Experimental Analysis of Backbone
Computation Algorithms*

Mikol4s Janota!, Inés Lynce', and Joao Marques-Silva®!

! INESC-ID/IST, Technical University of Lisbon, Portugal
2 CASL/University College Dublin, Ireland

Abstract. In a number of applications, it is not sufficient to decide
whether a given propositional formula is satisfiable or not. Often, one
needs to infer specific properties about a formula. This paper focuses
on the computation of backbones, which are variables that have the
same value in all models of a Boolean formula. Backbones find theoret-
ical applications in characterization of SAT problems but they also find
practical applications in product configuration or fault localization. This
paper presents an extensive evaluation of existing backbone computation
algorithms on a large set of benchmarks. This evaluation shows that it is
possible to compute the set of backbones for a large number of instances
and it also demonstrates that a large number of backbones appear in
practical instances.

1 Introduction

Backbones of a propositional formula ¢ are literals that take value true in all
models of ¢ [23,4,15]. Interest in backbones was originally motivated by the
study of phase transitions in Boolean Satisfiability (SAT) problems, where the
backbone size was related with search complexity. In addition, backbones have
also been studied in random 3-SAT [8] and in optimization problems [7,27,16,28],
including Maximum Satisfiability (MaxSAT) [29,22]. Finally, backbones have
been the subject of recent interest, in the analysis of backdoors [11] and in
probabilistic message-passing algorithms [12].

Besides the theoretical work, backbones have been studied (often with other
names) in practical applications of SAT. One concrete example is SAT-based
product configuration [1], where the identification of variables with necessary
values has been studied in the recent past [18,14,13]. In configuration, the iden-
tification of backbones prevents the user from choosing values that cannot be
extended to a model (or configuration). A more recent application is post-silicon

* This paper is based on, but significantly extends, a paper presented at ECAI 2010
on the same subject [20].
Proceedings of the 19" RCRA workshop on Ezperimental Evaluation of Algorithms
for Solving Problems with Combinatorial Ezxplosion (RCRA 2012).
In conjunction with AT*TA 2012, Rome, Italy, June 14-16, 2012.

fault localization in integrated circuits [31,30]. Besides uses in practical applica-
tions, backbones provide relevant information that can be used when addressing
other decision, enumeration and optimization problems related to propositional
theories. Concrete examples include model enumeration, minimal model compu-
tation and prime implicant computation, among others.

This paper has the following main contributions. First, the paper overviews
recent algorithms for backbone computation [20,31]. Second, the paper provides
a unifying algorithm for backbone computation, and shows that some of the
recent algorithms for backbone computation are special cases of this unifying
algorithm. Third, the paper describes a comprehensive experimental evaluation
of the best backbone computation algorithms. This experimental evaluation is
carried out on an extensive set of problem instances from practical applications
and past SAT competitions. The experimental results support early data [20]
that large practical problem instances can contain large backbones, in many
cases close to 90% of the variables. In addition, the experimental results confirm
that, by careful implementation of some of the proposed algorithms, it is feasible
to compute the backbone of large problem instances.

The paper is organized as follows. Section 2 introduces the notation and def-
initions used throughout the paper. Section 3 develops two main algorithms for
backbone computation, one based on model enumeration and the other based
on iterative SAT testing. Also, this section details techniques that are relevant
for improving the performance of backbone computation algorithms, and sug-
gests alternative algorithms. Moreover, a number of algorithm configurations are
outlined, which are then empirically evaluated. Section 4 analyzes experimental
results on large practical instances of SAT, taken from representative practical
applications and from recent SAT competitions3. Finally, Section 5 concludes
the paper.

2 Preliminaries

A propositional theory (or formula) ¢ is defined on a set of variables X. ¢ is
represented in conjunctive normal form (CNF), as a conjunction of disjunctions
of literals. ¢ will also be viewed as a set of sets of literals, where each set of literals
denotes a clause w, and a literal is either a variable x or its complement Z. The
following definitions are assumed [21]. An assignment v is a mapping from X to
{0,u,1}, v : X — {0,u,1}. v is a complete assignment if v(z) € {0,1} for all
x € X; otherwise, v is a partial assignment. u is used for variables for which the
value is left unspecified, with 0 < u < 1. Given a literal [, v(l) = v(z) if | = z, and
v(l)=1—v(x) if l = Z. v is also used to define v(w) = max;e,, v(1) and v(p) =
minge, v(w). A satisfying assignment is an assignment v for which v(p) = 1.
Given ¢, SAT(p) = 1 if there exists an assignment v with v(¢) = 1. Similarly,
SAT(p) = 0 if for all complete assignments v, v(¢) = 0. In what follows, true

3 http://www.satcompetition.org/.

http://www.satcompetition.org/

variables represent variables assigned value 1 under a given assignment, whereas
false variables represent variables assigned value 0.

