
On the Quest for an Acyclic Graph

Mikoláš Janota1 Radu Grigore2 Vasco Manquinho1

RCRA 2017, Bari

1 INESC-ID/IST, University of Lisbon, Portugal
2 School of Computing, University of Kent, UK

Janota et al On the Quest for an Acyclic Graph 1 / 16

Introduction

• We wish to reason over directed graphs in SAT/QBF/SMT.

• Each graph corresponds to a binary relation.

• Graphs are model with Boolean variables representing edges.

• A variable eij is true iff there is an edge from i to j in the

considered graph.

Example

(e12 ∨ e13) ∧ (¬e12 ∨ ¬e13) ∧ e23 ∧ ¬e32 ∧ ¬e21

1

2 3

1

2 3

1

2 3

1

2 3

Janota et al On the Quest for an Acyclic Graph 2 / 16

Introduction

• We wish to reason over directed graphs in SAT/QBF/SMT.

• Each graph corresponds to a binary relation.

• Graphs are model with Boolean variables representing edges.

• A variable eij is true iff there is an edge from i to j in the

considered graph.

Example

(e12 ∨ e13) ∧ (¬e12 ∨ ¬e13) ∧ e23 ∧ ¬e32 ∧ ¬e21

1

2 3

1

2 3

1

2 3

1

2 3

Janota et al On the Quest for an Acyclic Graph 2 / 16

Introduction

• We wish to reason over directed graphs in SAT/QBF/SMT.

• Each graph corresponds to a binary relation.

• Graphs are model with Boolean variables representing edges.

• A variable eij is true iff there is an edge from i to j in the

considered graph.

Example

(e12 ∨ e13) ∧ (¬e12 ∨ ¬e13) ∧ e23 ∧ ¬e32 ∧ ¬e21

1

2 3

1

2 3

1

2 3

1

2 3

Janota et al On the Quest for an Acyclic Graph 2 / 16

Introduction

• We wish to reason over directed graphs in SAT/QBF/SMT.

• Each graph corresponds to a binary relation.

• Graphs are model with Boolean variables representing edges.

• A variable eij is true iff there is an edge from i to j in the

considered graph.

Example

(e12 ∨ e13) ∧ (¬e12 ∨ ¬e13) ∧ e23 ∧ ¬e32 ∧ ¬e21

1

2 3

1

2 3

1

2 3

1

2 3

Janota et al On the Quest for an Acyclic Graph 2 / 16

Introduction

• We wish to reason over directed graphs in SAT/QBF/SMT.

• Each graph corresponds to a binary relation.

• Graphs are model with Boolean variables representing edges.

• A variable eij is true iff there is an edge from i to j in the

considered graph.

Example

(e12 ∨ e13) ∧ (¬e12 ∨ ¬e13) ∧ e23 ∧ ¬e32 ∧ ¬e21

1

2 3

1

2 3

1

2 3

1

2 3

Janota et al On the Quest for an Acyclic Graph 2 / 16

Objective: Avoid Cycles

• Given a formula ϕ determining a set of graphs

generate a formula ϕ′ that only considers those of in ϕ

but with no cycles.

• Modular approach: devise a checker formula ψ s.t. ϕ′ = ϕ∧ψ.

Janota et al On the Quest for an Acyclic Graph 3 / 16

Objective: Avoid Cycles

• Given a formula ϕ determining a set of graphs

generate a formula ϕ′ that only considers those of in ϕ

but with no cycles.

• Modular approach: devise a checker formula ψ s.t. ϕ′ = ϕ∧ψ.

Janota et al On the Quest for an Acyclic Graph 3 / 16

Example: Memory Models

s t a r t s t a t e : r1=r 2=x=y=0

t h r e a d 1 :

x := 1

r1 := y

t h r e a d 2 :

y := 1

r0 := x

• Question: Is state r1=r2=0 possible at the end?

• Answer: NO with interleavings, but

YES with many relaxed/weak memory models.

