ON CONFLICTS AND STRATEGIES IN QBF

Nikolaj Bjørner ${ }^{1}$ Mikoláš Janota ${ }^{2}$ William Klieber ${ }^{3}$
LPAR-20 2015, Suva, Fiji
${ }^{1}$ Microsoft Research, Redmond, USA
${ }^{2}$ Microsoft Research, Cambridge, UK
${ }^{3}$ CERT/SEI, Carnegie Mellon University

QUANTIFIED BOOLEAN FORMULA (QBF)

- an extension of SAT with quantifiers

QUANTIFIED BOOLEAN FORMULA (QBF)

- an extension of SAT with quantifiers

Example

$$
\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\neg y_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \neg x_{2}\right)
$$

QUANTIFIED BOOLEAN FORMULA (QBF)

- an extension of SAT with quantifiers

Example

$$
\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\neg y_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \neg x_{2}\right)
$$

- we consider prenex form with maximal blocks of variables

$$
\forall \mathcal{U}_{1} \exists \mathcal{E}_{2} \ldots \forall \mathcal{U}_{2 N-1} \exists \mathcal{E}_{2 N \cdot} \cdot \phi
$$

RELATION TO TWO-PLAYER GAMES

- A QBF represents a two-player games between \exists and \forall.

RELATION TO TWO-PLAYER GAMES

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.

RELATION TO TWO-PLAYER GAMES

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.

RELATION TO TWO-PLAYER GAMES

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.

RELATION TO TWO-PLAYER GAMES

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.
- A QBF is false iff there exists a winning strategy for \forall.

RELATION TO TWO-PLAYER GAMES

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.
- A QBF is false iff there exists a winning strategy for \forall.

Example

$$
\forall u \exists e .(u \vee e) \wedge(\neg u \vee \neg e)
$$

RELATION TO TWO-PLAYER GAMES

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.
- A QBF is false iff there exists a winning strategy for \forall.

Example

$$
\forall u \exists e .(u \vee e) \wedge(\neg u \vee \neg e)
$$

\exists wins by playing $e \leftarrow \neg u$.

SETUP

- Two types of solving:
expansion [Janota et al., 2012] and conflict-driven (DPLL) [Zhang and Malik, 2002].
- Both approaches have their weaknesses [Beyersdorff et al., 2015].
-What is a good way of combining them?

EXPANSION BY STRATEGIES

Consider $\forall x$. ϕ

- traditional expansion [Janota et al., 2012] abstract as: $\left.\bigwedge_{c \in \omega} \phi\right|_{x=c}$ where $\omega \subseteq\{0,1\}$
- strategy expansion abstract as: $\left.\bigwedge_{f \in \omega} \phi\right|_{x=f}$ where $\omega \subseteq \operatorname{dom}(X) \rightarrow \mathbb{B}$
E.g. $\exists e \forall u .(u \Leftrightarrow e)$, expand with $u \triangleq \neg e$. Simplifies to false.

WHERE TO GET STRATEGIES?

HOW TO GET STRATEGIES FROM CONFLICTS?

(In Q-Resolution)

$$
\begin{gathered}
\frac{C \vee u \in \phi}{C \vee u:(u \leftarrow 0)} \\
\frac{C \vee \bar{u} \in \phi}{C \vee \bar{u}:(u \leftarrow 1)} \\
\frac{C \in \phi}{C:(u \leftarrow \star)} u, \bar{u} \notin C \\
\frac{C_{1} \vee x:\left(u \leftarrow f_{1}\right) \quad C_{2} \vee \bar{x}:\left(u \leftarrow f_{2}\right)}{C_{1} \vee C_{2}:\left(u \leftarrow x ? f_{2}: f_{1}\right)}
\end{gathered}
$$

COMBINED QBF SOLVING

$1 \delta \leftarrow \emptyset$
$2 \alpha \leftarrow\left[\alpha_{1}=\right.$ true $, \ldots, \alpha_{n}=$ true $]$
// initialization of decisions
// initialization
3 while true do
$4 \quad(\tau$, loser $) \leftarrow$ Propagate (δ, Φ)
// propagation

$$
\text { if } \tau=\perp \text { then // conflict resolution }
$$

$(k, \alpha, \Phi) \leftarrow$ LearnAndRefine $(\delta, \Phi, \alpha$, loser $)$
if $k=\perp$ then return (loser $=\forall$) ? true : false
$\delta \leftarrow\{l \in \delta \mid$ qlevel $(l)<k\} \quad / /$ backtrack decisions
else // decision-making
$k \leftarrow$ minimal quantification level not fully assigned in τ
$\tau_{k} \leftarrow\{\ell \in \tau \mid$ qlevel $(\ell) \leq k\}$
// filtering
$\left(\mu, \tau^{\prime}\right) \leftarrow \mathbf{S A T}\left(\alpha_{k} \wedge \tau_{k}\right)$
// consult α_{k}
if $\mu=\perp$ then // abstraction unsatisfiable
$\Phi \leftarrow \operatorname{ResolveUnsat}\left(\tau^{\prime}, Q_{k}, \Phi\right) \quad / /$ update Φ
if $\Phi=\perp$ then return $\left(Q_{k}=\forall\right)$? true : false
else
$v \leftarrow$ a variable unassigned by τ at quantification level k
$\delta \leftarrow \delta \cup\{\mu(v) ? v: \neg v\} \quad / /$ make a decision on v

EXPERIMENTS EVAL 2012

$$
\begin{aligned}
& \triangle \text { qosta }-\square \text { qosta-noref } \rightarrow \text { rareqs } \\
& \neg \text { depqbf }- \text { ghostq }
\end{aligned}
$$

EXPERIMENTS 2QBF

CONCLUSIONS AND FUTURE WORK

- key ingredient: in solving explicit strategies in solving

CONCLUSIONS AND FUTURE WORK

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts

CONCLUSIONS AND FUTURE WORK

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts
- enables combining DPLL and expansion

CONCLUSIONS AND FUTURE WORK

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts
- enables combining DPLL and expansion
- different applications of strategies? (prediction of the opponent)

CONCLUSIONS AND FUTURE WORK

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts
- enables combining DPLL and expansion
- different applications of strategies? (prediction of the opponent)
- better ways how to come up with strategies?

CONCLUSIONS AND FUTURE WORK

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts
- enables combining DPLL and expansion
- different applications of strategies? (prediction of the opponent)
- better ways how to come up with strategies?
- combining strategies?

Thank You for Your Attention!

Questions?

Beyersdorff, O., Chew, L., and Janota, M. (2015). Proof complexity of resolution-based QBF calculi.
In Mayr, E. W. and Ollinger, N., editors, 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS, volume 30 of LIPICs, pages 76-89. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik.
R Janota, M., Klieber, W., Marques-Silva, J., and Clarke, E. M. (2012).

Solving QBF with counterexample guided refinement.
In Cimatti, A. and Sebastiani, R., editors, SAT, volume 7317 of
Lecture Notes in Computer Science, pages 114-128. Springer.
Zhang, L. and Malik, S. (2002).
Conflict driven learning in a quantified Boolean satisfiability solver.
In ICCAD.

