On Minimal Corrections in ASP

Mikoláš Janota¹ Joao Marques-Silva² RCRA 2017, Bari

¹ INESC-ID/IST, University of Lisbon, Portugal ² LaSIGE, Faculty of Science, University of Lisbon, Portugal • Number of interesting problems about propositional formulae:

- Number of interesting problems about propositional formulae:
- Minimally Unsatisfiable Set (MUS), diagnostics, debugging, SMT

- Number of interesting problems about propositional formulae:
- Minimally Unsatisfiable Set (MUS), diagnostics, debugging, SMT
- Minimal Correction Set (MCS), diagnostics, debugging

- Number of interesting problems about propositional formulae:
- Minimally Unsatisfiable Set (MUS), diagnostics, debugging, SMT
- Minimal Correction Set (MCS), diagnostics, debugging
- Prime Implicant/Implicate, model checking

- Number of interesting problems about propositional formulae:
- Minimally Unsatisfiable Set (MUS), diagnostics, debugging, SMT
- Minimal Correction Set (MCS), diagnostics, debugging
- Prime Implicant/Implicate, model checking
- Minimal model, circumscription

- Number of interesting problems about propositional formulae:
- Minimally Unsatisfiable Set (MUS), diagnostics, debugging, SMT
- Minimal Correction Set (MCS), diagnostics, debugging
- Prime Implicant/Implicate, model checking
- Minimal model, circumscription
- Backbone, fault-localization

• These problems are instances of monotone predicates. [Marques-Silva et al., 2013]

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses $\phi,\,\psi$

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses $\phi,\,\psi$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses $\phi,\,\psi$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{UNSAT}(\phi) \Rightarrow \mathsf{UNSAT}(\psi))$

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses $\phi,\,\psi$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{UNSAT}(\phi) \Rightarrow \mathsf{UNSAT}(\psi))$
 - MUS subset minimum for the UNSAT predicate.

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses $\phi,\,\psi$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{UNSAT}(\phi) \Rightarrow \mathsf{UNSAT}(\psi))$
 - MUS subset minimum for the UNSAT predicate.
 - MSS subset maximum for the SAT predicate.

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses $\phi,\,\psi$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{UNSAT}(\phi) \Rightarrow \mathsf{UNSAT}(\psi))$
 - MUS subset minimum for the UNSAT predicate.
 - MSS subset maximum for the SAT predicate.
- $\mathcal{L}_1, \mathcal{L}_2$ sets of literals:

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses ϕ , ψ
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{UNSAT}(\phi) \Rightarrow \mathsf{UNSAT}(\psi))$
 - MUS subset minimum for the UNSAT predicate.
 - MSS subset maximum for the SAT predicate.
- $\mathcal{L}_1, \mathcal{L}_2$ sets of literals:
 - $\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow (\mathcal{L}_1 \models \varphi \Rightarrow \mathcal{L}_2 \models \varphi)$

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses ϕ , ψ
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{UNSAT}(\phi) \Rightarrow \mathsf{UNSAT}(\psi))$
 - MUS subset minimum for the UNSAT predicate.
 - MSS subset maximum for the SAT predicate.
- $\mathcal{L}_1, \mathcal{L}_2$ sets of literals:
 - $\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow (\mathcal{L}_1 \models \varphi \Rightarrow \mathcal{L}_2 \models \varphi)$
 - prime implicant subset minimum for the $\cdot \models \varphi$ predicate.

