
Machine Learning of Strategies in QBF Solving

Ricardo Joel M. dos Santos Silva1 and Mikoláš Janota1,2[0000−0003−3487−784X]

1 IST/INESC-ID, Universidade de Lisboa
2 Czech Technical University in Prague

Abstract. QFun is a QBF solver based on Counterexample Guided Ab-
straction Refinement (CEGAR) that uses machine learning to learn
strategies for variables during solving.This paper focuses on the re-
search, development, implementation and evaluation of alternative ma-
chine learning algorithms for QFun. We have implemented six alternative
algorithms for the learning part of the solver and have experimentally
evaluated their performance.

Keywords: QBF · Machine Learning · decision list.

1 Introduction

The Quantified Boolean Formula (QBF) [3] is a generalization of SAT, in which
either existential or universal quantifier is applied to a variable. There has been
a growing interest in QBF solving over the last two decades, motivated by the
practical success of SAT solvers. There are two main families of QBF-solvers:
DPLL-based [7,8,13] and expansion based [1,2,14]. Expansion-based solvers elim-
inate quantifiers by expanding into Boolean connectives and use a SAT solver
to solve the resulting propositional formula.

Recent expansion-based QBF solvers expand to SAT gradually to miti-
gate the exponential blow up size. Gradual expansion is achieved by using the
paradigm of Counter-Example Guided Abstraction Refinement (CEGAR). In the
CEGAR approach the formula to solve is approximated by an abstraction. The
CEGAR loop begins by solving the abstraction with the use of a SAT solver.
If the abstraction has no solution, then the problem also has no solution. If the
abstraction has a solution, that solution is a candidate solution to the general
problem, and we test it with a new SAT call. If it is a solution for the original
formula, the algorithm stops. If it is not, then the SAT call provides us with a
counterexample, which is used to refine the abstraction to be used in the next
iteration of the loop.

This CEGAR approach underlies the 2-QBF solver AReQS [12], which was
later generalized to arbitrary number of quantifiers in RAReQS [11,10]. The
solver QFun [9] improves RAReQS by using machine learning during solving.
QFun enables refining the abstraction with not only a single counterexample
but by a strategy learned from multiple counterexamples. The contribution of
this paper is the investigation of the performance of different machine learning
approaches within QFun. 3

3 This paper is based on the results obtained in the MSc thesis of the first author [18].



Algorithm 1: QFun2: 2-level QBF Refinement with Learning

input : ∃X∀Y. φ where φ is propositional.
output : a winning move for ∃X if exists, ⊥ otherwise

1 E← ∅ // start with no samples

2 α← true // empty abstraction

3 while true do
4 τ ← SAT(α) // candidate for X
5 if τ = ⊥ then return ⊥ // Q loses

6 µ← SAT(¬φ[τ ]) // countermove

7 if µ = ⊥ then return τ // τ is winnning

8 E← E∪{(τ, µ)} // record sample

9 if ¬ShouldLearn() then
10 α← α ∧ φ[µ] // refine with µ

11 else
12 S ← Learn(E) // learn a strategy

13 α← α ∧ φ[S] // refine with S
14 E← ∅ // reset samples

2 QFUN Algorithm

Algorithm 1 shows pseudocode for QFun2—QFun restricted to the form ∃X∀Y. φ,
with variable vectors X and Y . The general algorithm QFun applies QFun2 re-
cursively just as RAReQS [11,10]. The algorithm is anchored in the game-
perspective on QBF, where ∃ aims to make the formula true and ∀ false.

The winning move for ∃X is sought for by picking a candidate move, which
is a satisfying assignments to the abstraction α. Any candidate move that is
not a winning move, has a counter-move, which is used to strengthen (refine) α
by substituting the counter-move into φ. If learning is employed, refinement is
based on what was learned from multiple counter-moves.

Without learning, the algorithm can easily have poor behavior. For instance,
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n xi = yi requires 2n iterations of the loop, even though

the formula is obviously false once yi plays ¬xi. Hence, we are looking for good
strategies for Y . More formally, a strategy for ∀Y is a multi-valued Boolean
function S : X → Y , giving values to Y based on the move played by ∃X. In
practice, a strategy is represented by a set of Boolean functions—one for each
variable y ∈ Y ; each of these functions is represented by a Boolean formula.
Refinement by a strategy then consists of substituting the strategy formula Sy

for the corresponding variable y ∈ Y . This enables enables solving the formula
above in linear number of SAT calls.

