On Minimal Corrections in ASP

Mikoláš Janota1 Joao Marques-Silva2

RCRA 2017, Bari

1 INESC-ID/IST, University of Lisbon, Portugal
2 LaSIGE, Faculty of Science, University of Lisbon, Portugal
• Number of interesting problems about propositional formulae:
• Number of interesting problems about propositional formulae:
• **Minimally Unsatisfiable Set (MUS)**, diagnostics, debugging, SMT
Context and History

- Number of interesting problems about propositional formulae:
 - Minimally Unsatisfiable Set (MUS), diagnostics, debugging, SMT
 - Minimal Correction Set (MCS), diagnostics, debugging
Number of interesting problems about propositional formulae:

- **Minimally Unsatisfiable Set (MUS)**, diagnostics, debugging, SMT
- **Minimal Correction Set (MCS)**, diagnostics, debugging
- **Prime Implicant/Implicate**, model checking
Context and History

- Number of interesting problems about propositional formulae:
 - **Minimally Unsatisfiable Set (MUS)**, diagnostics, debugging, SMT
 - **Minimal Correction Set (MCS)**, diagnostics, debugging
 - **Prime Implicant/Implicate**, model checking
 - **Minimal model**, circumscription
Context and History

• Number of interesting problems about propositional formulae:
 • **Minimally Unsatisfiable Set (MUS)**, diagnostics, debugging, SMT
 • **Minimal Correction Set (MCS)**, diagnostics, debugging
 • **Prime Implicant/Implicate**, model checking
 • **Minimal model**, circumscription
 • **Backbone**, fault-localization
Monotone Predicates

- These problems are instances of monotone predicates.
 [Marques-Silva et al., 2013]
Monotone Predicates

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses ϕ, ψ

\[\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi)) \]
\[\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi)) \]

MUS — subset minimum for the UNSAT predicate.

MSS — subset maximum for the SAT predicate.

\[L_1, L_2 \text{ sets of literals:} \]
\[L_1 \subseteq L_2 \Rightarrow (L_1 | \phi = \bigwedge l \in L_2 \phi \bigwedge l \in L_1 \phi) \]

Prime implicant — subset minimum for the $\phi =$ predicate.

Literal a backbone if $\phi | l = L_1 \subseteq L_2 \Rightarrow \bigwedge l \in L_2 \phi | l = \bigwedge l \in L_1 \phi$
Monotone Predicates

• These problems are instances of monotone predicates.
 [Marques-Silva et al., 2013]

• Example for sets of clauses ϕ, ψ
 • $\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi))$
Monotone Predicates

- These problems are instances of **monotone predicates**.
 [Marques-Silva et al., 2013]
- Example for sets of clauses ϕ, ψ
 - $\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi))$
Monotone Predicates

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses ϕ, ψ
 - $\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi))$
 - MUS — subset minimum for the UNSAT predicate.
Monotone Predicates

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]

- Example for sets of clauses ϕ, ψ
 - $\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi))$

- MUS — subset minimum for the UNSAT predicate.
- MSS — subset maximum for the SAT predicate.
Monotone Predicates

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]

- Example for sets of clauses ϕ, ψ
 - $\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi))$

- MUS — subset minimum for the UNSAT predicate.
- MSS — subset maximum for the SAT predicate.

- L_1, L_2 sets of literals:
Monotone Predicates

• These problems are instances of monotone predicates. [Marques-Silva et al., 2013]

• Example for sets of clauses \(\phi, \psi \)
 • \(\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi)) \)
 • \(\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi)) \)

• MUS — subset minimum for the UNSAT predicate.
• MSS — subset maximum for the SAT predicate.

• \(\mathcal{L}_1, \mathcal{L}_2 \) sets of literals:
 • \(\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow (\mathcal{L}_1 \models \varphi \Rightarrow \mathcal{L}_2 \models \varphi) \)
Monotone Predicates

- These problems are instances of monotone predicates.
 [Marques-Silva et al., 2013]

- Example for sets of clauses \(\phi, \psi \)
 - \(\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi)) \)
 - \(\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi)) \)
 - MUS — subset minimum for the UNSAT predicate.
 - MSS — subset maximum for the SAT predicate.