- These problems are instances of monotone predicates. [Marques-Silva et al., 2013]
- Example for sets of clauses ϕ , ψ
 - $\phi \subseteq \psi \Rightarrow (\mathsf{SAT}(\psi) \Rightarrow \mathsf{SAT}(\phi))$
 - $\phi \subseteq \psi \Rightarrow (\mathsf{UNSAT}(\phi) \Rightarrow \mathsf{UNSAT}(\psi))$
 - MUS subset minimum for the UNSAT predicate.
 - MSS subset maximum for the SAT predicate.
- $\mathcal{L}_1, \mathcal{L}_2$ sets of literals:
 - $\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow (\mathcal{L}_1 \models \varphi \Rightarrow \mathcal{L}_2 \models \varphi)$
 - prime implicant subset minimum for the $\cdot \models \varphi$ predicate.
- Literal a backbone if $\phi \models I$

 $\mathcal{L}_1 \subseteq \mathcal{L}_2 \Rightarrow \left(\bigwedge_{l \in \mathcal{L}_2} \phi \models l \Rightarrow \bigwedge_{l \in \mathcal{L}_1} \phi \models l \right)$

• Unlike propositional logic, ASP is not monotone.

- Unlike propositional logic, ASP is not monotone.
- How to define minimality?

What about ASP?

- Unlike propositional logic, ASP is not monotone.
- How to define minimality?
- Can the algorithms from propositional logic be adapted? (or at least some)

What about ASP?

- Unlike propositional logic, ASP is not monotone.
- How to define minimality?
- Can the algorithms from propositional logic be adapted? (or at least some)

Example

 $\begin{array}{rrrr} \leftarrow & not \; move(a). & \% \; \texttt{program} \\ move(a) & \leftarrow \; stone(b), not \; stone(c). & \% \; \texttt{program} \\ stone(c) & \leftarrow \; . & \% \; \texttt{fact (input)} \end{array}$

What about ASP?

- Unlike propositional logic, ASP is not monotone.
- How to define minimality?
- Can the algorithms from propositional logic be adapted? (or at least some)

Example

$$\begin{array}{rrrr} \leftarrow & not \; move(a). & \% \; \texttt{program} \\ move(a) \; \leftarrow \; stone(b), \, not \; \texttt{stone}(c). & \% \; \texttt{program} \\ stone(c) \; \leftarrow \; . & \% \; \texttt{fact (input)} \end{array}$$

Possible fix: add stone(b), remove stone(c)

Janota and Silva

Maximal Consistent Set in ASP

Definition

Definition

• Let P be a consistent ASP program and S be a set of atoms.

Definition

- Let P be a consistent ASP program and S be a set of atoms.
- A set $\mathcal{L} \subseteq \mathcal{S}$ is a maximal consistent subset of \mathcal{S} w.r.t. P

Maximal Consistent Set in ASP

Definition

- Let P be a consistent ASP program and S be a set of atoms.
- A set $\mathcal{L} \subseteq \mathcal{S}$ is a maximal consistent subset of \mathcal{S} w.r.t. P
 - if the program $P \cup \{s. \mid s \in \mathcal{L}\}$ is consistent

Maximal Consistent Set in ASP

Definition

- Let P be a consistent ASP program and S be a set of atoms.
- A set $\mathcal{L} \subseteq \mathcal{S}$ is a maximal consistent subset of \mathcal{S} w.r.t. P
 - if the program $P \cup \{s. \mid s \in \mathcal{L}\}$ is consistent
 - and for any \mathcal{L}' , such that $\mathcal{L} \subsetneq \mathcal{L}' \subseteq S$, the program $P \cup \{s. \mid s \in \mathcal{L}'\}$ is inconsistent.

Observe: In monotone case \mathcal{L} is maximally consistent iff $\mathcal{L} \cup \{s\}$ is inconsistent for any $s \in S \setminus \mathcal{L}$. Does not hold in non-monotone.

• Consider set of atoms: $S = \{s_1, \ldots, s_k\}$.

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}$.
- Let choice(S) denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}.$
- Let $\texttt{choice}(\mathcal{S})$ denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$
- Let atleast1($\{s_1, \ldots, s_k\}$) denote the choice rule $1 \leq \{s_1, \ldots, s_k\}$.

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}.$
- Let $\texttt{choice}(\mathcal{S})$ denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$
- Let atleast1($\{s_1, \ldots, s_k\}$) denote the choice rule $1 \leq \{s_1, \ldots, s_k\}$.