New strategies are obtained by learning on previous candidates and counter-
moves. At each learning moment, the collected pairs of candidate and counter-
moves are used as training set of a machine learning algorithm. The original
implementation of QFun [9] uses the ID3 algorithm [16], which learns strategy
formulas in the form of decision trees.



Algorithm 2: Pseudo-code for ID3

Function ID3(E, domain)
input : E = {(τ1, y1), (τ2, y2), . . . , (τm, ym)}, domain is a subset of X
output : decision tree, representing a strategy for y

1 if E = E+ then return leaf node with label 1
2 if E = E− then return leaf node with label 0
3 if domain = ∅ then
4 return leaf node labeled with the most common value of y in E

5 sv← arg max
x∈domain

(IG(E, x))

6 for b ∈ {0, 1} do
7 let Eb = {(τi, yi) ∈ E : τi(sv) = b}
8 DTb ← ID3(Eb, domain\{sv})
9 return sv ?DT1 : DT2

3 Learning Algorithms

The general QFun receives Ψ = Qx1, . . . , xn1
Qy1, . . . , yn2

Φ, with Q ∈ {∃,∀},
which is solved following the logic in Algorithm 1. Each iteration of the loop
produces a move assigning values to X = {x1, . . . , xn1

} and a counter-move
assigning values to Y = {y1, . . . , yn2

}.
After m iterations of the loop, m move/counter-move pairs are stored by the

solver in the variable E. The function Learn then takes E as input and computes
a strategy for each of the y ∈ Y (line 12).

Since strategies are computed one variable at a time, we consider learning
algorithms that obtain samples in the form (τ, v) where τ is an assignments to X
and v a a value for some target variable y ∈ Y . The strategy is then learned by
calling learning for each y ∈ Y . After the abstraction is refined with the learned
strategy, the set of samples is emptied, and the solver continues with solving.

We will call each element e ∈ E = {(τ1, y1), (τ2, y2), . . . , (τm, ym)} an exam-
ple. We will say that an example is positive if yi = 1 and a negative if yi = 0,
denoting the sets of positive and negative examples by E+ and E−, respectively.

One of the findings of [9, p. 10] was that QFun’s performance improves signif-
icantly if previous strategies are kept, while they correctly classify the new set
of examples. We maintain this approach.

3.1 Decision trees and ID3

In the original implementation of the solver, the function Learn uses the ID3

algorithm [16], presented in Algorithm 2.
The ID3 algorithm has a recursive nature. The base case of the recursion

is when all the given examples are in the same class. The general case picks a
variable sv which splits the examples on those where sv is 1 and those where sv
is 0, reducing thus the domain. These two sets are then classified recursively.



100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

dtree-i16

dtree-i32

dtree-i64

dtree-i128

Fig. 1. ID3 results

The algorithm needs to account for the possibility that runs out of variables
to split on. In this case there is no perfect solution, and the typical solution is
to label the root with the most common value of the yi in E. However, in the
context of QFun this does cannot happen.

The ID3 algorithm chooses the splitting variable sv by maximizing the in-
formation gain of the split of E. Information gain derives from entropy, which
measures the observed uncertainty. Given a set of samples E, the minimum value
for the entropy of E is 0, when all elements in E are all positive or all negative.
The maximum value for the entropy of E is 1, if exactly half of its elements are
positive and half negative. Information gain measures the reduction in uncer-
tainty, i.e., the reduction of entropy, caused by the observation of a variable.

Definition 1. (Entropy) Given a set of samples E, the entropy of E is given
by: H(E) =

∑
b∈{0,1}

−p(y = b) log2 p(y = b).

Definition 2. (Information Gain) Given a set of samples E, and a variable
x ∈ X, the information gain of E for variable x is the difference between the
entropy of E and the entropy of E given x: IG(E, x) = H(E)− H(E|x).

After generating a decision tree that correctly classifies all the examples,
QFun translates it into a Boolean formula.

We tested the solver both without learning, and learning with ID3. The
results obtained, presented in Figure 1, will serve us as a benchmark against
which our other algorithms will be compared.

