly speaking, restarts in QBF do not
change the fact that the solver has to assign variables according to quantification
levels; unlike in SAT, where restarts can come up with an arbitrary order.

Note that the proof relies on the UIP learning scheme (Lemma 6). we con-
jecture, however, that this precondition can be weakened. Other schemas, like
QPUP [28,24] could be considered.



x1k ∨ x2k ∨ · · · ∨ xnk

x1k ∨ x2k ∨ · · · ∨ xnk ∨ z

xnk ∨ z ∨ an

an

. . .

x2k ∨ z ∨ a2

a2

x1k ∨ z ∨ a1

a1

¬a1 ∨ · · · ∨ ¬an

¬a1

¬a2

¬an

∀z

Fig. 4. Derivation of an “all x” clause for k ∈ 1..n in n resolution steps.

¬z ∨ bk

¬xnk ∨ ¬z ∨ bk
¬xnk

. . .

¬x2k ∨ ¬z ∨ bk
¬x2k

¬x1k ∨ ¬z ∨ bk
¬x1k

x1k ∨ x2k ∨ · · · ∨ xnk

x1k

x2k

xnk

Fig. 5. Derivation of an ¬z ∨ bk clause for k ∈ 1..n in n steps, using Figure 4.

6 Short Tree-like Q-resolution Refutation of CRn

This section shows that CRn has a polynomial tree-like Q-resolution refutation.
We do so in a constructive manner and the proof is conceptually divided into
three parts.

First, derive clauses
∨

i∈1..n xik for k ∈ 1..n (Figure 4). Each of these clauses
lets us derive a clause ¬z ∨ bk for k ∈ 1..n (Figure 5). Finally, using the clause
¬b1 ∨ · · · ∨ ¬bn, the empty clause is derived (Figure 6).

The first phase requires n2 resolution steps and n ∀-reduction steps. The
second phase requires n2 resolution steps. Finally, the last phase requires n
resolution steps and one ∀-reduction. Since the size of the input formula has
2n2 + 2 clauses, the proof size is linear in the formula’s size.

Observe that each clause appears exactly once in the proof—the proof forms
a tree. Also note that the proof is not level-ordered because it starts with resolu-
tions on ai variables, continues with X resolutions, and finishes with resolutions
on bi variables. However, the proof is ordered with the following order.

a1, . . . , an, x(1,1), . . . , x(n,n), b1, . . . , bn

Theorem 2. CRn has a polynomial refutation in ordered tree-like Q-resolution.

Corollary 3. Level-ordered resolution does not simulate ordered or tree-like Q-
resolution.



⊥

¬z

¬z ∨ bn

bn

. . .

¬z ∨ b2

b2

¬z ∨ b1

b1

¬b1 ∨ · · · ∨ ¬bn
¬b1

¬b2

¬bn

∀¬z

Fig. 6. Derivation of ⊥, using Figure 5.

Corollary 4. CDCL QBF solving does not simulate Q-resolution even under
the restriction that the Q-resolution proofs are tree-like and ordered.

Remark 4. Mahajan and Shukla in fact show that level-ordered Q-resolution and
tree-like Q-resolution are incomparable [25]. In fact, the short resolution proof
above also appears in their paper.

7 Discussion

QBF solving presents us with some subtleties and complications due to the
two types of propagation and learning. Here we discuss how these relate to the
presented results.

7.1 SDCL

The presented result is concerned only with CDCL and so we may ask whether
SDCL can speed up the solving of CRn. A pivotal point in our proof is Lemma 4,
which shows that there is no propagation from X variables to L variables, i.e.,
propagation across levels. The lemma relies on the fact that z will not be given
a value by propagation from X variables. This can happen if SDCL is employed.
More precisely, if the solver learns a cube containing only a subset of X variables
and z, the variable z may be given a value before all X variable are assigned,
which may subsequently give propagation on L variables. Such propagation could
potentially lead to learned clauses with non-level-ordered proofs.