Idea

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}.$
- Let $\texttt{choice}(\mathcal{S})$ denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$
- Let atleast1($\{s_1, \ldots, s_k\}$) denote the choice rule $1 \leq \{s_1, \ldots, s_k\}$.

Idea

• Define $P' = P \cup \{s. \mid s \in \mathcal{L}\} \cup \{\texttt{choice}(S \setminus \mathcal{L}).\}.$

- Consider set of atoms: $S = \{s_1, \ldots, s_k\}.$
- Let $\texttt{choice}(\mathcal{S})$ denote the choice rule $0 \leq \{s_1, \ldots, s_k\}$
- Let atleast1($\{s_1, \ldots, s_k\}$) denote the choice rule $1 \leq \{s_1, \ldots, s_k\}$.

Idea

- Define $P' = P \cup \{s. \mid s \in \mathcal{L}\} \cup \{\texttt{choice}(S \setminus \mathcal{L}).\}.$
- There exists a consistent set L' s.t. L ⊆ L' ⊆ S iff P' has an answer set μ such that L' = S ∩ μ.

1 $\mathcal{L} \leftarrow \emptyset$ // consistency lower bound 2 while $S \neq \emptyset$ do $s_f \leftarrow$ pick an arbitrary element from S3 $\mathcal{S} \leftarrow \mathcal{S} \setminus \{s_f\}$ 4 $\mathcal{L} \leftarrow \mathcal{L} \cup \{s_f\}$ 5 $P' \leftarrow P' \cup \{s. \mid s \in \mathcal{L}\}$ 6 $P' \leftarrow P \cup \{ \text{choice}(\mathcal{S}) \}$ 7 $(res, \mu) \leftarrow solve(P')$ 8 if \neg res then $\mathcal{L} \leftarrow \mathcal{L} \setminus \{s_f\}$ 9 10 else $\mathcal{L} \leftarrow \mathcal{L} \cup (\mu \cap \mathcal{S})$ 11 return *L*

Algorithm: Progression

1 $\mathcal{L} \leftarrow \emptyset$ // consistency lower bound 2 $K \leftarrow 1$ // chunk size 3 while $\mathcal{S} \neq \emptyset$ do $C \leftarrow \text{pick min}(|\mathcal{S}|, K)$ arbitrary elements from \mathcal{S} 4 $S \leftarrow S \smallsetminus C$ 5 $\mathcal{L} \leftarrow \mathcal{L} \cup \mathcal{C}$ 6 $P' \leftarrow P' \cup \{s. \mid s \in \mathcal{L}\}$ 7 $P' \leftarrow P \cup \{\text{choice}(S)\}$ 8 $(res, \mu) \leftarrow solve(P')$ g if ¬res then // re-analyze chunk more finely 10 $f \leftarrow f \smallsetminus C$ 11 if K > 1 then $S \leftarrow S \cup C$ 12 K = 113 // reset chunk size 14 else $K \leftarrow 2K$ 15 // double chunk size $\mathcal{L} \leftarrow \mathcal{L} \cup (\mu \cap S)$ 16 17 return \mathcal{L}

• P be an inconsistent logic program

- P be an inconsistent logic program
- ${\mathcal A}$ and ${\mathcal R}$ be sets of rules

- P be an inconsistent logic program
- ${\mathcal A}$ and ${\mathcal R}$ be sets of rules
- An $(\mathcal{A}, \mathcal{R})$ -correction of P is a pair (M_r, M_a) s.t.