2.1 Models and Implicants

In many settings, a model of a propositional theory is interpreted as a satisfying
assignment. However, in the remainder of this paper, it is convenient to represent
a model as a set of variables M, defined as follows. Given a satisfying assignment
v, for each z € X, add x to M if v(x) = 1. Hence, models are represented solely
with the true variables in a satisfying assignment (see for example [6,19]). An
implicant I is defined as a set of literals. Given a satisfying assignment v, for
each z € X, (i) if v(z) = 1, then include z in I; (ii) if v(z) = 0, then include Z
in I. This in turn leads to the following definitions.

Definition 1 (Minimal Model). A model My of ¢ is minimal if there is no
other model Mo of ¢ such that My C M.

Minimal models find many applications in artificial intelligence, including knowl-
edge representation and non-monotonic reasoning [2,6,17].

Definition 2 (Prime Implicant). An implicant I of ¢ is prime if there is no
other implicant Iy of ¢ such that Iy C I.

Prime implicants also find many applications in computer science, including
knowledge compilation in artificial intelligence and Boolean function minimiza-
tion in switching theory [25,6,17]. Besides a wide range of practical applica-
tions, prime implicants and minimal models have also been studied in com-
putational complexity theory. The identification of a minimum-size minimal
model is in Af[logn] [19]. Minimal models can be computed with algorithms
for minimum-cost satisfiability (also referred to as the Binate Covering Prob-
lem (BCP)) [5,19,10]. Prime implicants can be obtained from computed satis-
fying assignments. Suppose v is a satisfying assignment, which can either be
complete or partial. For each w € ¢, let T (w,v) denote the true literals of w,
and let T (p,v) = Uye,T (w,v). Moreover, define the following minimum cost
satisfiability problem:
min Z l

1T (o) (1)
it Muco (Vieren)
The solution to the above set covering problem represents the smallest number of

true literals (among the true literals specified by v) that satisfy the propositional
theory. Hence, this solution represents a prime implicant of .

Proposition 1. Given a satisfying assignment v of a propositional theory ¢,
the solution of (1) is a prime implicant of .

This result summarizes the main arguments of [26]. Moreover, it is well-known
that the computation of prime implicants can be modeled with minimum-cost
satisfiability [24].

2.2 Backbones

The most widely used definition of backbone is given in [27] (see [7] for an
alternative definition):

Definition 3 (Backbone). Let ¢ be a propositional theory, defined on a set of
variables X . A variable x € X is a backbone variable of ¢ if for every model v
of o, v(z) = v, withv € {0,1}. Letl, =Z ifv=0and l, =z ifv=1. Thenl,
s a backbone literal.

In addition, the computation of the backbone literals of ¢ is referred to as
the backbone problem. In the remainder of the paper, backbone variables and
backbone literals will be used interchangeably, and the meaning will be clear from
the context. Although the focus of this paper are satisfiable instances of SAT,
there are different definitions of backbone for the unsatisfiable case [23,15]. For
the algorithms described in this paper, the backbone for unsatisfiable instances
is defined to be the empty set.

Furthermore, backbones can be related to the prime implicants of a propo-
sitional theory.

Proposition 2 (Backbones and Prime Implicants). z € X is a backbone
variable of a propositional theory ¢ if and only if either x or T (but not both)
occur in all prime implicants of .

Following the definition of backbone, a possible solution for computing the
backbone of a propositional theory consists in intersecting all of its models. The
final result represents the backbone. Propositions 1 and 2 can be used for devel-
oping procedures for solving the backbone problem, including: (i) intersection of
the prime implicants based on enumeration of satisfying assignments; and (ii)
intersection of the prime implicants based on enumeration of the minimal models
of a modified propositional theory [24].

