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QBF

• an extension of SAT with quantifiers

• PSPACE-complete

• formal verification

• planning

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• we consider prenex form with maximal blocks of variables

QX1 Q̄Y1 QX2 Q̄Y2 . . . . φ

where Q ∈ {∃,∀}
∃̄ = ∀,∀̄ = ∃
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A QBF as a Game

• it is useful to think about a QBF as a game between the
universal and existential player

• universal player wins when the matrix becomes false

• existential player wins when the matrix becomes true

• a QBF is true if and only if the “exist player can always win”

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• ∃ always wins by playing x1 = y1, x2 = y2
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Semantics with Winning Move

winning move, base case QX .φ, for φ propositional

• for Q = ∃, an assignment that makes φ true (model of φ)

• for Q = ∀, an assignment that makes φ false

winning move, general case QX . Φ, for Φ QBF

• an assignment τ s.t. there is no winning move for Q̄ for Φ[τ ]

countermove, for QX . Φ, for Φ QBF

• an assignment µ is a countermove to the assignment τ if µ is
a winning move for Q̄ for Φ[τ ]
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Winning Move Semantics

QBF semantics

• ∃X .Φ is true if and only if there is a winning move for ∃
• ∀X .Φ is false if and only if there is a winning move for ∀

Example

∀y∃x . x ∧ (y ∨ x̄)

• {ȳ} is a winning move for ∀, formula is false

• {y} is not a winning move and {x} is a countermove
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Computing a Winning Move—Base Case

Solve ( ∃X . φ), where φ is a propositional
output : a winning move for ∃ if there is one; NULL

otherwise
return SAT(φ)

Solve ( ∀X . φ), where φ is a propositional
output : a winning move for ∀ if there is one; NULL

otherwise
return SAT(¬φ)
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Naive Algorithm for a Winning Move

1 Function Solve (QX .Φ)

2 Λ← {true, false}X // consider all assignments

3 while true do
4 if Λ = ∅ then
5 return NULL // all assignments used up

6 τ ← pick(Λ) // pick a candidate solution

7 µ← Solve(Φ[τ ]) // find a countermove

8 if µ = NULL then
9 return τ // winning move

10 Λ← Λ r {τ} // remove bad candidate

11 end
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Removing More Than One Candidate at a Time

Observation

• The naive algorithm does not avail of the countermove

How?

• represent the set of considered candidates as the set of
winning moves of a (simpler) QBF (abstraction)

• each time a countermove is found, strengthen the abstraction
so that the same countermove cannot be used in the future
(refinement)
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CounterExample Guided Abstraction Refinement (CEGAR)

Winning Moves

α0, all moves
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Refinement

for a bad candidate τ

• Q̄ wins by µ, i.e. QXQ̄Y . Φ[τ ][µ] is losing for Q

for next candidates....

• make sure that next candidate τ is a winning move for
QX . Φ[µ]

• for such τ , µ cannot be a countermove

for a set of countermoves ω = {µ1, . . . , µn}

•
∧
µ∈ω Φ[µ], Q = ∃

•
∨
µ∈ω Φ[µ], Q = ∀
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Refinement—Example

• ∀y∃x . x ∧ (y ∨ x̄)

• candidate: {y}, countermove: {x}
• abstraction: ∀y . y

(with the single winning move {ȳ})

• ∀y1y2∃x . (y1 ∨ x̄) ∧ (y2 ∨ x)

• candidate: {y1, ȳ2}, countermove: {x} (Φ[x ] = y1)

• candidate: {ȳ1, y2}, countermove: {x̄} (Φ[x̄ ] = y2)

• abstraction: ∀y1y2. y1 ∨ y2

(with the single winning move {ȳ1, ȳ2})
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• ∀y1y2∃x . (y1 ∨ x̄) ∧ (y2 ∨ x)
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Abstraction-Based Algorithm for a Winning Move
1 Function Solve (QX .Φ)

2 begin
3 if Φ has no quant then
4 return (Q = ∃) ? SAT(φ) : SAT(¬φ)
5 ω ← ∅
6 while true do
7 α← (Q = ∃) ?

∧
µ∈ω Φ[µ] :

∨
µ∈ω Φ[µ] // abstraction

8 τ ′ ← Solve(Prenex(QX . α)) // find a candidate

9 if τ ′ = NULL then return NULL // no winning move

10 τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X} // filter a move for X
11 µ← Solve(Φ[τ ]) // find a countermove

12 if µ = NULL then return τ // winning move

13 ω ← ω ∪ {µ} // refine

14 end

15 end
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Results

• RAReQS implementation of the above using minisat2.2

• GhostQ-CEGAR integration into an existing DPLL solver
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Results for planning and Formal Verification families
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Conclusions and Future Work

• a novel CEGAR-based technique for QBF solving RAReQS

• in some sense RAReQS is close to expansion-based solvers
(e.g. Quantor, Nenofex) but the expansion is driven by
counterexamples

• step-by-step expansion enables RAReQS to avoid inherent
memory blowup of expansion solvers

• enables solving a large number of practical instances not
solved by state-of-the-art solvers
(220 instances that only RAReQS solved)

• in the future we plan to further develop the integration
between DPLL and CEGAR

• in RAReQS we plan to investigate how to integrate
techniques used in other solvers (e.g. dependency detection)
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Questions?
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Results

Total instances solved (out of 4669):

RAReQS GhostQ GhostQ-C Qube Quantor Nenofex

3868 2449 2801 2916 1462 1317

1661

Both

RAReQS vs GhostQ

Both Both

RAReQS vs Qube

2870

RAReQS vs Quantor

2436

1432

3046

RAReQSRAReQS RAReQS

Only GhostQ Only Qube Only Quantor

998

242

Only Only Only

2207
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