However, this can only happen when the universal player made a wrong
choice for the value of z in the past. Since there is a winning strategy for the
universal player, there always is a value for z that does not lead to a solution
and consequently no cube learning takes place if the universal player follows the
strategy.

Observation 3 For a false QBF Φ, if universal variables are given values ac-
cording to a winning strategy for the universal player, a SDCL+CDCL QBF



n CDCL CDCL + SDCL CDCL + SDCL− pure lits.

4 101 101 101

5 1081 1081 751

6 19611 19611 3531

7 370811 370811 36411

8 > 9995451 > 10000981 5464551

9 > 10612011 > 10619361 > 931211

10 > 10303551 > 10313901 > 8608251

Table 1. Number of backtracks for DepQBF on CRn with a 1-hr. timeout. Unsolved
instances are marked with >.

solver behaves identically to a CDCL QBF solver. Consequently, the Corollary 4
also holds for a SDCL+CDCL QBF solver under such restriction.

7.2 Pure Literals

Another relevant technique is pure literals [8,22]. Those enable assigning values
to variables out of the quantification order. This can again influence what kind
of clauses and cubes are learned. However, there is also a potential adversarial
effect of pure literals. If the universal player makes better choices, it learns fewer
cubes—which could have otherwise potentially speed up the proof.

While at this point we do not have a definite answer to the above ques-
tions, experimental evaluation might provide some hints. I have run the solver
DepQBF [23] on CRn and recorded the number of backtracking steps—these
are presented for various configurations in Table 1. All configurations have the
switches --traditional-qcdcl --long-dist-res --dep-man=simple to dis-
able advanced features of DepQBF but also allow long-distance Q-resolution.
The leftmost configuration only performs CDCL, the middle CDCL+SDCL, and
the last one also combines CDCL and SDCL but switches off the pure-literal
technique.

Instances that were not solved within 1 hour, are marked with > B where B
is the number of backtracking steps performed up to that point.

The configuration CDCL and CDCL+SDCL behave identically and can only
solve CRn for n ∈ 1..7. Interestingly enough, turning off pure literals leads to a
significant improvement and also n = 8 is solved.

Further inspection reveals that the CDCL+SDCL configuration never learned
any cubes. Because, as indicated above, it never makes a wrong decision for the
universal variable z. Somewhat paradoxically, this is disadvantageous.

7.3 Other Work on Separation

In his thesis, Lonsing presents a formula that shows that Q-resolution is more
powerful than standard CDCL solving—see Example 3.3.6 in [22]. The formula
is of the form ∃X∀U∃Z. φ1∧φ2, where φ1 depends only on the X variables and it



is a hard unsatisfiable propositional formula, e.g. pigeonhole principle [15]. The
formula φ2 depends on U and Z and is easy to refute. While a Q-resolution proof
can simply use φ2 to construct a refutation, a CDCL solver will try to construct
an assignment satisfying φ1, which is impossible and will take an exponential
amount of time. As discussed in Lonsing’s work, this can be overcome by ana-
lyzing variable dependencies such as in the DepQBF solver [23]. A solver could
also refute this formula by deciding U out-of-order and soundly conclude that
it is false. Hence, in some sense, the hardness of this formula really lies in the
propositional formula φ1 rather than the QBF structure. This contrasts with the
CRn formulas where pulling the universal variable to the front makes the formula
true. Nevertheless, this notion should be better understood and the recent work
of Chen could possibly provide pointers in this direction [9].

8 Summary and Future Work

The paper compares the strength of QBF conflict driven clause learning (CDCL)
to Q-resolution. In contrast to its propositional counterparts, CDCL QBF solv-
ing appears to be quite weak compared to general Q-resolution. Indeed, even if
we impose the limit that the resolution should be tree-like and ordered, CDCL
cannot simulate the refutation. Our result strengthens an existing separation
between CDCL solving and Q-resolution, which can be overcome by variable
dependencies (see Section 7.3). We further conjecture that the presented sepa-
ration stems from the QBF hardness of the problem rather than propositional
hardness.