Moreover, additional alternative approaches can be devised. Kilby et al. [16]
indicate that the backbone problem is NP-equivalent, and that deciding whether
a literal is a backbone of a propositional theory is NP-easy, because this can be
decided with a SAT test. Clearly, this suggests computing the backbone of a
propositional theory with a sequence of SAT tests that grows with |X|. Hence,
the backbone problem can be solved by a polynomial number of calls to a SAT
solver, and so the backbone problem is in AZ’. The basic result can be stated as
follows:

Proposition 3. Let ¢ be a propositional theory, defined on a set of variables
X, and consider the modified theories pp = ¢ U{x} and oy = ¢ U {Z}. Then
one of the following holds:

1. If pp and pn are both unsatisfiable, then ¢ is also unsatisfiable.
2. If pp is satisfiable and on is unsatisfiable, then x € X is a backbone such
that ¢ s satisfiable if and only if x =1 holds.

Input : CNF formula ¢
Output: Backbone of ¢, vg

1 VR < 0
2 repeat
3 (outc, v) < SAT(yp) // SAT solver call
4 if outc = false then
5 L return vp // Terminate if unsatisfiable
6 if vp = () then
7 L VR <V // Initial backbone estimate
else
L VR < VRNV // Update backbone estimate
10 wp < BlockClause(v) // Block model
11 p<—pUwp

12 until outc = false or vp =)
13 return ()

Algorithm 1: Enumeration-based backbone computation

3. If pn is satisfiable and pp is unsatisfiable, then x € X is a backbone such
that ¢ is satisfiable if and only if x = 0 holds.
4. If both on and pp are satisfiable, then x € X is not a backbone.

Proposition 3 can be used to develop algorithms that compute the backbone
of a propositional theory with a number of SAT tests that grows with |X|, as
suggested for example in [14,13,11]. The different approaches outlined in this
section for solving the backbone problem are described in more detail in the
next section.

3 Computing Backbones

This section starts by overviewing algorithms for backbone computation [20,31].
Next, a new unified algorithm is proposed, which exploits the notion of subsets
(or chunks) of backbone candidates. Two representative algorithms described in
this section are shown to be special cases of the unified algorithms.

3.1 Model Enumeration

An algorithm for computing the backbone of a propositional theory based on
model enumeration is shown in Algorithm 1. The algorithm consists in enumer-
ating the satisfying assignments of a propositional theory. For each satisfying
assignment, the backbone estimate is updated. In addition, a blocking clause
(e.g. [26]) is added to the propositional theory. A blocking clause represents
the complement of the computed satisfying assignment, and prevents the same

Input : CNF formula ¢, with variables X
Output: Backbone of ¢, vg

1 VR < 0

2 foreach z € X do

3 (outcy, v) « SAT(p U {z})

4 (outcg, V) < SAT(p U {Z})

5 if outc; = false and outcy = false then

6 L return ()

7 if outc; = false then

8 vp < vr U {5:} // T is backbone
9 L ¢+ puU{z}
10 if outcy = false then
11 vgr < vr U {z} // x is backbone
12 L v eU{z}

13 return vr

Algorithm 2: Iterative algorithm (two tests per variable)

satisfying assignment from being computed again. In order to improve the effi-
ciency of the algorithm, the blocking clauses are heuristically minimized using
standard techniques, e.g. variable lifting [26]. In addition, a SAT solver with an
incremental interface [3] is used. The incremental interface reduces significantly
the communication overhead with the SAT solver, and automatically implements
clause reuse [21].

It is interesting to observe that Algorithm 1 maintains a superset of the back-
bone after the first satisfying assignment is computed. Hence, at each iteration
of the algorithm, and after the first satisfying assignment is computed, the size
of v represents an upper bound on the size of the backbone.

3.2 [Iterative SAT Testing

The algorithm described in the previous section can be improved upon. As shown
in Proposition 3, a variable is a backbone provided exactly one of the satisfiability
tests SAT(p U {z}) and SAT(¢ U {Z}) is unsatisfiable. This observation allows
devising Algorithm 2. This algorithm is inspired by earlier solutions [14,13].
Observe that if a literal is declared a backbone, then it can be added to the CNF
formula, as shown in lines 9 and 12; this is expected to simplify the remaining
SAT tests. Clearly, the worst case number of SAT tests for Algorithm 2 is 2| X]|.