All tests were conducted on 4 identical Linux machines, with Intel Xeon 5160
3GHz processors and 4GB of memory. The memory limit used was 2 GB, and
the time limit used for each test was 600 seconds. We have used a set of 484
QBF formulae obtained by joining the two sets used for the evaluation of the
competing solvers in QBFEval’17 and in QBFEval’18 (Prenex Non-CNF track)
and filtering out the formulae we identified to be randomly-generated.



The reason for removing randomly generated benchmarks is that the moti-
vation for learning in QBF is to identify structure in practical problems, whereas
random problems will inherently have none. The set obtained was used consis-
tently throughout this section, for all evaluation purposes.

QFun with ID3 is more effective than QFun without learning. This had been
observed in [9] and was confirmed by our own results. Overall, we believe the
choice of ID3 is sensible, and there are a number of arguments in favor of it.
The conversion between trees and formulas can be done efficiently. Learning it-
self is not too heavy, in the sense that the time spent in learning is generally
small (between 1.4% and 2.3%) compared to the total time of execution of the
solver. Learning reduced considerably the number of refinements. However, the
improvement in results with learning versus without learning is small. The lim-
ited improvement in efficiency is not related to a trade-off between time spent
learning and time saved in resolution. More important than the computational
time spent learning, there is a trade-off between the benefit of learning, which
often reduces the number of refinements needed to reach the solution to a for-
mula, and the drawback of learning, in terms of the increased complexity of the
abstractions we use, making the computation of new refinements heavier and
more time-consuming.

The results achieved by QFun with ID3 do not mean that better alternatives
for learning could not be found. One possibility that we decided to explore in
order to improve the solver was to use decision lists instead of decision trees.
This approach is the one we will develop in the subsequent sections.

3.2 Decision Lists

Decision lists, introduced by Rivest [17], have the aim of avoiding the replicated
subtree problem [15,6]: in some situations identical subtrees have to be learned
repeatedly at various places in a decision tree. Rivest further proved that k-
decision lists are PAC learnable and provided an algorithm for constructing a
decision list consistent with a given set of data [17].4 We have altered QFun,
implementing 6 different algorithms using decision lists, that we present next:
1. Rivest’s original algorithm [17, p. 243-244];
2. Pagallo and Haussler’s Greedy3 algorithm, introduced in [15];
3. Pagallo and Haussler’s Grove algorithm [15];
4. Laplace, a separate-and-conquer algorithm, based on Pagallo and Haus-

sler’s Grove, but using Laplace estimate instead of entropy;
5. Simple, a separate-and-conquer algorithm with a select-rule auxiliary

function designed for our specific case;
6. CN2, a separate-and-conquer algorithm relying on beam-search.[5,4]

Rivest

We applied Rivest’s original algorithm for learning decision lists.

4 We recall that PAC-learning was introduced by Valiant [19].



Algorithm 3: Pseudo-code for Rivest

Function Rivest(E,max)
input : E = {(τ1, y1), (τ2, y2), . . . , (τm, ym)}

max is a positive integer
output : DL, a strategy for y

1 for t ∈ Cn
max do

2 T ← {(τi, yi) : τi |= t}
3 if T = ∅ then continue
4 if T ⊂ E+ then return {(t, 1)} . Rivest(E \ T,max)
5 if T ⊂ E− then return {(t, 0)} . Rivest(E \ T,max)

6 let (τi, yi) belong to the smaller class of E
7 return (τi, yi) . Rivest(E \ {(τi, yi)},max)

The algorithm works recursively: it iterates over all terms of length at most
max, until it finds a term t such that all the examples satisfying it are of the same
class. We start our decision list with a rule consisting of t and the corresponding
class. The remaining rules are computed by recursively calling the algorithm.

We modified the original algorithm, by introducing a fall-back rule (steps 6
and 7): when no t satisfies the requirement, we add a rule corresponding to an
example from the less common class in E (Algorithm 3).

100

200

300

400

500

600

130 140 150 160 170 180

C
P
U

ti
m
e
(s
)

instances
No learning

rivestk2-i16

rivestk2-i32

rivestk2-i64

rivestk2-i128

Fig. 2. Rivest results, with max = 2

QFun with Rivest performs considerably worse than with ID3 and even worse
than QFun without any learning (Fig. 2).

Interestingly, the fall-back rule was very seldom used. That means there is
no point in evaluating Rivest with max = 3. We therefore tested Rivest with
max = 1 instead, with similar, slightly worse results.