• We are using a QBF solver in this application, acyclic relations

are required.

Janota et al On the Quest for an Acyclic Graph 4 / 16

Example: Memory Models

s t a r t s t a t e : r1=r 2=x=y=0

t h r e a d 1 :

x := 1

r1 := y

t h r e a d 2 :

y := 1

r0 := x

• Question: Is state r1=r2=0 possible at the end?

• Answer: NO with interleavings, but

YES with many relaxed/weak memory models.

• We are using a QBF solver in this application, acyclic relations

are required.

Janota et al On the Quest for an Acyclic Graph 4 / 16

Example: Memory Models

s t a r t s t a t e : r1=r 2=x=y=0

t h r e a d 1 :

x := 1

r1 := y

t h r e a d 2 :

y := 1

r0 := x

• Question: Is state r1=r2=0 possible at the end?

• Answer: NO with interleavings, but

YES with many relaxed/weak memory models.

• We are using a QBF solver in this application, acyclic relations

are required.

Janota et al On the Quest for an Acyclic Graph 4 / 16

Example: No-Sink Family

• A well-ordered set must have a greatest element.

• If each node as at least one outgoing edge,

there must be a cycle.

• Together with acyclicity, the following is UNSAT:∧
i∈[n]

∨
j∈[n]

eij

Janota et al On the Quest for an Acyclic Graph 5 / 16

Example: No-Sink Family

• A well-ordered set must have a greatest element.

• If each node as at least one outgoing edge,

there must be a cycle.

• Together with acyclicity, the following is UNSAT:∧
i∈[n]

∨
j∈[n]

eij

Janota et al On the Quest for an Acyclic Graph 5 / 16

Example: No-Sink Family

• A well-ordered set must have a greatest element.

• If each node as at least one outgoing edge,

there must be a cycle.

• Together with acyclicity, the following is UNSAT:∧
i∈[n]

∨
j∈[n]

eij

Janota et al On the Quest for an Acyclic Graph 5 / 16

Example: The Supervisor Problem

• Consider n employees;

• . . . employee i can supervise at most ui other employees;

• . . . employee i is supervised by at least li other employees;

• . . . there may be no cycles in the supervision relation.

• NP-complete [Hartung and Nichterlein, 2015]

• Note: no-sink is special case. There is no solution if everyone

is to have at least one supervisor.

Janota et al On the Quest for an Acyclic Graph 6 / 16

Example: The Supervisor Problem

• Consider n employees;

• . . . employee i can supervise at most ui other employees;

• . . . employee i is supervised by at least li other employees;

• . . . there may be no cycles in the supervision relation.

• NP-complete [Hartung and Nichterlein, 2015]

• Note: no-sink is special case. There is no solution if everyone

is to have at least one supervisor.

Janota et al On the Quest for an Acyclic Graph 6 / 16

Example: The Supervisor Problem

• Consider n employees;

• . . . employee i can supervise at most ui other employees;

• . . . employee i is supervised by at least li other employees;

• . . . there may be no cycles in the supervision relation.

• NP-complete [Hartung and Nichterlein, 2015]

• Note: no-sink is special case. There is no solution if everyone

is to have at least one supervisor.

Janota et al On the Quest for an Acyclic Graph 6 / 16

Example: The Supervisor Problem

• Consider n employees;

• . . . employee i can supervise at most ui other employees;

• . . . employee i is supervised by at least li other employees;

• . . . there may be no cycles in the supervision relation.

• NP-complete [Hartung and Nichterlein, 2015]

• Note: no-sink is special case. There is no solution if everyone

is to have at least one supervisor.

Janota et al On the Quest for an Acyclic Graph 6 / 16

Example: The Supervisor Problem

• Consider n employees;

• . . . employee i can supervise at most ui other employees;

• . . . employee i is supervised by at least li other employees;

• . . . there may be no cycles in the supervision relation.