- \(\mathcal{L}_1, \mathcal{L}_2 \) sets of literals:
 - \(\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow (\mathcal{L}_1 \models \varphi \Rightarrow \mathcal{L}_2 \models \varphi) \)
 - prime implicant — subset minimum for the \(\cdot \models \varphi \) predicate.
Monotone Predicates

• These problems are instances of monotone predicates. [Marques-Silva et al., 2013]

• Example for sets of clauses ϕ, ψ
 - $\phi \subseteq \psi \Rightarrow (\text{SAT}(\psi) \Rightarrow \text{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\text{UNSAT}(\phi) \Rightarrow \text{UNSAT}(\psi))$

• MUS — subset minimum for the UNSAT predicate.
• MSS — subset maximum for the SAT predicate.

• $\mathcal{L}_1, \mathcal{L}_2$ sets of literals:
 - $\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow (\mathcal{L}_1 \models \varphi \Rightarrow \mathcal{L}_2 \models \varphi)$
 - prime implicant — subset minimum for the $\cdot \models \varphi$ predicate.

• Literal a backbone if $\phi \models I$

$$\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow (\bigwedge_{I \in \mathcal{L}_2} \phi \models I \Rightarrow \bigwedge_{I \in \mathcal{L}_1} \phi \models I)$$
What about ASP?

- Unlike propositional logic, ASP is not monotone.
What about ASP?

- Unlike propositional logic, ASP is not monotone.
- How to define minimality?

Example:

```
not move(a).

move(a) ← stone(b), not stone(c).

stone(c) ← .
```

% program

% fact (input)
What about ASP?

- Unlike propositional logic, ASP is not monotone.
- How to define minimality?
- Can the algorithms from propositional logic be adapted? (or at least some)
What about ASP?

- Unlike propositional logic, ASP is **not** monotone.
- How to define minimality?
- Can the algorithms from propositional logic be adapted? (or at least some)

Example

\[
\text{move}(a) \leftarrow \text{stone}(b), \neg \text{stone}(c). \quad \% \text{ program}
\]

\[
\text{not move}(a). \quad \% \text{ program}
\]

\[
\text{stone}(c) \leftarrow . \quad \% \text{ fact (input)}
\]
What about ASP?

- Unlike propositional logic, ASP is not monotone.
- How to define minimality?
- Can the algorithms from propositional logic be adapted? (or at least some)

Example

\[
\begin{align*}
\text{not move}(a) & \quad \% \text{ program} \\
\text{move}(a) & \quad \text{stone}(b), \text{not stone}(c). \quad \% \text{ program} \\
\text{stone}(c) & \quad \% \text{ fact (input)}
\end{align*}
\]

Possible fix: add \text{stone}(b), remove \text{stone}(c)
Maximal Consistent Set in ASP

Definition

Let P be a consistent ASP program and S be a set of atoms.

A set $L \subseteq S$ is a maximal consistent subset of S w.r.t. P if the program $P \cup \{s \mid s \in L\}$ is consistent and for any $L' \subseteq S$, such that $L \subset L'$, the program $P \cup \{s \mid s \in L'\}$ is inconsistent.
Maximal Consistent Set in ASP

Definition

• Let P be a consistent ASP program and S be a set of atoms.
Definition

- Let P be a consistent ASP program and S be a set of atoms.
- A set $\mathcal{L} \subseteq S$ is a maximal consistent subset of S w.r.t. P.
Maximal Consistent Set in ASP

Definition

- Let P be a consistent ASP program and S be a set of atoms.
- A set $\mathcal{L} \subseteq S$ is a maximal consistent subset of S w.r.t. P
 - if the program $P \cup \{s. \mid s \in \mathcal{L}\}$ is consistent
Maximal Consistent Set in ASP

Definition

- Let P be a consistent ASP program and S be a set of atoms.
- A set $\mathcal{L} \subseteq S$ is a **maximal consistent subset** of S w.r.t. P
 - if the program $P \cup \{s. \mid s \in \mathcal{L}\}$ is consistent
 - and for any \mathcal{L}', such that $\mathcal{L} \subsetneq \mathcal{L}' \subseteq S$, the program $P \cup \{s. \mid s \in \mathcal{L}'\}$ is inconsistent.

Observe: In **monotone** case \mathcal{L} is maximally consistent iff $\mathcal{L} \cup \{s\}$ is inconsistent for any $s \in S \setminus \mathcal{L}$. Does not hold in **non-monotone**.
Choice Rules

Notation

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}$.
Choice Rules

Notation

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}$.
- Let $\text{choice}(S)$ denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$.