Analysis of Algorithm 2 reveals a number of possible optimizations. First, it
is unnecessary to test variable z if there exist at least two satisfying assignments
where z takes different values. Also, modern SAT solvers compute complete
assignments [21]. Clearly, some variable assignments may be irrelevant for satis-
fying the CNF formula. More importantly, these irrelevant variable assignments

Input : CNF formula ¢, with variables X
Output: Backbone of ¢, vg

(outc, v) +— SAT(yp)

=

2 if outc = false then

3 L return ()

a1 A {l|lev} // SAT tests planned
5 vp — 0

6 foreach [€ A do

7 (oute, v) < SAT(p U{l})

8 if outc = false then

9 vr + vp U{l} // Backbone identified
10 ¢+ @ U{l}

11 else

12 foreach x € X do

13 if v Az ¢vthen

14 L | A A—{z,z} // Var filtering
15 foreach [, € v do

16 if [, € A then

17 L L A A— {l,,} // Var filtering

18 return vp

Algorithm 3: Iterative algorithm (one test per variable)

are not backbone literals. These observations suggest a different organization,
corresponding to Algorithm 3. The first SAT test provides a reference satisfying
assignment, from which at most | X | SAT tests are obtained. These | X| SAT tests
(denoted by A in the pseudo-code) are iteratively executed, and serve to decide
which literals are backbones and to reduce the number of SAT tests that remain
to be considered. The organization of Algorithm 3 guarantees that it executes at
most | X |+ 1 SAT tests. Besides the reduced number of SAT tests, Algorithm 3
filters from backbone consideration any variable that takes more than one truth
value in previous iterations of the algorithm (lines 15 to 17)

In contrast with the enumeration-based approach, iterative algorithms refine
a subset of the backbone. Hence, at each iteration of the algorithm, the size of
vg represents a lower bound on the size of the backbone. For complex instances
of SAT, the enumeration-based and the iteration-based approaches can be used
to provide approximate upper and lower bounds on the size of the backbone,
respectively.

Input : CNF formula ¢, with variables X
Output: Backbone of ¢, vg

1 (outc,v) < SAT(y)
if outc = false then
L return ()

w N

VR <V // Initial backbone estimate
wy « {l|l€vr} // Negate backbone estimate
while wy # 0 do

(oute, v) + SAT(p Uwy)
if outc = false then

| return vp // Terminate if unsatisfiable

© 00 N O G

// Instance is sat
10 foreach x € X do

11 ifrZv AT ¢&v then

12 L VR < VR — {.13, .i‘} // Variable filtering
13 foreach [, € vz do

14 if [, € v then

15 L vr +—vr —{l,} // Refine backbone estimate
16 WN {” le Z/R} // Negate backbone estimate

Algorithm 4: Iterative algorithm with complement of backbone estimate

3.3 Integrating the Complemented Backbone Estimate

An algorithm that complements the algorithms described in the previous sections
was recently proposed in [31]. Although in practice this algorithm is less efficient
than the algorithms described in the previous section, namely Algorithm 3, it
is guaranteed to require fewer SAT solver calls. Indeed, the algorithm described
in [31] is also based on iterative SAT testing, but only a single SAT solver call is
required to prove the set of backbone literals. This section studies this algorithm,
and proposes optimizations targeting improved efficiency. Algorithm 4 shows the
new algorithm developed in [31]. As can be observed, the complement of the
backbone estimate is added as a clause to the formula. If the formula is satisfiable,
then the computed truth assignment includes at least one satisfied literal in the
complement of the backbone estimate. Hence, the backbone estimate is refined
(as is its complement). The process is repeated until the backbone estimate
represents the actual backbone, in which case the formula is unsatisfiable.

Proposition 4. Let |BB| denote the backbone size. Then, the number of SAT
tests in Algorithm 4 is at most (|X| — max(|BB|,1)+ 1) +1 < |X |+ 1.

Proposition 5. There is exactly one unsatisfiable SAT test for Algorithm j.
The number of satisfiable SAT tests is at most | X|— |BB| < |X].

