On Checking of Skolem-based Models of QBF

Mikoláš Janota Joao Marques-Silva

¹ INESC-ID/IST, Lisbon, Portugal ² CASL/CSI, University College Dublin, Ireland

What Is QBF and Why Should We Certify Anything?

- Quantified Boolean Formulas are a natural extension of SAT with quantification
- applications-model checking, fault localization, PSPACE-complete

What Is QBF and Why Should We Certify Anything?

- Quantified Boolean Formulas are a natural extension of SAT with quantification
- applications-model checking, fault localization, PSPACE-complete

Example

 $\forall v_1 v_2 \exists x_1 x_2$. $(v_1 \leftrightarrow x_1) \land (v_2 \leftrightarrow x_2)$

What Is QBF and Why Should We Certify Anything?

- Quantified Boolean Formulas are a natural extension of SAT with quantification
- applications-model checking, fault localization, PSPACE-complete

Example

$$\forall y_1y_2 \exists x_1x_2. \ (y_1 \leftrightarrow x_1) \land (y_2 \leftrightarrow x_2)$$

- QBF solvers are hard to write and easy to make mistakes in—certifying answers increases confidence
- certificates (proofs) can be useful for further analysis

QBF Certification

• we are assuming closed prenex form with CNF matrix

QBF Certification

- we are assuming closed prenex form with CNF matrix
- Q-Resolution
- Term Resolution
- Skolem-based models (strategies)

• It is useful to think about a QBF as a game between the universal and existential player.

- It is useful to think about a QBF as a game between the universal and existential player.
- Universal player wins when the matrix becomes false.

- It is useful to think about a QBF as a game between the universal and existential player.
- Universal player wins when the matrix becomes false.
- Existential player wins when the matrix becomes true

- It is useful to think about a QBF as a game between the universal and existential player.
- Universal player wins when the matrix becomes false.
- Existential player wins when the matrix becomes true
- A QBF is true if and only if the existential player "can always win"

- It is useful to think about a QBF as a game between the universal and existential player.
- Universal player wins when the matrix becomes false.
- Existential player wins when the matrix becomes true
- A QBF is true if and only if the existential player "can always win"

Example

$$\forall y \exists x. (y \leftrightarrow x)$$

• the existential player always wins by playing x the same as y

Skolem-based Models

Strategy Function

for variable x, a Boolean function $f_x(y_1, \ldots, y_k)$, where y_1, \ldots, y_k precede x in the prefix

Skolem-based Models

Strategy Function

for variable x, a Boolean function $f_x(y_1, \ldots, y_k)$, where y_1, \ldots, y_k precede x in the prefix

Skolem-based Models

set of strategy functions such that under these functions, the matrix always evaluates to *true*, i.e.

 $(\bigwedge_{x \text{ is existential}} x = f_x(\dots)) o \varphi$ is a tautology

Skolem-based Models

Strategy Function

for variable x, a Boolean function $f_x(y_1, \ldots, y_k)$, where y_1, \ldots, y_k precede x in the prefix

Skolem-based Models

set of strategy functions such that under these functions, the matrix always evaluates to *true*, i.e.

$$(\bigwedge_{x \text{ is existential}} x = f_x(\dots)) o \varphi$$
 is a tautology

Example

$$\forall y \exists x. (y \leftrightarrow x)$$

•
$$\{f_x(y) := y\}$$

• for QBF $P.\varphi$ and a set of strategy functions $\mathcal M$

- \bullet for QBF $P.\varphi$ and a set of strategy functions ${\cal M}$
- $\bullet~$ let $\Omega_{\mathcal{M}}$ be a CNF representation of the strategy functions

- \bullet for QBF $P.\varphi$ and a set of strategy functions ${\cal M}$
- $\bullet~$ let $\Omega_{\mathcal{M}}$ be a CNF representation of the strategy functions
- check $\Omega_{\mathcal{M}} \to \varphi$ holds

- \bullet for QBF ${\it P.}\varphi$ and a set of strategy functions ${\cal M}$
- $\bullet~$ let $\Omega_{\mathcal{M}}$ be a CNF representation of the strategy functions
- check $\Omega_{\mathcal{M}} \to \varphi$ holds

 $\Omega_{\mathcal{M}} \to \varphi$

- for QBF $P.\varphi$ and a set of strategy functions $\mathcal M$
- $\bullet~$ let $\Omega_{\mathcal{M}}$ be a CNF representation of the strategy functions
- check $\Omega_{\mathcal{M}} \to \varphi$ holds

 $\begin{array}{l} \Omega_{\mathcal{M}} \to \varphi \\ \text{iff } \Omega_{\mathcal{M}} \to \bigwedge_{C \in \varphi} C \quad (\varphi \text{ is CNF}) \end{array}$

- \bullet for QBF $P.\varphi$ and a set of strategy functions ${\cal M}$
- $\bullet~$ let $\Omega_{\mathcal{M}}$ be a CNF representation of the strategy functions
- check $\Omega_{\mathcal{M}} \to \varphi$ holds

$$\begin{split} \Omega_{\mathcal{M}} &\to \varphi \\ \text{iff } \Omega_{\mathcal{M}} &\to \bigwedge_{C \in \varphi} C \quad (\varphi \text{ is CNF}) \\ \text{iff } & \bigwedge_{C \in \varphi} (\Omega_{\mathcal{M}} \to C) \quad (\text{distribution of } \to) \end{split}$$

- \bullet for QBF $P.\varphi$ and a set of strategy functions ${\cal M}$
- $\bullet~$ let $\Omega_{\mathcal{M}}$ be a CNF representation of the strategy functions
- check $\Omega_{\mathcal{M}} \to \varphi$ holds

$$\begin{split} \Omega_{\mathcal{M}} &\to \varphi \\ \text{iff } \Omega_{\mathcal{M}} &\to \bigwedge_{C \in \varphi} \mathcal{C} \quad (\varphi \text{ is CNF}) \\ \text{iff } \bigwedge_{C \in \varphi} (\Omega_{\mathcal{M}} \to \mathcal{C}) \quad (\text{distribution of } \to) \\ \text{iff for all } \mathcal{C} \in \varphi, \text{UNSAT}(\Omega_{\mathcal{M}} \land \neg \mathcal{C}) \quad (\xi \text{ iff UNSAT}(\neg \xi)) \end{split}$$

Basic algorithm

return true

Clause-group algorithm

input : $\Phi = Q_1 z_1 \dots Q_n z_n \varphi$, \mathcal{M} set of Skolem functions, $K \in \mathbb{N}^+$ **output**: true if \mathcal{M} is model for Φ , false otherwise

Results

• algorithms for checking of QBF models (strategies)

- algorithms for checking of QBF models (strategies)
- instead of investigating one closet a time, investigate a group of clauses

- algorithms for checking of QBF models (strategies)
- instead of investigating one closet a time, investigate a group of clauses
- helps only in some cases

- algorithms for checking of QBF models (strategies)
- instead of investigating one closet a time, investigate a group of clauses
- helps only in some cases
- in the future investigate heuristics for groups