Idea

- Define $P' = P \cup \{s \mid s \in L\} \cup \{\text{choice}(S \setminus L)\}$.
- There exists a consistent set L' s.t. $L \subseteq L' \subseteq S$ iff P' has an answer set μ such that $L' = S \cap \mu$.

Janota and Silva On Minimal Corrections in ASP 6 / 15
Choice Rules

Notation

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}$.
- Let $\text{choice}(S)$ denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$.
- Let $\text{atleast1}(\{s_1, \ldots, s_k\})$ denote the choice rule $1 \leq \{s_1, \ldots, s_k\}$.
Choice Rules

Notation

- Consider set of atoms: \(S = \{s_1, \ldots, s_k\} \).
- Let \(\text{choice}(S) \) denote the choice rule \(0 \leq \{s_1, \ldots, s_k\} \).
- Let \(\text{atleast1}(\{s_1, \ldots, s_k\}) \) denote the choice rule \(1 \leq \{s_1, \ldots, s_k\} \).

Idea
Choice Rules

Notation

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}$.
- Let $\text{choice}(S)$ denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$.
- Let $\text{atleast1}(\{s_1, \ldots, s_k\})$ denote the choice rule $1 \leq \{s_1, \ldots, s_k\}$.

Idea

- Define $P' = P \cup \{s. \mid s \in \mathcal{L}\} \cup \{\text{choice}(S \setminus \mathcal{L}).\}$.

Janota and Silva On Minimal Corrections in ASP
Choice Rules

Notation

- Consider set of atoms: \(S = \{s_1, \ldots, s_k\} \).
- Let \(\text{choice}(S) \) denote the choice rule \(0 \leq \{s_1, \ldots, s_k\} \).
- Let \(\text{atleast1}(\{s_1, \ldots, s_k\}) \) denote the choice rule \(1 \leq \{s_1, \ldots, s_k\} \).

Idea

- Define \(P' = P \cup \{s. \mid s \in \mathcal{L}\} \cup \{\text{choice}(S \setminus \mathcal{L}).\} \).
- There exists a consistent set \(\mathcal{L}' \) s.t. \(\mathcal{L} \subseteq \mathcal{L}' \subseteq S \) iff \(P' \) has an answer set \(\mu \) such that \(\mathcal{L}' = S \cap \mu \).
Algorithm: At-least-1

1 \(\mathcal{L} \leftarrow \emptyset \) // consistency lower bound
2 while true do
3 \(P' \leftarrow P \cup \{s. \mid s \in \mathcal{L}\} \)
4 \(P' \leftarrow P' \cup \{\text{atleast1}(S \setminus \mathcal{L}).\} \)
5 \((\text{res}, \mu) \leftarrow \text{solve}(P') \)
6 if \(\neg \text{res} \) then return \(\mathcal{L} \)
7 \(\mathcal{L} \leftarrow \mathcal{L} \cup (\mu \cap S) \)
Algorithm: **Unit addition**

1. $\mathcal{L} \leftarrow \emptyset$ \hspace{1cm} // consistency lower bound
2. while $\mathcal{S} \neq \emptyset$ do
3. $s_f \leftarrow$ pick an arbitrary element from \mathcal{S}
4. $\mathcal{S} \leftarrow \mathcal{S} \setminus \{s_f\}$
5. $\mathcal{L} \leftarrow \mathcal{L} \cup \{s_f\}$
6. $P' \leftarrow P' \cup \{s. \mid s \in \mathcal{L}\}$
7. $P' \leftarrow P \cup \text{choice}(\mathcal{S}).$
8. $(\text{res}, \mu) \leftarrow \text{solve}(P')$
9. if $\neg \text{res}$ then $\mathcal{L} \leftarrow \mathcal{L} \setminus \{s_f\}$
10. else $\mathcal{L} \leftarrow \mathcal{L} \cup (\mu \cap \mathcal{S})$
11. return \mathcal{L}
Algorithm: Progression

