Experimental Analysis of Backbone Computation Algorithms

Mikoláś Janota ${ }^{1}$ Inês Lynce ${ }^{2}$ Joao Marques-Silva ${ }^{3}$

${ }^{1}$ INESC-ID, Lisbon, Portugal
${ }^{2}$ INESC-ID/IST, Lisbon, Portugal
${ }^{3}$ CASL/CSI, University College Dublin, Ireland

Backbones

- Backbones of propositional theories are literals that are true in every model.

Backbones

- Backbones of propositional theories are literals that are true in every model.

\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\mathbf{x}_{\mathbf{k}}$	\ldots	$\mathbf{x}_{\mathbf{n}}$
\cdots	x_{j}	\cdots	$\neg x_{k}$	\cdots	$\neg x_{n}$

Backbones

- Backbones of propositional theories are literals that are true in every model.

\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\mathbf{x}_{\mathbf{k}}$	\ldots	$\mathbf{x}_{\mathbf{n}}$
\ldots	x_{j}	\ldots	$\neg x_{k}$	\cdots	$\neg x_{n}$
\ldots	x_{j}	\ldots	$\neg x_{k}$	\cdots	x_{n}

Backbones

- Backbones of propositional theories are literals that are true in every model.

\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\mathbf{x}_{\mathbf{k}}$	\ldots	$\mathbf{x}_{\mathbf{n}}$
\ldots	x_{j}	\ldots	$\neg x_{k}$	\ldots	$\neg x_{n}$
\ldots	x_{j}	\ldots	$\neg x_{k}$	\ldots	x_{n}
\ldots	x_{j}	\ldots	$\neg x_{k}$	\ldots	$\neg x_{n}$
\ldots	x_{j}	\ldots	$\neg x_{k}$	\ldots	x_{n}

Backbones

- Backbones of propositional theories are literals that are true in every model.

\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\mathbf{x}_{\mathbf{k}}$	\ldots	$\mathbf{x}_{\mathbf{n}}$
\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	$\neg x_{n}$
\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	x_{n}
\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	$\neg x_{n}$
\ldots	$\mathbf{x}_{\mathbf{j}}$	\cdots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	x_{n}

Backbones

- Backbones of propositional theories are literals that are true in every model.

\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\mathbf{x}_{\mathbf{k}}$	\ldots	$\mathbf{x}_{\mathbf{n}}$
\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	$\neg x_{n}$
\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	x_{n}
\ldots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	$\neg x_{n}$
\cdots	$\mathbf{x}_{\mathbf{j}}$	\ldots	$\neg \mathbf{x}_{\mathbf{k}}$	\ldots	x_{n}

$$
\phi \models x_{j} \quad \phi \models \neg x_{k}
$$

Motivation

- backbones tell us more about the formula, e.g.
- upper bound for number of models

$$
2^{n-k}, \text { where } n \# \text { variables and } k \text { \#backbones }
$$

Motivation

- backbones tell us more about the formula, e.g.
- upper bound for number of models

$$
2^{n-k} \text {, where } n \text { \#variables and } k \text { \#backbones }
$$

- product configuration

$$
\left.\begin{array}{l}
\text { gas-engine } \vee \text { electric-engine } \\
\text { electric-engine } \Rightarrow \text { automatic } \\
\neg \text { automatic } \vee \neg \text { manual }
\end{array}\right\}
$$

Motivation

- backbones tell us more about the formula, e.g.
- upper bound for number of models

$$
2^{n-k} \text {, where } n \# \text { variables and } k \text { \#backbones }
$$

- product configuration

$$
\left.\begin{array}{l}
\text { gas-engine } \vee \text { electric-engine } \\
\text { electric-engine } \Rightarrow \text { automatic } \\
\neg \text { automatic } \vee \neg \text { manual } \\
\text { electric-engine }
\end{array}\right\}
$$

Motivation

- backbones tell us more about the formula, e.g.
- upper bound for number of models

$$
2^{n-k} \text {, where } n \text { \#variables and } k \text { \#backbones }
$$

- product configuration

Motivation

- Can we compute backbones for large instances?
- How many backbone literals do real-world instances have?