Algorithm 4: Loop of separate-and-conquer algorithms

Function separate-and-conquer(E)
input : E = {(τ1, y1), (τ2, y2), . . . , (τm, ym)}
output : DL, a strategy for y

1 C ← E
2 DL← ∅
3 while C+ 6= ∅ and C− 6= ∅ do
4 rule← select-rule(C)
5 Append rule to DL
6 C ← C \ {e ∈ C | e is covered by rule}
7 c← class common to all examples in C
8 Append (true, c) to DL
9 return DL

The algorithm does not apply any heuristic to guide the search for new terms
to add to our decision list. This has two major drawbacks: at each step we will
learn the first term that is coherent with our examples, not necessarily the best
one; and for a large n or max, considering all the possible terms is too inefficient.
We conclude that Rivest’s algorithm is not efficient for practical purposes, and
we will try different algorithms in the upcoming sections.

Greedy3

There are a number of different search strategies that can be used to avoid
generating all possible rules and checking them one by one, while also striving
to learn the best rule possible. Pagallo and Haussler [15] have used a top-down
greedy approach. For each new rule, the term is built by starting with true
and adding one literal at a time, using a heuristic to choose the best literal.
They used a new strategy, called separate-and-conquer, and Greedy3 became
the first example of a large family of learning algorithms sharing that same
strategy. We begin by presenting the separate-and-conquer general strategy
before looking at the more specific Greedy3.

All separate-and-conquer algorithms share the same top-level loop: a
separate-and-conquer algorithm selects a rule that classifies a part of the
examples, removes (separates) these examples from the set of examples to clas-
sify, and recursively classifies (conquers) part of the remaining examples until
no examples remain.

The pseudo-code for the separate-and-conquer family of algorithms is pre-
sented as Algorithm 4. The algorithm starts with an empty decision list, DL
and a set of unclassified examples C. As long as C includes both positive and
negative examples, the algorithm adds rules to DL, and eliminates the exam-
ples covered with these rules from C. Once C has only positive or only negative
examples left, the default rule is added to DL and the algorithm ends.

The difference between the specific algorithms of the separate-and-conquer
paradigm is in the way they select the next rule to be added to the decision list



Algorithm 5: select-rule for hill-climbing separate-and-conquer

Function select-rule(C)
input : C is a set of examples
output : a rule

1 Pot← ∅
2 term← true
3 domain← X
4 while C+ 6= ∅ and C− 6= ∅ do
5 l← select-literal(C, domain)
6 term← (term ∧ l)
7 domain← domain \ {var(l)}
8 remove from C all examples with value 0 for l and add them to Pot

9 c← class of remaining examples in C
10 C ← Pot
11 return (term, c)

(step 4). Most separate-and-conquer algorithms use hill-climbing, building the
term of the new rule by adding one literal at a time, selecting the best literal
according to some criterion, and stopping when no improvement is possible.

The pseudo-code for the select-rule auxiliary function using this hill-
climbing search strategy is presented as algorithm 5. Every time we want to
learn a new rule, an auxiliary set of examples Pot is initialized as empty, the
term to be learned is initialized as true, and the set of variables we can use,
domain, is set to X. We then repeatedly select a literal l, update term to be the
intersection of term and l, exclude l’s variable from the domain and move all the
examples that don’t satisfy l from C to Pot. We stop selecting literals when all
examples in C belong to the same class c. At that point, we append (term, c) to
the decision list and the examples stored in Pot become the new C.

Within this hill-climbing strategy, learning algorithms differ only in the way
they select the next literal to be used in a rule (step 5). This is usually done
using a select-literal function that assigns a value to each literal and then
chooses the literal that maximizes that value. Greedy3’s select-literal function
chooses the next literal using as a criterion the measure of validity or purity of
a literal, i.e., the probability that an example is a member of a class given that
it satisfies that literal.

The results obtained by QFun with Greedy3 can be seen in Fig. 3. Overall, it
works better than Rivest, but does not match the performance of ID3. Due to
its select-literal function, Greedy3’s decision lists consist of a sequence of
rules with class 1, ending with a default rule with class 0. Greedy3 was designed
with the goal to allow efficient representation of small DNF formulae (which was
a limitation of decision trees). However, the fact that Greedy3 is always trying
to maximize the positive elements leads to inefficiency in some instances.