1. $L \leftarrow \emptyset$ // consistency lower bound
2. $K \leftarrow 1$ // chunk size

while $S \neq \emptyset$ do

3. $C \leftarrow \text{pick min}(\lvert S \rvert, K)$ arbitrary elements from S
4. $S \leftarrow S \setminus C$
5. $L \leftarrow L \cup C$
6. $P' \leftarrow P' \cup \{s \mid s \in L\}$
7. $P' \leftarrow P \cup \{	ext{choice}(S)\}$
8. $(\text{res}, \mu) \leftarrow \text{solve}(P')$
9. if $\neg \text{res}$ then // re-analyze chunk more finely
10. $L \leftarrow L \setminus C$
11. if $K > 1$ then $S \leftarrow S \cup C$
12. $K = 1$ // reset chunk size

else

13. $K \leftarrow 2K$ // double chunk size
14. $L \leftarrow L \cup (\mu \cap S)$

17. return L
Definition

Let P be an inconsistent logic program, A and R be sets of rules. An (A, R)-correction of P is a pair (M_r, M_a) such that:
- $M_r \subseteq R$ and $M_a \subseteq A$
- The program $(P \setminus M_r) \cup M_a$ is consistent.

An (A, R)-correction (M_r, M_a) is minimal if for any (A, R)-correction (M'_r, M'_a) such that $M'_r \subseteq M_r$ and $M'_a \subseteq M_a$, it holds that $M_a = M'_a$ and $M_r = M'_r$.
Definition

- P be an inconsistent logic program
Definition

- P be an inconsistent logic program
- \mathcal{A} and \mathcal{R} be sets of rules
Definition

- P be an inconsistent logic program
- A and R be sets of rules
- An (A, R)-correction of P is a pair (M_r, M_a) s.t.
 - $M_r \subseteq R$ and $M_a \subseteq A$
 - The program $(P \setminus M_r) \cup M_a$ is consistent.

- An (A, R)-correction (M'_r, M'_a) is minimal if for any (A, R)-correction (M_r, M_a) such that $M'_r \subseteq M_r$ and $M'_a \subseteq M_a$, it holds that $M_a = M'_a$ and $M_r = M'_r$.
Definition

- P be an inconsistent logic program
- \mathcal{A} and \mathcal{R} be sets of rules
- An $(\mathcal{A}, \mathcal{R})$-correction of P is a pair (M_r, M_a) s.t.
 - $M_r \subseteq \mathcal{R}$ and $M_a \subseteq \mathcal{A}$ and the program

$P \setminus M_r \cup M_a$ is consistent.

An $(\mathcal{A}, \mathcal{R})$-correction (M_r', M_a') is minimal if for any $(\mathcal{A}, \mathcal{R})$-correction (M_r, M_a) such that $M_r' \subseteq M_r$ and $M_a' \subseteq M_a$, it holds that $M_a = M_a'$ and $M_r = M_r'$.
Definition

- \(P \) be an inconsistent logic program
- \(A \) and \(R \) be sets of rules
- An \((A, R)\)-correction of \(P \) is a pair \((M_r, M_a)\) s.t.
 - \(M_r \subseteq R \) and \(M_a \subseteq A \) and the program
 - \((P \setminus M_r) \cup M_a\) is consistent.
Definition

- \(P \) be an inconsistent logic program
- \(\mathcal{A} \) and \(\mathcal{R} \) be sets of rules
- An \((\mathcal{A}, \mathcal{R})\)-correction of \(P \) is a pair \((M_r, M_a)\) s.t.
 - \(M_r \subseteq \mathcal{R} \) and \(M_a \subseteq \mathcal{A} \) and the program
 - \((P \setminus M_r) \cup M_a\) is consistent.
- An \((\mathcal{A}, \mathcal{R})\)-correction \((M_r, M_a)\) is minimal if for any\((\mathcal{A}, \mathcal{R})\)-correction \((M'_r, M'_a)\) such that \(M'_r \subseteq M_r \) and \(M'_a \subseteq M_a \), it holds that \(M_a = M'_a \) and \(M_r = M'_r \).
To calculate \((\mathcal{A}, \mathcal{R})\)-correction via Maximal Consistency:

- Introduce fresh atoms \(s^r_r\) for each \(r \in \mathcal{R}\).
To calculate $(\mathcal{A}, \mathcal{R})$-correction via Maximal Consistency:

- Introduce fresh atoms s^r_r for each $r \in \mathcal{R}$.
- Introduce fresh atoms s^a_r for each $r \in \mathcal{A}$.
To calculate \((\mathcal{A}, \mathcal{R})\)-correction via Maximal Consistency:

- Introduce fresh atoms \(s^r_r\) for each \(r \in \mathcal{R}\).
- Introduce fresh atoms \(s^a_r\) for each \(r \in \mathcal{A}\).
- Replace each rule \(r \in \mathcal{R}\) with \(\text{head}(r) \leftarrow s^r_r, \text{body}(r)\)
To calculate \((\mathcal{A}, \mathcal{R})\)-correction via Maximal Consistency:

- Introduce fresh atoms \(s_r^r\) for each \(r \in \mathcal{R}\).
- Introduce fresh atoms \(s_r^a\) for each \(r \in \mathcal{A}\).
- Replace each rule \(r \in \mathcal{R}\) with \(\text{head}(r) \leftarrow s_r^r, \text{body}(r)\).
- Replace each rule \(r \in \mathcal{A}\) with \(\text{head}(r) \leftarrow \text{not } s_r^a, \text{body}(r)\).

Maximal consistent subset of the fresh atoms gives a minimal correction.
To calculate \((\mathcal{A}, \mathcal{R})\)-correction via Maximal Consistency:

- Introduce fresh atoms \(s^r_r\) for each \(r \in \mathcal{R}\).
- Introduce fresh atoms \(s^a_r\) for each \(r \in \mathcal{A}\).
- Replace each rule \(r \in \mathcal{R}\) with \(\text{head}(r) \Leftarrow s^r_r, \text{body}(r)\).
- Replace each rule \(r \in \mathcal{A}\) with \(\text{head}(r) \Leftarrow \text{not } s^a_r, \text{body}(r)\).
- Maximal consistent subset of the fresh atoms gives a minimal correction.
Experimental Results

<table>
<thead>
<tr>
<th>Family</th>
<th>a</th>
<th>p</th>
<th>u</th>
<th>x</th>
<th>VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>knight [8, 10] (95)</td>
<td>74</td>
<td>75</td>
<td>78</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>knight [8, 4] (51)</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>patterns [16, 10] (100)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>patterns [20, 15] (100)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>solitaire [12] (18)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>solitaire [14] (16)</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>graceful graphs [10, 50] (100)</td>
<td>57</td>
<td>75</td>
<td>63</td>
<td>62</td>
<td>83</td>
</tr>
<tr>
<td>graceful graphs [30, 20] (57)</td>
<td>56</td>
<td>57</td>
<td>57</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>total (537)</td>
<td>424</td>
<td>447</td>
<td>440</td>
<td>405</td>
<td>465</td>
</tr>
</tbody>
</table>
Experimental Results (Cont.)

![Graph showing CPU time (s) vs instances for different algorithms]

- VBS
- p
- u
- a
- x

Janota and Silva On Minimal Corrections in ASP
• Many recent results on algorithms for propositional logic involving monotone predicates.
Summary

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?

- Idea: Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.
- More experiments.
- More algorithms?
- How to obtain the “addition set”?
- What are the good means for users to specify the addition and removal sets?
Summary

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- **Idea:** Using a choice rule let the solver choose one of the supersets.
Summary

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- **Idea:** Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
Summary

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is *not* monotone?
- **Idea:** Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.
• Many recent results on algorithms for propositional logic involving monotone predicates.
• What about ASP, which is not monotone?
• **Idea:** Using a choice rule let the solver choose one of the supersets.
• 3 different algorithms developed.
• Link between maximal consistency and corrections.
• More experiments.
• Many recent results on algorithms for propositional logic involving monotone predicates.

• What about ASP, which is not monotone?

• Idea: Using a choice rule let the solver choose one of the supersets.

• 3 different algorithms developed.

• Link between maximal consistency and corrections.

• More experiments.

• More algorithms?
Summary

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- **Idea:** Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.
- More experiments.
- More algorithms?
- How to obtain the “addition set”?

Janota and Silva
On Minimal Corrections in ASP
• Many recent results on algorithms for propositional logic involving monotone predicates.

• What about ASP, which is not monotone?

• **Idea:** Using a choice rule let the solver choose one of the supersets.

• 3 different algorithms developed.

• Link between maximal consistency and corrections.

• More experiments.

• More algorithms?

• How to obtain the “addition set”?

• What are the good means for users to specify the addition and removal sets?
Thank You for Your Attention!

Questions?