Armory

- We use a satisfiability (SAT) solver as a blackbox

Armory

- We use a satisfiability (SAT) solver as a blackbox

$$
\operatorname{SAT}(x \vee y)=(\operatorname{true},\{x, \neg y\})
$$

Armory

- We use a satisfiability (SAT) solver as a blackbox

$$
\begin{gathered}
\operatorname{SAT}(x \vee y)=(\text { true },\{x, \neg y\}) \\
\operatorname{SAT}(x \wedge \neg x)=(\text { false },-)
\end{gathered}
$$

Model Enumeration

Input : CNF formula φ
Output: Backbone of φ, ν_{R}
$\nu_{R} \leftarrow\{\neg x, x \mid x \in X\}$
repeat
(outc, $\nu) \leftarrow \operatorname{SAT}(\varphi)$
if outc $=$ false then return ν_{R}
$\nu_{R} \leftarrow \nu_{R} \cap \nu$
$\omega_{B} \leftarrow \operatorname{BlockClause}(\nu)$
$\varphi \leftarrow \varphi \cup \omega_{B}$
until $\nu_{R}=\emptyset$
return \emptyset

Iterative SAT Testing

- Can we decide whether I is a backbone using a SAT solver?

Iterative SAT Testing

- Can we decide whether I is a backbone using a SAT solver?

$$
\phi \models I
$$

Iterative SAT Testing

- Can we decide whether I is a backbone using a SAT solver?

$$
\phi \models I \quad \text { iff } \quad \text { UNSAT }(\phi \wedge \neg I)
$$

Iterative SAT Testing

- Can we decide whether I is a backbone using a SAT solver?

$$
\phi \models I \quad \text { iff } \quad \text { UNSAT }(\phi \wedge \neg I)
$$

$$
\phi \models x
$$

Iterative SAT Testing

- Can we decide whether I is a backbone using a SAT solver?

$$
\begin{array}{llll}
\phi=I & \text { iff } & \text { UNSAT }(\phi \wedge \neg I) \\
\phi=x & \text { iff } & \operatorname{UNSAT}(\phi \wedge \neg x)
\end{array}
$$

Iterative SAT Testing

Input : CNF formula φ, with variables X
Output: Backbone of φ, ν_{R}

```
\nuR}\leftarrow
foreach I G{\negx,x|x\inX} do
    (outc, \nu)\leftarrow\operatorname{SAT}(\varphi\cup{\neg/})
    if outc = false then
        \nu
        \varphi \leftarrow \varphi \cup \{ / \}
return }\mp@subsup{\nu}{R}{
```


Iterative SAT Testing

Input : CNF formula φ, with variables X
Output: Backbone of φ, ν_{R}

```
\nu
foreach I \in{\negx,x|x\inX} do
    (outc, \nu)\leftarrow\operatorname{SAT}(\varphi\cup{\neg/})
    if outc = false then
        \nu
        \varphi \leftarrow \varphi \cup \{ / \}
return }\mp@subsup{\nu}{R}{
```

- SAT is called twice per variable

Observation

- if ν is a model of ϕ and $I \in \nu$ then $\neg /$ is not a backbone

Observation

- if ν is a model of ϕ and $I \in \nu$ then $\neg /$ is not a backbone

\ldots	$\mathbf{x}_{\mathbf{i}}$	\ldots
\cdots	$\neg x_{i}$	\ldots
\vdots	\vdots	\vdots

Observation

- if ν is a model of ϕ and $I \in \nu$ then $\neg /$ is not a backbone

\ldots	$\mathbf{x}_{\mathbf{i}}$	\ldots	
\ldots	$\neg x_{i}$	\ldots	$\phi \not \models x_{i}$
\vdots	\vdots	\vdots	

Observation

- if ν is a model of ϕ and $I \in \nu$ then $\neg /$ is not a backbone

\ldots	$\mathbf{x}_{\mathbf{i}}$	\ldots	
\ldots	$\neg x_{i}$	\ldots	
\vdots	\vdots	\vdots	

- OR: if I $\notin \nu$, for some model ν, then I is not a backbone

Improving Iterative Testing

Input : CNF formula φ, with variables X
Output: Backbone of φ, ν_{R}
$\Lambda \leftarrow\{x, \neg x \mid x \in X\}$
$\nu_{R} \leftarrow \emptyset$
foreach $I \in \Lambda$ do
$($ outc,$\nu) \leftarrow \operatorname{SAT}(\varphi \cup\{\neg /\})$
if outc $=$ false then
else
$\llcorner\Lambda \leftarrow \Lambda \cap \nu$
return ν_{R}
$\varphi \leftarrow \varphi \cup\{I\}$
$\left[\begin{array}{l}\nu_{R} \leftarrow \nu_{R} \cup\{I\} \\ \varphi \leftarrow \varphi \cup\{I\}\end{array}\right.$

$$
\begin{array}{ll}
\nu_{R} \leftarrow \nu_{R} \cup\{/\} & / / \\
\text { Backbone identified }
\end{array}
$$

// candidates for backbone // initial backbone estimate

Characteristics

- model enumeration computes backbone from the upper bound (at the beginning everything can be a backbone)

Characteristics

- model enumeration computes backbone from the upper bound (at the beginning everything can be a backbone)
- iterative testing goes from the lower bound (at the beginning nothing is a backbone)

Characteristics

- model enumeration computes backbone from the upper bound (at the beginning everything can be a backbone)
- iterative testing goes from the lower bound (at the beginning nothing is a backbone)
- can we have a smarter upper bound algorithm?

