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Introduction

• We wish to reason over directed graphs in SAT/QBF/SMT.

• Each graph corresponds to a binary relation.

• Graphs are model with Boolean variables representing edges.

• A variable eij is true iff there is an edge from i to j in the

considered graph.

Example

(e12 ∨ e13) ∧ (¬e12 ∨ ¬e13) ∧ e23 ∧ ¬e32 ∧ ¬e21
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Objective: Avoid Cycles

• Given a formula ϕ determining a set of graphs

generate a formula ϕ′ that only considers those of in ϕ

but with no cycles.

• Modular approach: devise a checker formula ψ s.t. ϕ′ = ϕ∧ψ.
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Example: Memory Models

s t a r t s t a t e : r1=r 2=x=y=0

t h r e a d 1 :

x := 1

r1 := y

t h r e a d 2 :

y := 1

r0 := x

• Question: Is state r1=r2=0 possible at the end?

• Answer: NO with interleavings, but

YES with many relaxed/weak memory models.

• We are using a QBF solver in this application, acyclic relations

are required.
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Example: No-Sink Family

• A well-ordered set must have a greatest element.

• If each node as at least one outgoing edge,

there must be a cycle.

• Together with acyclicity, the following is UNSAT:∧
i∈[n]

∨
j∈[n]

eij
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Example: The Supervisor Problem

• Consider n employees;

• . . . employee i can supervise at most ui other employees;

• . . . employee i is supervised by at least li other employees;

• . . . there may be no cycles in the supervision relation.

• NP-complete [Hartung and Nichterlein, 2015]

• Note: no-sink is special case. There is no solution if everyone

is to have at least one supervisor.
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Encoding: Transitive Closure

• Idea: Generate a transitive closure of the edge relation and

disable self-loops.

• Transitive closure I

ψn(~e, ~y ) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ yjk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)

• Transitive closure II

ψn(~e, ~y ) :=
∧
i∈[n]

¬yii ∧
∧

i ,j ,k∈[n]

(yij ∧ ejk ⇒ yik) ∧
∧

i ,j∈[n]

(eij ⇒ yij)
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Encoding: Unary/Binary labeling

• Idea: Any DAG can be topologically sorted.

• Label each node with a number l ∈ 1..|V | such that it is

connected only to nodes with a greater label.

ψn(~e, ~y1, . . . , ~yn) :=
∧

i ,j∈[n]

(
eij ⇒ less(~yi , ~yj)

)
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Encoding: Unary/Binary labeling (Cont.)

• Comparison for binary encoding (ndlog2 ne variables).

lex0() := 0

lexb(~yy , ~zz) := (¬y ∧ z) ∨
(
(¬y ∨ z) ∧ lexb−1(~y , ~z )

)

• Comparison for unary encoding (n2 variables):

lessunr(~y , ~z , ~u ) :=
n−1∧
i=1

(
(¬yi ∨ ¬ui ) ∧ (zi ∨ ¬ui )

)
∧

n−1∨
i=1

ui

unary(~y ) :=
n−1∧
i=2

(yi−1 ⇒ yi )
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Encoding: Warshall algorithm Based

Idea: Perform an “unrolling” of the Floyd-Warshall.

Warshall

1 for k ∈ [n]

2 for i ∈ [n]

3 for j ∈ [n]

4 aij := Or(aij ,And(aik , akj))
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Encoding: Matrix Multiplication

• Idea: Simulate matrix multiplication

• Strassen algorithm permits less than cubic multiplication

• Hard to efficiently encode into circuits.

Janota et al On the Quest for an Acyclic Graph 11 / 16



Encoding: Matrix Multiplication

• Idea: Simulate matrix multiplication

• Strassen algorithm permits less than cubic multiplication

• Hard to efficiently encode into circuits.

Janota et al On the Quest for an Acyclic Graph 11 / 16



Encoding: Matrix Multiplication

• Idea: Simulate matrix multiplication

• Strassen algorithm permits less than cubic multiplication

• Hard to efficiently encode into circuits.

Janota et al On the Quest for an Acyclic Graph 11 / 16



Sizes of Encodings
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Experiments

No sink (49):

solver/checker tc I unr bin fw tc II

lingeling 49 48 10 38 11

glucose 32 37 14 15 11

minisat 25 49 12 12 11

minisat-prepro 26 49 11 19 11

Supervisor (441):

solver/checker tc I unr bin fw tc II

lingeling 436 429 426 435 435

glucose 437 434 427 437 437

minisat 435 425 424 435 435

minisat-prepro 435 426 422 435 435
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Experiments (Cont.)
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Summary

• Studied encoding for graph acyclicity.

• In our work eager, advantage that SAT/QBF/SMT is agnostic

of acyclicity.

• Number of encodings developed and evaluated.

• Performance varies across encodings and solvers.

• More experiments.

• When is eager better than lazy and the other way around?

• Can we get less-than cubic but practical?
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Thank You for Your Attention!

Questions?
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