Input : CNF formula ¢, with variables X; K chunk size
Output: Backbone of ¢, vg

1 (outc,v) < SAT(y)

2 if outc = false then

3 L return ()

4 Up <V // Initial backbone estimate
5 wy < {l|l€vgr} // Negate backbone estimate
6 while vp # 0 do

7 k + min(K, |wy])

8 I' + pick k literals from wy

9 (outc,v) <= SAT(p U V1)

10 if outc = false then

11 L return vg // Terminate if unsatisfiable

// Instance is sat
12 foreach x € X do
13 Lifngu/\:nguRthen

14 L VR < vp — {z, T} // Variable filtering
15 foreach [, € vg do

16 if [, € v then

17 L VR < VR — {ll,} // Refine backbone estimate
18 wy {1 €vr} // Negate backbone estimate

Algorithm 5: Chunking algorithm

As observed in [31], Algorithm 4 can perform poorly when compared with the
algorithms described in earlier sections. This results from negating the complete
backbone estimate, that can result in difficult instances of SAT.

A solution to the problem of negating the complete backbone estimate is to
iteratively negate and analyze subsets of the backbone estimate. This process
consists of splitting the backbone estimate into chunks of some size K as pre-
sented in Algorithm 5. The algorithm has the same structure as Algorithm 4 but
instead of adding a clause of the size of the whole backbone estimate, a clause
of the size K is added. The intuition behind this clause is “show that at least
one of the respective literals is not a backbone.”

Interestingly, the use of chunks covers both Algorithm 4, when a single chunk
is used, and Algorithm 3, when chunks of size 1 are used. The use of chunks
provides added flexibility. For example, one can consider adapting the chunk
size given the set of problem instances being considered. Alternatively, one can
envision adaptive chunk sizes, that are selected given both properties of the
problem instance and the run times of previously analyzed chunks.

Proposition 6. Algorithm j corresponds to a chunk of size n. By adapting Al-
gorithm 4 to use chunks, and considering chunks of size 1 yields Algorithm 3.

3.4 Practical Implementation & Configurations

Earlier work [20,31] carried out extensive evaluations of backbone computation
algorithms, including different approaches for exploiting the incremental inter-
face of SAT solvers. The overall conclusion is that Algorithm 3 is the most
efficient solution for backbone computation. The experimental analysis in this
paper focuses on the unified approach outlined earlier, i.e. Algorithm 4 with
chunks of fixed size. Special cases of the unified algorithm are Algorithm 3,
i.e. using chunks of size 1, and Algorithm 4, i.e. using a single chunk.

3.5 Additional Solutions

Besides the algorithms outlined above, and which will be evaluated in Section 4,
a number of additional algorithms and techniques can be envisioned.

A simple technique is to consider k initial SAT tests that implement differ-
ent branching heuristics, different default truth assignments and different initial
random seeds. A similar technique would be to consider local search to list a few
initial satisfying assignments, after the first satisfying assignment is computed.
Both techniques could allow obtaining satisfying assignments with more vari-
ables assuming different values. This would allow set A to be further reduced.
The experiments in Section 4 indicate that in most cases the number of SAT tests
tracks the size of the backbone, and so it was deemed unnecessary to consider
multiple initial SAT tests.

Another approach consists of executing enumeration and iteration based al-
gorithms in parallel, since enumeration refines upper bounds on the size of the
backbone, and iteration refines lower bounds. Such algorithm could terminate
as soon as both bounds become equal. The experiments in Section 4 suggest
that a fine-tuned iterative algorithm, integrating the techniques outlined above,
is a fairly effective solution, and enumeration tends to perform poorly on large
practical instances.

Finally, as suggested in Section 2.2 and Proposition 2, an alternative algo-
rithm would involve the enumeration of prime implicants, instead of model enu-
meration. Algorithm 1 could be modified to invoke a procedure for computing
prime implicants. However, given the less promising results of model enumera-
tion, prime implicant enumeration is unlikely to outperform the best algorithms
described in earlier sections.

4 Results

The presented algorithms were implemented using minisat2.2 as the underlying
SAT solver [9], availing of its incremental interface in all algorithms. The experi-
ments were conducted on a compute cluster where each node is a dual quad-core

10

’algorithmH Chunk-1 \Chunk—lO\ Chunk—lOO\Chunk—500\Chunk—unbounded\VBS‘

solved 667 664 662 587 485 683
wins 507 448 258 220 176 -

Table 1. Overview of the results including the virtual best solver (VBS). A win is
counted if the algorithm is not worse than the best time on the instance by 1s.

Xeon E5450 3 GHz with 32 GB of memory. Each instance was run with a timeout
of 800s and memory limit 2 GB.