Characteristics

- model enumeration computes backbone from the upper bound (at the beginning everything can be a backbone)
- iterative testing goes from the lower bound (at the beginning nothing is a backbone)
- can we have a smarter upper bound algorithm?

idea

- look only for those models that show that something that still can be a backbone, is not a backbone

Upper Bound Algorithm

Input : CNF formula φ, with variables X
Output: Backbone of φ, ν_{R}
(outc, $\left.\nu_{R}\right) \leftarrow \operatorname{SAT}(\varphi) \quad / /$ initial backbone estimate if outc $=$ false then return $\emptyset \quad / /$ unsatisfiable case while $\nu_{R} \neq \emptyset$ do
(outc, $\nu) \leftarrow \operatorname{SAT}\left(\varphi \wedge \bigvee_{I \in \nu_{R}} \neg /\right)$
if outc $=$ false then return ν_{R}
// estimate contains only backbones
else
$L \nu_{R} \leftarrow \nu_{R} \cap \nu$
return ν_{R}

Characteristics

- the estimate will eventually contain only backbones, which will need to be proven in the last call

Characteristics

- the estimate will eventually contain only backbones, which will need to be proven in the last call
- the SAT calls are getting gradually harder

Characteristics

- the estimate will eventually contain only backbones, which will need to be proven in the last call
- the SAT calls are getting gradually harder
- can we join the two approaches?

Characteristics

- the estimate will eventually contain only backbones, which will need to be proven in the last call
- the SAT calls are getting gradually harder
- can we join the two approaches?

idea

- split the estimate into chunks of size K
- test only one chunk at a time

Upper Bound Chunking Algorithm

Input : CNF formula φ, with variables $X . K \in \mathbb{N}^{+}$
Output: Backbone of φ, ν_{R}
(outc, Λ) $\leftarrow \operatorname{SAT}(\varphi)$
if outc $=$ false then return \emptyset
$\nu_{R} \leftarrow \emptyset$
while $\Lambda \neq \emptyset$ do
$k \leftarrow \min \left(\left|\nu_{R}\right|, K\right)$
$\Gamma \leftarrow$ pick k literals from Λ
(outc, $\nu) \leftarrow \operatorname{SAT}\left(\varphi \wedge \bigvee_{I \in \Gamma} \neg /\right)$
if outc $=$ false then
$\nu_{R} \leftarrow \nu_{R} \cup \Gamma \quad / /$ chunk contains only backbones $\varphi \leftarrow \varphi \wedge \bigwedge_{I \in \Gamma} I$
else

$$
\Lambda \leftarrow \Lambda \cap \nu
$$

return ν_{R}

Characteristics

- K backbones can be shown in one call thus reducing the number of calls

Characteristics

- K backbones can be shown in one call thus reducing the number of calls
- $K=1$ is the iterative algorithm

Characteristics

- K backbones can be shown in one call thus reducing the number of calls
- $K=1$ is the iterative algorithm
- $K=|X|$ is the upper-bound algorithm

Results

Summary and Future Work

- analysis of algorithms for computing backbones that use a SAT solver as a blackbox

Summary and Future Work

- analysis of algorithms for computing backbones that use a SAT solver as a blackbox
- iterative algorithm (one call per variable)

Summary and Future Work

- analysis of algorithms for computing backbones that use a SAT solver as a blackbox
- iterative algorithm (one call per variable)
- upper bound (backbone proven in the last call)

Summary and Future Work

- analysis of algorithms for computing backbones that use a SAT solver as a blackbox
- iterative algorithm (one call per variable)
- upper bound (backbone proven in the last call)
- generalized by chunking algorithm (K literals can be shown as a backbone in one call)

Summary and Future Work

- analysis of algorithms for computing backbones that use a SAT solver as a blackbox
- iterative algorithm (one call per variable)
- upper bound (backbone proven in the last call)
- generalized by chunking algorithm (K literals can be shown as a backbone in one call)
- chunking overall does not outperform the iterative algorithm but helps in some cases

Summary and Future Work

- analysis of algorithms for computing backbones that use a SAT solver as a blackbox
- iterative algorithm (one call per variable)
- upper bound (backbone proven in the last call)
- generalized by chunking algorithm (K literals can be shown as a backbone in one call)
- chunking overall does not outperform the iterative algorithm but helps in some cases
- adaptive algorithms for chunks