100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

greedy-i16

greedy-i32

greedy-i64

greedy-i128

Fig. 3. Greedy3 results

Grove

The Grove algorithm is another separate-and-conquer algorithm, introduced
with the goal of efficiently learning a decision list without Greedy3’s bias. The
difference between them is only in the select-literal auxiliary function. Grove
chooses the next variable to be used by maximizing the Information Gain of C
for x, and then chooses between the positive and the negative literal of that
variable, according to which one has a smaller entropy.

100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

grove-i16

grove-i32

grove-i64

grove-i128

Fig. 4. Grove results

Overall, results were better than the ones obtained with Greedy3, and very
similar to the ones obtained with ID3. They can be seen in Figure 4.



Using entropy as heuristic created a bias towards learning rules that are
too specific. This problem has been identified in the literature, sugesting the
replacement of entropy by the Laplace estimate. We therefore decided to create
a version of Grove using Laplace estimate instead of entropy.

Laplace

To counter the bias found in the previous section, we have adapted Grove’s
algorithm to use Laplace Estimate instead of Entropy, and we have called this
algorithm Laplace.

Definition 3. (Laplace Estimate) Given a set of samples E =
{(τ1, y1), (τ2, y2), . . . , (τm, ym)}, a literal l, and a Boolean b, the Laplace Esti-
mate is given by: Laplace(E, l, b) = p+1

p+n+2 , where p and n are the number of

examples that satisfy l in {e ∈ E : yi = b} and {e ∈ E : yi 6= b}, respectively.

The results obtained with Laplace were better than the results obtained
with Grove and with ID3. It was the best of the algorithms used so far, and
these results can be seen in Figure 5. In terms of the number of formulae solved,
results were better than for any algorithm previously tested. Laplace performed
better than Grove and ID3 at most of the possible metrics considered: solved
instances, total solver time, learning time.

100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

laplace-i16

laplace-i32

laplace-i64

laplace-i128

Fig. 5. Laplace results

Simple

During the implementation of Laplace, the idea of creating a heuristic tailored
to our specific problem was developed. It was clear to us how it should evaluate
literals. Given a set of examples E, divided in positive and negative examples,
and a literal l, we wanted to attribute a value to l based on the result of subdi-
viding E+ and E− according to the evaluation of l:



– ideally, the set of examples that satisfy l, El, coincides with E+ or E−;
– alternatively, El ⊂ E+ or El ⊂ E−;
– the remaining literals should be ordered by how unmixed El is;
– an additional ordering criterion, should be to maximize the number of ex-

amples covered.

We defined a function that for every set of examples and a literal returns a
pair. The first element is -1, 0 or a positive integer, depending on whether l
belongs to the first, second or third of the 3 groups described above. In the third
case, the integer measures how far El is from being unmixed. We decided to use
the minimum value between #E+

l and #E−l . The second element in the pair is
the number of examples covered. We want to choose the literal with the lowest
possible value in the first element, and for literals with the same first value, we
want the highest possible second value.

Definition 4. (Simple) For a set of samples E, and literal l, the function Sim-
ple is defined as: Simple(E, l) = if (El = E+ or El = E−) then (−1, p+ n)

else (min(p, n) , p+ n)

where p and n are the number of examples satisfying l in E+ and E−, resp.

We choose the ordering of our pairs by defining: (a, b) < (c, d) iff (a < c) ∨
((a = c) ∧ (b > d)).

The select-literal function of Simple is the minimization of the Simple
function defined above. Simple is in reality a particular member of the lexi-
cografic evaluation functionals [6, p. 35].

100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

simple-i16

simple-i32

simple-i64

simple-i128

Fig. 6. Simple results

Simple did not perform better than Laplace, but at the level of Grove and
ID3. The results obtained by Simple and Grove were very similar, in all the
metrics considered, except the learning time, where Simple performed clearly



better. We conclude that our heuristic led to a faster learning, but not to a more
relevant learning.