• NP-complete [Hartung and Nichterlein, 2015]

• Note: no-sink is special case. There is no solution if everyone

is to have at least one supervisor.

Janota et al On the Quest for an Acyclic Graph 6 / 16

Example: The Supervisor Problem

• Consider n employees;

• . . . employee i can supervise at most ui other employees;

• . . . employee i is supervised by at least li other employees;

• . . . there may be no cycles in the supervision relation.

• NP-complete [Hartung and Nichterlein, 2015]

• Note: no-sink is special case. There is no solution if everyone

is to have at least one supervisor.

Janota et al On the Quest for an Acyclic Graph 6 / 16

Encoding: Transitive Closure

• Idea: Generate a transitive closure of the edge relation and

disable self-loops.

• Transitive closure I

ψn(~e, ~y) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ yjk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)

• Transitive closure II

ψn(~e, ~y) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ ejk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)

Janota et al On the Quest for an Acyclic Graph 7 / 16

Encoding: Transitive Closure

• Idea: Generate a transitive closure of the edge relation and

disable self-loops.

• Transitive closure I

ψn(~e, ~y) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ yjk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)

• Transitive closure II

ψn(~e, ~y) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ ejk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)

Janota et al On the Quest for an Acyclic Graph 7 / 16

Encoding: Transitive Closure

• Idea: Generate a transitive closure of the edge relation and

disable self-loops.

• Transitive closure I

ψn(~e, ~y) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ yjk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)

• Transitive closure II

ψn(~e, ~y) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ ejk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)

Janota et al On the Quest for an Acyclic Graph 7 / 16

Encoding: Unary/Binary labeling

• Idea: Any DAG can be topologically sorted.

• Label each node with a number l ∈ 1..|V | such that it is

connected only to nodes with a greater label.

ψn(~e, ~y1, . . . , ~yn) :=
∧

i ,j∈[n]

(
eij ⇒ less(~yi , ~yj)

)

Janota et al On the Quest for an Acyclic Graph 8 / 16

Encoding: Unary/Binary labeling

• Idea: Any DAG can be topologically sorted.

• Label each node with a number l ∈ 1..|V | such that it is

connected only to nodes with a greater label.

ψn(~e, ~y1, . . . , ~yn) :=
∧

i ,j∈[n]

(
eij ⇒ less(~yi , ~yj)

)

Janota et al On the Quest for an Acyclic Graph 8 / 16

Encoding: Unary/Binary labeling (Cont.)

• Comparison for binary encoding (ndlog2 ne variables).

lex0() := 0

lexb(~yy , ~zz) := (¬y ∧ z) ∨
(
(¬y ∨ z) ∧ lexb−1(~y , ~z)

)

• Comparison for unary encoding (n2 variables):

lessunr(~y , ~z , ~u) :=
n−1∧
i=1

(
(¬yi ∨ ¬ui) ∧ (zi ∨ ¬ui)

)
∧

n−1∨
i=1

ui

unary(~y) :=
n−1∧
i=2

(yi−1 ⇒ yi)

Janota et al On the Quest for an Acyclic Graph 9 / 16

Encoding: Unary/Binary labeling (Cont.)

• Comparison for binary encoding (ndlog2 ne variables).

lex0() := 0

lexb(~yy , ~zz) := (¬y ∧ z) ∨
(
(¬y ∨ z) ∧ lexb−1(~y , ~z)

)

• Comparison for unary encoding (n2 variables):

lessunr(~y , ~z , ~u) :=
n−1∧
i=1

(
(¬yi ∨ ¬ui) ∧ (zi ∨ ¬ui)

)
∧

n−1∨
i=1

ui

unary(~y) :=
n−1∧
i=2

(yi−1 ⇒ yi)

Janota et al On the Quest for an Acyclic Graph 9 / 16

Encoding: Warshall algorithm Based

Idea: Perform an “unrolling” of the Floyd-Warshall.