To evaluate the effect of the size of a chunk on the overall performance,
problem instances from practical application domains were selected from the
past SAT competitions and races?. In total, 779 problem instances were selected.
The selection was guided by the goals of finding instances that are easy for SAT
solvers but also are practically motivated.

Table 1 provides an overview of the results. Chunks of size 1, 10, 100, and
500 were used accompanied by the “unbounded” chunk, i.e. the algorithm where
the chunk comprises the whole set of variables [31]. The table clearly shows that
the basic algorithm (Chunk-1) performs the best. Increasing the chunk size al-
ways leads to an overall decrease in performance, with the unbounded version
being the worst. However, Chunk-10 solves only 3 fewer instances than Chunk-1.
Moreover, the results for the virtual best solver (VBS) show that the other al-
gorithms enabled solving 24 more instances on top of those solved by Chunk-1.
Given the results for the VBS, a parallel portfolio using different backbone com-
putation algorithms is expected to substantially outperform the best individual
configuration, i.e. Chunk-1.

Figure 1 focuses on the hard instances from the whole instance set. These
instances were chosen by eliminating those that could be solved by all the al-
gorithms in less than 50 seconds. The results are congruent with those in the
table above. Chunk-1 is the best approach and Chunk-10 closely follows. The
results for the virtual best solver here not only indicate that more instances can
be solved but also that there is a noticeable improvement in time if the right
algorithm were to be used.

The number of backbone variables was surprisingly high. Out of the 779
instances, 477 had over 50% backbone variables; 96 instances had over 74%; 52
over 90%. More detailed information for individual instances can be found on
the authors’ website®.

5 Conclusions

This paper develops improvements to algorithms for backbone computation.
Whereas some of the algorithms are based on earlier work [20,31], others are

4 http://www.satcompetition.org/.
® http://sat.inesc-id.pt/~mikolas/rcral2_bb

11

http://www.satcompetition.org/
http://sat.inesc-id.pt/~mikolas/rcra12_bb

800

700

600

500

400

CPU time

300

200

100

0 [1
0 50 100 150 200 250 300
instances

Fig. 1. Cactus plot for hard instances, i.e. instances where at least one algorithm took
over 50s

novel, and unify some of the most representative earlier algorithms. In addition,
the paper extends a comprehensive experimental study of backbones on practical
instances of SAT. The experimental results suggest that iterative algorithms,
requiring at most one satisfiability test per variable [20], are the most efficient.
However, the unified algorithm developed in this paper, with a fixed chunk size,
can provide performance gains for some problems instances. In addition, the
experimental results show that the proposed algorithms allow computing the
backbone for large practical instances of SAT, with variables in excess of 70,000
and clauses in excess of 250,000. Furthermore, the experimental results also show
that these practical instances of SAT can have large backbones, in some cases
representing more than 90% of the number of variables and, in half of the cases,
representing more than 50% of the number of variables.

The experimental results confirm that backbone computation is feasible for
large practical instances. This observation motivates further work on applying
backbone information for solving decision and optimization problems related to
propositional theories, including model enumeration, minimal model computa-

12

tion and prime implicant computation. Moreover, more efficient backbone com-
putation algorithms are expected to impact practical applications [18,14,13,30].

Future improvements to backbone computation algorithms include automatic
identification of chunk size and parallel portfolios with different chunk sizes.
Finally, the integration of additional model simplification techniques could yield
additional performance gains.

Acknowledgements

This work is partially supported by SFI PI grant BEACON (09/ IN.1/12618),
FCT through grants ATTEST (CMU-PT/ELE/0009/2009), POLARIS (PTDC/
EIA-CCO/123051/2010) and ASPEN (PTDC /EIA-CCO/110921,/2009), and by
INESC-ID multiannual funding from the PIDDAC program funds.

References

1. D. Batory. Feature models, grammars, and propositional formulas. In International
Software Product Line Conference, pages 7-20, 2005.

2. R. Ben-Eliyahu and R. Dechter. On computing minimal models. Annals of Math-
ematics and Artificial Intelligence, 18(1):3-27, 1996.

3. A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2-4):75-97, 2008.

4. B. Bollobés, C. Borgs, J. T. Chayes, J. H. Kim, and D. B. Wilson. The scaling
window of the 2-SAT transition. Random Structures and Algorithms, 18(3):201—
256, 2001.