Simple has a basic limitation, inherent to the hill-climbing strategy: by elim-
inating all possible one-step choices but one, hill-climbing may be unable to
reach the optimal solution in the search space, because it gets stuck in a local
maximum. There are at least two possible ways to address this problem. One is
look ahead. In our concrete case, this would mean to evaluate all possible com-
binations of up to n literals, instead of choosing them one by one. The other is
beam-search: instead of remembering only the best solution, we keep in memory
a fixed number of alternatives, the so-called beam. While hill-climbing has to
make a choice of a single solution, and look ahead causes an exponential growth
in the search space, beam-search causes only a multiplication of the search space
by a constant factor, the size of the beam. From these two approaches, we chose
beam-search, since keeping the size of the search space controlled is a relevant
constraint in our problem. For that reason, we decided to implement the CN2

algorithm, which we cover in the next section.

CN2

The CN2 algorithm is another separate-and-conquer algorithm, but does uses
beam-search instead of hill-climbing. The pseudo-code for CN2’s select-rule

auxiliary function is presented as Algorithm 6.

Algorithm 6: select-rule for CN2

Function select-rule(C)
input : C is a set of examples
output : a rule

1 let s, ns, bt← {true}, ∅, true
2 while s 6= ∅ do
3 foreach t ∈ s do
4 if term is coherent then continue
5 let dom← {x ∈ X | x /∈ t}
6 foreach l ∈ {x,¬x | x ∈ dom} do
7 let nt← t ∧ l
8 if Laplace(nt) > Laplace(bt) and nt is coherent then
9 bt← nt

10 ns← ns ∪ {nt}
11 if size of nt > maxs then
12 remove the worst term from ns

13 s← ns
14 ns← ∅
15 c← class of examples that satisfy bt
16 return (bt, c)



100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

cn2m2-i16

cn2m2-i32

cn2m2-i64

cn2m2-i128

Fig. 7. CN2 results, beam size 2

We begin by initializing 3 variables: s, ns and bt. The variable s holds the
beam, i.e., the best terms found so far, and is initialized as the singular set
containing only the true term. Throughout the execution of CN2, the size of s
cannot exceed a constant maxs. The variable ns holds an auxiliary set so that
we can iteratively update s, and is initialized as the empty set. The variable bt
identifies the best term found so far and is initialized to true.

We then start a loop that will only stop when s is empty. In each iteration,
we expand every term in s (unless it is already coherent) with every possible
literal whose variable is not yet in t.

For every expansion of a t with a new literal, the resulting nt is evaluated
with the Laplace heuristic. If nt is better than the current bt and nt is coherent,
we update bt. If ns is smaller than maxs we add nt to it, otherwise, if nt is better
than the worst term in nt, we replace that worst term with nt.

After iterating through all terms in s and all possible literals for each t, we
update s to ns and reset ns to ∅, and we move onto the next iteration of the
external cycle. We stop the cycle, once s is empty, which means that we have not
expanded any terms in the last cycle. At this point we return a rule consisting
of bt and the class of its examples.

One concern we had was whether using beam search would make the learn-
ing process computationally heavier. We have tested CN2 for the same learning
intervals as the previous algorithms, and for beam sizes of 2, 3 and 4. Overall,
the results with CN2 were slightly better than with Laplace, and therefore it was
the best of all the algorithms we tried. Once again the difference was modest,
but in the end by these small increments we got observably far from the results
obtained without learning.

Figures 7, 8, and 9, show results obtained with the CN2 algorithm, for a beam
size of 2, 3, and 4, respectively. In Figure 10, we can see the results obtained with
all algorithms, combining the best version of each. We have also added the results



100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

cn2m3-i16

cn2m3-i32

cn2m3-i64

cn2m3-i128

Fig. 8. CN2 results, beam size 3

100

200

300

400

500

600

140 150 160 170 180 190

C
P
U

ti
m
e
(s
)

instances
No learning

cn2m4-i16

cn2m4-i32

cn2m4-i64

cn2m4-i128

Fig. 9. CN2 results, beam size 4

obtained with the QuAbS solver, the winner of the QBFEval18 competition.5

A detailed table with all the results obtained is publicly available.6 Further
experimental details can be found in the MSc thesis of the first author [18].