- P be an inconsistent logic program
- \mathcal{A} and \mathcal{R} be sets of rules
- An $(\mathcal{A}, \mathcal{R})$ -correction of P is a pair (M_r, M_a) s.t.
 - $M_r \subseteq \mathcal{R}$ and $M_a \subseteq \mathcal{A}$ and the program

- P be an inconsistent logic program
- ${\mathcal A}$ and ${\mathcal R}$ be sets of rules
- An $(\mathcal{A}, \mathcal{R})$ -correction of P is a pair (M_r, M_a) s.t.
 - $M_r \subseteq \mathcal{R}$ and $M_a \subseteq \mathcal{A}$ and the program
 - $(P \setminus M_r) \cup M_a$ is consistent.

- P be an inconsistent logic program
- ${\mathcal A}$ and ${\mathcal R}$ be sets of rules
- An $(\mathcal{A}, \mathcal{R})$ -correction of P is a pair (M_r, M_a) s.t.
 - $M_r \subseteq \mathcal{R}$ and $M_a \subseteq \mathcal{A}$ and the program
 - $(P \setminus M_r) \cup M_a$ is consistent.
- An (A, R)-correction (M_r, M_a) is minimal if for any (A, R)-correction (M'_r, M'_a) such that M'_r ⊆ M_r and M'_a ⊆ M_a, it holds that M_a = M'_a and M_r = M'_r.

• Introduce fresh atoms s_r^r for each $r \in \mathcal{R}$.

- Introduce fresh atoms s_r^{r} for each $r \in \mathcal{R}$.
- Introduce fresh atoms s_r^{a} for each $r \in A$.

- Introduce fresh atoms s_r^r for each $r \in \mathcal{R}$.
- Introduce fresh atoms s_r^{a} for each $r \in A$.
- Replace each rule $r \in \mathcal{R}$ with $head(r) \leftarrow s_r^{\mathrm{r}}, body(r)$

- Introduce fresh atoms s_r^r for each $r \in \mathcal{R}$.
- Introduce fresh atoms s_r^{a} for each $r \in A$.
- Replace each rule $r \in \mathcal{R}$ with $head(r) \leftarrow s_r^r$, body(r)
- Replace each rule $r \in A$ with $head(r) \leftarrow not s_r^a, body(r)$.

- Introduce fresh atoms s_r^r for each $r \in \mathcal{R}$.
- Introduce fresh atoms s_r^a for each $r \in \mathcal{A}$.
- Replace each rule $r \in \mathcal{R}$ with $head(r) \leftarrow s_r^r$, body(r)
- Replace each rule $r \in A$ with $head(r) \leftarrow not s_r^{a}, body(r)$.
- Maximal consistent subset of the fresh atoms gives a minimal correction.

Family	а	р	u	x	VBS
knight [8,10] (95)	74	75	78	60	80
knight [8,4] (51)	7	13	13	7	14
patterns [16,10] (100)	100	100	100	100	100
patterns [20,15] (100)	100	100	100	100	100
solitaire [12] (18)	18	18	18	17	18
solitaire [14] (16)	12	9	11	4	13
graceful graphs [10,50] (100)	57	75	63	62	83
graceful graphs [30,20] (57)	56	57	57	55	57
total (537)	424	447	440	405	465

Experimental Results (Cont.)

• Many recent results on algorithms for propositional logic involving monotone predicates.

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- Idea: Using a choice rule let the solver choose one of the supersets.

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- Idea: Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- Idea: Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- Idea: Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.
- More experiments.

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- Idea: Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.
- More experiments.
- More algorithms?

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- Idea: Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.
- More experiments.
- More algorithms?
- How to obtain the "addition set"?

- Many recent results on algorithms for propositional logic involving monotone predicates.
- What about ASP, which is not monotone?
- Idea: Using a choice rule let the solver choose one of the supersets.
- 3 different algorithms developed.
- Link between maximal consistency and corrections.
- More experiments.
- More algorithms?
- How to obtain the "addition set"?
- What are the good means for users to specify the addition and removal sets?

Janota and Silva

Thank You for Your Attention!

Questions?

Marques-Silva, J., Janota, M., and Belov, A. (2013).
Minimal sets over monotone predicates in boolean formulae.

In Computer Aided Verification - International Conference (CAV), pages 592–607.