5. R. K. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In
International Conference on Computer-Aided Design, pages 316-319, November
1989.

6. M. Cadoli and F. M. Donini. A survey on knowledge compilation. AI Communi-
cations, 10(3-4):137-150, 1997.

7. J. C. Culberson and I. P. Gent. Frozen development in graph coloring. Theor.
Comput. Sci., 265(1-2):227-264, 2001.

8. O. Dubois and G. Dequen. A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In International Joint Conference on Artificial Intelligence, pages
248-253, 2001.

9. N. Eén and N. Sérensson. An extensible SAT-solver. In SAT, 2003.

10. Z. Fu and S. Malik. Solving the minimum-cost satisfiability problem using SAT
based branch-and-bound search. In International Conference on Computer-Aided
Design, pages 852—-859, 2006.

11. P. Gregory, M. Fox, and D. Long. A new empirical study of weak backdoors. In
International Conference on Principles and Practice of Constraint Programming,
pages 618623, 2008.

12. E. I. Hsu, C. J. Muise, J. C. Beck, and S. A. Mcllraith. Probabilistically estimating
backbones and variable bias: Experimental overview. In International Conference
on Principles and Practice of Constraint Programming, pages 613-617, 2008.

13. M. Janota. Do SAT solvers make good configurators? In Workshop on Analyses
of Software Product Lines (ASPL), pages 191-195, 2008.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A. Kaiser and W. Kiichlin. Detecting inadmissible and necessary variables in
large propositional formulae. In Intél. Joint Conf. on Automated Reasoning (Short
Papers), June 2001.

P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Backbones and backdoors
in satisfiability. In AAAI Conference on Artificial Intelligence, pages 1368—1373,
2005.

P. Kilby, J. K. Slaney, and T. Walsh. The backbone of the travelling salesperson.
In International Joint Conference on Artificial Intelligence, pages 175-180, 2005.
J. Lang, P. Liberatore, and P. Marquis. Propositional independence: Formula-
variable independence and forgetting. Journal of Artificial Intelligence Research,
18:391-443, 2003.

D. Le Berre. Exploiting the real power of unit propagation lookahead. Flectronic
Notes in Discrete Mathematics, 9:59-80, 2001.

P. Liberatore. Algorithms and experiments on finding minimal models. Technical
report, DIS, Univ. Rome, La Sapienza, December 2000.

J. Marques-Silva, M. Janota, and I. Lynce. On computing backbones of proposi-
tional theories. In FCAI pages 15-20, 2010.

J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT
solvers. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, SAT Hand-
book, pages 131-154. IOS Press, 2009.

M. E. Menai. A two-phase backbone-based search heuristic for partial max-sat -
an initial investigation. In Industrial and Engineering Appl. of Artif. Intell. and
Ezxpert Systems, pages 681-684, 2005.

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansk. Deter-
mining computational complexity from characteristic 'phase transitions’. Nature,
400:133-137, July 1999.

L. Palopoli, F. Pirri, and C. Pizzuti. Algorithms for selective enumeration of prime
implicants. Artificial Intelligence, 111(1-2):41-72, 1999.

W. V. Quine. The problem of simplifying truth functions. American Mathematical
Monthly, 59:521-531, October 1952.

K. Ravi and F. Somenzi. Minimal assignments for bounded model checking. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 31-45,
2004.

J. K. Slaney and T. Walsh. Backbones in optimization and approximation. In
International Joint Conference on Artificial Intelligence, pages 254259, 2001.
W. Zhang and M. Looks. A novel local search algorithm for the traveling salesman
problem that exploits backbones. In International Joint Conference on Artificial
Intelligence, pages 343-350, 2005.

W. Zhang, A. Rangan, and M. Looks. Backbone guided local search for maximum
satisfiability. In International Joint Conference on Artificial Intelligence, pages
1179-1186, 2003.

C. Zhu, G. Weissenbacher, and S. Malik. Post-silicon fault localisation using max-
imum satisfiability and backbones. In Formal Methods in Computer-Aided Design
(FMCAD), pages 63-66, 2011.

C. Zhu, G. Weissenbacher, D. Sethi, and S. Malik. SAT-based techniques for
determining backbones for post-silicon fault localisation. In High Level Design
Validation and Test Workshop (HLDVT), pages 84-91, 2011.

14

	Experimental Analysis of Backbone Computation Algorithms