4 Summary and Future Work

We have amply confirmed the main result of [9], that consists in claiming that
machine learning of strategies during the solving of QBF with CEGAR enables
improvements in the solver’s performance. The learning of strategies results in a
smaller number of refinements and therefore, in principle, in faster solving. We

5 https://github.com/ltentrup/quabs
6 http://sat.inesc-id.pt/~rjs/qbf/qbfEval17-18_non-random_600.html

https://github.com/ltentrup/quabs
http://sat.inesc-id.pt/~rjs/qbf/qbfEval17-18_non-random_600.html


150

200

250

300

350

400

450

500

550

600

155 160 165 170 175 180 185 190

C
P
U

ti
m
e
(s
)

instances
No learning

dtree-i16

rivestk1-i128

greedy-i32

grove-i128

laplace-i32

simple-i16

cn2m4-i16

quabs

Fig. 10. All algorithms (best version of each)

conclude that whether the reduction in the number of refinements necessary to
solve a QBF materializes into a faster solving time is formula-specific.

We conclude that the quality of the strategies learned is the crucial factor,
and not so much the efficiency in learning. Efficiency of the learning algorithm
is also important, but in our implementation, the learning process only takes a
small fraction of the total solving time. QFun with learning can result in compu-
tationally heavier refinements, causing the solver to slow down. In many of the
instances that QFun solved without learning and failed to solve with learning,
the reason for failure was a timeout and QFun with learning did not reach the
number of refinements at which it was able to solve the formula without learning.

The results obtained with CN2 show that using beam search to select literals is
feasible. This in turn leads us to conclude that more complex learning algorithms
might be suitable candidates to improve QFun.
Possible future work includes:

– Learn strategies for multiple variables at once.
– Implement a look-ahead algorithm
– Dynamic learning intervals
– Incremental learning
– Improve the analysis of QBF families

Acknowledgments. This work was supported by national funds through FCT
— Fundação para a Ciência e a Tecnologia with reference UID/CEC/50021/2019
and the project INFOCOS with reference PTDC/CCI-COM/32378/2017. The
work was supported by the European Regional Development Fund under the
project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466).



References

[1] Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: LPAR
(2004)

[2] Biere, A.: Resolve and expand. In: SAT (2004)
[3] Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. In: Hand-

book of Satisfiability. IOS Press (2009)
[4] Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements.

In: Proceedings of the European Working Session on Learning (EWSL). pp.
151–163. Springer (1991)

[5] Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning
3(4), 261–283 (1989)

[6] Fürnkranz, J.: Separate-and-Conquer Rule Learning. Artificial Intelligence
Review 13(1), 3–54 (1999). https://doi.org/10.1023/A:1006524209794

[7] Giunchiglia, E., Marin, P., Narizzano, M.: QuBE 7.0 system description.
Journal on Satisfiability, Boolean Modeling and Computation 7 (2010)

[8] Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit represen-
tation. In: AAAI (2010)

[9] Janota, M.: Towards Generalization in QBF Solving via Machine Learning.
In: AAAI Conference on Artificial Intelligence. pp. 1–14 (2018)

[10] Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with
counterexample guided refinement. Artificial Intelligence 234, 1–25 (2016)

[11] Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with
counterexample guided refinement. In: Theory and Applications of Satisfi-
ability Testing (SAT). pp. 114–128 (2012)

[12] Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In:
SAT (2011)

[13] Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal
QBF solver with game-state learning. In: SAT (2010)

[14] Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: SAT
(2008)

[15] Pagallo, G., Haussler, D.: Boolean Feature Discovery in
Empirical Learning. Machine Learning 5(1), 71–99 (1990).
https://doi.org/10.1023/A:1022611825350

[16] Quinlan, J.R.: Induction of Decision Trees. Machine learning 1(1), 81–106
(1986). https://doi.org/10.1023/A:1022643204877

[17] Rivest, R.L.: Learning Decision Lists. Machine Learning 2(3), 229–246
(1987). https://doi.org/10.1023/A:1022607331053

[18] dos Santos Silva, R.J.M.: Machine learning of strategies for efficiently solv-
ing QBF with abstraction refinement. Master’s thesis, Universidade de Lis-
boa (2019), http://sat.inesc-id.pt/~mikolas/R-Silva-MSc19.pdf

[19] Valiant, L.G.: A Theory of the Learnable. Communications of the ACM
27(11), 1134–1142 (1984). https://doi.org/10.1145/1968.1972

https://doi.org/10.1023/A:1006524209794
https://doi.org/10.1023/A:1022611825350
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022607331053
http://sat.inesc-id.pt/~mikolas/R-Silva-MSc19.pdf
https://doi.org/10.1145/1968.1972