The crux of our proof is that the investigated formula does not permit propa-
gation across levels, which consequently leads to level-ordered derivations of the
learned clauses. This observation suggests a number of interesting questions for
future research. Can solution driven cube learning (SDCL) speed-up the proof?
The experimental evaluation suggest that it might. However, only if the pure
literal technique is turned off. This observation also has a practical consequence.
Pure literals may lead to fewer learned cubes and consequently a decrease in the
quality of the clausal proof. Can such adversarial effect be avoided?

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential sepa-
ration between regular and general resolution. Theory of Computing 3(5), 81–102
(2007)

2. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. (JAIR) 40, 353–373
(2011)

3. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods in System Design 41(1), 45–65 (2012)

4. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)



5. Beame, P., Sabharwal, A.: Non-restarting SAT solvers with simple preprocessing
can efficiently simulate resolution. In: Brodley, C.E., Stone, P. (eds.) Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence. pp. 2608–2615.
AAAI Press (2014)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

7. Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: Exponential separations
between restricted resolution and cutting planes proof systems. In: 39th Annual
Symposium on Foundations of Computer Science, FOCS. pp. 638–647. IEEE Com-
puter Society (1998)

8. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
quantified Boolean formulae and its experimental evaluation. J. Autom. Reasoning
28(2), 101–142 (2002)

9. Chen, H.: Proof complexity modulo the polynomial hierarchy: Understanding al-
ternation as a source of hardness. In: 43rd International Colloquium on Automata,
Languages, and Programming (ICALP) (2016)

10. Ehrenfeucht, A.: An application of games to the completeness problem for formal-
ized theories. Fund. Math 49(129-141), 13 (1961)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence
Research 26(1), 371–416 (2006)

12. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Biere et al. [6], pp. 761–780

13. Goerdt, A.: Davis-Putnam resolution versus unrestricted resolution. Ann. Math.
Artif. Intell. 6(1–3), 169–184 (1992)

14. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation
and CNF-based QBF solving. In: DATE. pp. 811–814 (2013)

15. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–
308 (1985)

16. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theoretical Computer Science 577, 25–42 (April 2015)

17. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Biere
et al. [6], pp. 735–760

18. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

19. Klieber, W.: Formal Verification Using Quantified Boolean Formulas (QBF). Ph.D.
thesis, Carnegie Mellon University (2014), http://www.cs.cmu.edu/~wklieber/

thesis.pdf
20. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF

solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT. vol.
6175, pp. 128–142. Springer (2010)

21. Kolaitis, P.G.: The expressive power of stratified programs. Inf. Comput. 90(1),
50–66 (1991)

22. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler Universität (2012), http://www.kr.

tuwien.ac.at/staff/lonsing/diss/
23. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3),

71–76 (2010)
24. Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified

boolean formulas via QBF pseudo unit propagation. In: Theory and Applications
of Satisfiability Testing - SAT. pp. 100–115 (2013)

http://www.cs.cmu.edu/~wklieber/thesis.pdf
http://www.cs.cmu.edu/~wklieber/thesis.pdf
http://www.kr.tuwien.ac.at/staff/lonsing/diss/
http://www.kr.tuwien.ac.at/staff/lonsing/diss/


25. Mahajan, M., Shukla, A.: Level-ordered Q-resolution and tree-like Q-resolution are
incomparable. Information Processing Letters 116(3), 256 – 258 (2016)

26. Marques Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

27. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence 175(2), 512 – 525 (2011)

28. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula
solving. In: Milano, M. (ed.) CP. vol. 7514, pp. 647–663. Springer (2012)

29. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms.
In: AAAI. AAAI Press (2006)

30. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: ICCAD. pp. 442–449 (2002)


