ON CONFLICTS AND STRATEGIES IN QBF

Nikolaj Bjørner¹ **Mikoláš Janota**² William Klieber³ LPAR-20 2015, Suva, Fiji

¹ Microsoft Research, Redmond, USA
 ² Microsoft Research, Cambridge, UK
 ³ CERT/SEI, Carnegie Mellon University

QUANTIFIED BOOLEAN FORMULA (QBF)

• an extension of SAT with quantifiers

QUANTIFIED BOOLEAN FORMULA (QBF)

 \cdot an extension of SAT with quantifiers

Example

$\forall y_1y_2 \exists x_1x_2. \ (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$

QUANTIFIED BOOLEAN FORMULA (QBF)

 \cdot an extension of SAT with quantifiers

Example

$\forall y_1y_2 \exists x_1x_2. \ (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$

• we consider prenex form with maximal blocks of variables

 $\forall \mathcal{U}_1 \exists \mathcal{E}_2 \dots \forall \mathcal{U}_{2N-1} \exists \mathcal{E}_{2N}. \phi$

• A QBF represents a two-player games between \exists and \forall .

- A QBF represents a two-player games between \exists and \forall .
- $\cdot \exists$ wins a game if the matrix becomes true.

- A QBF represents a two-player games between \exists and \forall .
- $\cdot \exists$ wins a game if the matrix becomes true.
- \cdot \forall wins a game if the matrix becomes false.

- A QBF represents a two-player games between \exists and \forall .
- $\cdot \exists$ wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .

- A QBF represents a two-player games between \exists and \forall .
- $\cdot \exists$ wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for \forall .

- A QBF represents a two-player games between \exists and \forall .
- $\cdot \exists$ wins a game if the matrix becomes true.
- \cdot \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for ∀.
 Example

 $\forall u \exists e. (u \lor e) \land (\neg u \lor \neg e)$

- A QBF represents a two-player games between \exists and \forall .
- $\cdot \exists$ wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for ∀.
 Example

$$\forall u \exists e. (u \lor e) \land (\neg u \lor \neg e)$$

 \exists wins by playing $e \leftarrow \neg u$.

- Two types of solving: expansion [Janota et al., 2012] and conflict-driven (DPLL) [Zhang and Malik, 2002].
- Both approaches have their weaknesses [Beyersdorff et al., 2015].
- What is a good way of combining them?

Consider $\forall x. \phi$

- traditional expansion [Janota et al., 2012] abstract as: $\bigwedge_{c \in \omega} \phi|_{x=c}$ where $\omega \subseteq \{0, 1\}$
- strategy expansion abstract as: $\bigwedge_{f \in \omega} \phi|_{x=f}$ where $\omega \subseteq \operatorname{dom}(X) \to \mathbb{B}$

E.g. $\exists e \forall u. (u \Leftrightarrow e)$, expand with $u \triangleq \neg e$. Simplifies to false.

(In Q-Resolution)

Bjørner, Janota, Klieber

COMBINED QBF SOLVING

 $1 \delta \leftarrow \emptyset$ // initialization of decisions 2 $\alpha \leftarrow [\alpha_1 = \mathsf{true}, \ldots, \alpha_n = \mathsf{true}]$ // initialization 3 while true do // propagation $(\tau, \text{loser}) \leftarrow \text{Propagate}(\delta, \Phi)$ 4 if $\tau = \perp$ then // conflict resolution 5 $(k, \alpha, \Phi) \leftarrow \text{LearnAndRefine}(\delta, \Phi, \alpha, \text{loser})$ 6 if $k = \bot$ then return (loser = \forall)? true : false 7 $\delta \leftarrow \{l \in \delta \mid \text{glevel}(l) < k\}$ // backtrack decisions 8 else // decision-making 9 $k \leftarrow$ minimal quantification level not fully assigned in τ 10 $\tau_k \leftarrow \{\ell \in \tau \mid \text{glevel}(\ell) < k\}$ // filtering 11 // consult α_b $(\mu, \tau') \leftarrow \mathsf{SAT}(\alpha_b \wedge \tau_b)$ 12 if $\mu = \perp$ then // abstraction unsatisfiable 13 $\Phi \leftarrow \mathsf{ResolveUnsat}(\tau', Q_k, \Phi)$ // update Φ 14 if $\Phi = \bot$ then return $(Q_{b} = \forall)$? true : false 15 else 16 $v \leftarrow$ a variable unassigned by τ at quantification level k 17 $\delta \leftarrow \delta \cup \{\mu(v), v : \neg v\}$ // make a decision on v 18

Bjørner, Janota, Klieber

On Conflicts and Strategies in QBF

EXPERIMENTS EVAL 2012

EXPERIMENTS 2QBF

• key ingredient: in solving *explicit strategies* in solving

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts
- \cdot enables combining DPLL and expansion

- key ingredient: in solving explicit strategies in solving
- construction of strategies from DPLL conflicts
- enables combining DPLL and expansion
- different applications of strategies? (prediction of the opponent)

- key ingredient: in solving *explicit strategies* in solving
- construction of strategies from DPLL conflicts
- enables combining DPLL and expansion
- different applications of strategies? (prediction of the opponent)
- better ways how to come up with strategies?

- key ingredient: in solving *explicit strategies* in solving
- construction of strategies from DPLL conflicts
- enables combining DPLL and expansion
- different applications of strategies? (prediction of the opponent)
- better ways how to come up with strategies?
- combining strategies?

Thank You for Your Attention!

Questions?

Bjørner, Janota, Klieber

On Conflicts and Strategies in QBF

 Beyersdorff, O., Chew, L., and Janota, M. (2015).
 Proof complexity of resolution-based QBF calculi.
 In Mayr, E. W. and Ollinger, N., editors, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS, volume 30 of LIPIcs, pages 76–89. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik.

Janota, M., Klieber, W., Marques-Silva, J., and Clarke, E. M. (2012).

Solving QBF with counterexample guided refinement. In Cimatti, A. and Sebastiani, R., editors, *SAT*, volume 7317 of *Lecture Notes in Computer Science*, pages 114–128. Springer.

Zhang, L. and Malik, S. (2002).
 Conflict driven learning in a quantified Boolean satisfiability solver.

In ICCAD.