Warshall

1 for k ∈ [n]

2 for i ∈ [n]

3 for j ∈ [n]

4 aij := Or(aij ,And(aik , akj))

Janota et al On the Quest for an Acyclic Graph 10 / 16

Encoding: Warshall algorithm Based

Idea: Perform an “unrolling” of the Floyd-Warshall.

Warshall

1 for k ∈ [n]

2 for i ∈ [n]

3 for j ∈ [n]

4 aij := Or(aij ,And(aik , akj))

ψn(~x , ~y) :=
∧
i∈[n]

¬yiin ∧
∧

i ,j∈[n]

(xij ⇒ yij0) ∧
∧

i ,j ,k∈[n]

(yij(k−1) ⇒ yijk)

∧
∧

i ,j ,k∈[n]

(yik(k−1) ∧ ykj(k−1) ⇒ yijk)

Janota et al On the Quest for an Acyclic Graph 10 / 16

Encoding: Matrix Multiplication

• Idea: Simulate matrix multiplication

• Strassen algorithm permits less than cubic multiplication

• Hard to efficiently encode into circuits.

Janota et al On the Quest for an Acyclic Graph 11 / 16

Encoding: Matrix Multiplication

• Idea: Simulate matrix multiplication

• Strassen algorithm permits less than cubic multiplication

• Hard to efficiently encode into circuits.

Janota et al On the Quest for an Acyclic Graph 11 / 16

Encoding: Matrix Multiplication

• Idea: Simulate matrix multiplication

• Strassen algorithm permits less than cubic multiplication

• Hard to efficiently encode into circuits.

Janota et al On the Quest for an Acyclic Graph 11 / 16

Sizes of Encodings

100
101
102
103
104
105
106
107
108
109

1 10 100

ac
yc

lic
it

y
ch

ec
ke

r
fo

rm
u

la
si

ze

graph vertex count

tc1
tc2
bin
unr
fw

mm
ss

Janota et al On the Quest for an Acyclic Graph 12 / 16

Experiments

No sink (49):

solver/checker tc I unr bin fw tc II

lingeling 49 48 10 38 11

glucose 32 37 14 15 11

minisat 25 49 12 12 11

minisat-prepro 26 49 11 19 11

Supervisor (441):

solver/checker tc I unr bin fw tc II

lingeling 436 429 426 435 435

glucose 437 434 427 437 437

minisat 435 425 424 435 435

minisat-prepro 435 426 422 435 435

Janota et al On the Quest for an Acyclic Graph 13 / 16

Experiments (Cont.)

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

C
P

U
ti

m
e

(s
)

instances

glucose-bin
glucose-fw

glucose-tc2
glucose-unr
glucose-tc1
lingeling-fw

lingeling-tc2
lingeling-tc1
lingeling-bin

minisat-prepro-fw
minisat-prepro-tc2

lingeling-unr
minisat-prepro-tc1
minisat-prepro-bin
minisat-prepro-unr

minisat-bin
minisat-fw

minisat-tc2
minisat-unr
minisat-tc1

Janota et al On the Quest for an Acyclic Graph 14 / 16

Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?

Janota et al On the Quest for an Acyclic Graph 15 / 16

Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?

Janota et al On the Quest for an Acyclic Graph 15 / 16

Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?

Janota et al On the Quest for an Acyclic Graph 15 / 16

Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?

Janota et al On the Quest for an Acyclic Graph 15 / 16

Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?

Janota et al On the Quest for an Acyclic Graph 15 / 16

Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?

Janota et al On the Quest for an Acyclic Graph 15 / 16

Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?

Janota et al On the Quest for an Acyclic Graph 15 / 16

Thank You for Your Attention!

Questions?

Janota et al On the Quest for an Acyclic Graph 16 / 16

Hartung, S. and Nichterlein, A. (2015).

NP-hardness and fixed-parameter tractability of realizing

degree sequences with directed acyclic graphs.

SIAM Journal on Discrete Mathematics, 29(4):1931–1960.

Janota et al On the Quest for an Acyclic Graph 16 / 16

