On Instantiation-Based Calculi for QBF

Mikoláš Janota¹ Olaf Beyersdorff² Leroy Chew²

¹ INESC-ID/IST, Lisbon, Portugal School of Computing, University of Leeds, United Kingdom

QBF Workshop 2014, July 13

Quantified Boolean Formula (QBF)

an extension of SAT with quantifiers
 Example ∀y₁y₂∃x₁x₂. (y
₁ ∨ x₁) ∧ (y₂ ∨ x
₂)

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers
 Example ∀y₁y₂∃x₁x₂. (y
 ₁ ∨ x₁) ∧ (y₂ ∨ x
 ₂)
- we consider prenex form with maximal blocks of variables, and CNF matrix

 $\forall \mathcal{U}_1 \exists \mathcal{E}_2 \dots \forall \mathcal{U}_{2N-1} \exists \mathcal{E}_{2N}. \phi$

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers
 Example ∀y₁y₂∃x₁x₂. (y
 ₁ ∨ x₁) ∧ (y₂ ∨ x
 ₂)
- we consider prenex form with maximal blocks of variables, and CNF matrix

 $\forall \mathcal{U}_1 \exists \mathcal{E}_2 \dots \forall \mathcal{U}_{2N-1} \exists \mathcal{E}_{2N}. \phi$

Solving and Proof Systems

- DPLL Q-Resolution (QuBE, depqbf, etc.)
- Expansion \(\forall Exp+Res (Quantor, sKizzo, Nenofex))\)
 - "Careful" expansion (AReQS,RAReQS)

Q-resolution = *Q*-resolution rule + \forall -reduction

Q-resolution = *Q*-resolution rule + \forall -reduction

Q-resolution rule

 ${\it C}_1, {\it C}_2$ with one and only one complementary literal ${\it I},$ where ${\it I}$ is existential

• derive $C_1 \cup C_2 \smallsetminus \{I, \overline{I}\}$

Q-resolution = *Q*-resolution rule + \forall -reduction

Q-resolution rule

 ${\it C}_1, {\it C}_2$ with one and only one complementary literal ${\it I},$ where ${\it I}$ is existential

• derive $C_1 \cup C_2 \smallsetminus \{I, \overline{I}\}$

 \forall -reduction

• if $k \in C$ is universal with highest level in C, remove k from C

Q-resolution = *Q*-resolution rule + \forall -reduction

Q-resolution rule

 ${\it C}_1, {\it C}_2$ with one and only one complementary literal ${\it I},$ where ${\it I}$ is existential

• derive $C_1 \cup C_2 \smallsetminus \{I, \overline{I}\}$

 \forall -reduction

• if $k \in C$ is universal with highest level in C, remove k from C

Tautologous resolvents are generally unsound and not allowed!

Expansion

$$\forall x. \ \Phi = \Phi[0/x] \land \Phi[1/x]$$
$$\exists x. \ \Phi = \Phi[0/x] \lor \Phi[1/x]$$

Expansion

 $\forall x. \ \Phi = \Phi[0/x] \land \Phi[1/x]$ $\exists x. \ \Phi = \Phi[0/x] \lor \Phi[1/x]$

Fresh variables in order to keep prenex form

 $\exists e_1 \forall u_2 \exists e_3. \ (\bar{e}_1 \lor e_3) \land (\bar{e}_3 \lor e_1) \land (u_2 \lor e_3) \land (\bar{u}_2 \lor \bar{e}_3)$

Expansion

 $\forall x. \ \Phi = \Phi[0/x] \land \Phi[1/x]$ $\exists x. \ \Phi = \Phi[0/x] \lor \Phi[1/x]$

Fresh variables in order to keep prenex form

 $\exists e_1 \forall u_2 \exists e_3. \ (\bar{e}_1 \lor e_3) \land (\bar{e}_3 \lor e_1) \land (u_2 \lor e_3) \land (\bar{u}_2 \lor \bar{e}_3)$

$$\begin{array}{l} \exists e_1 e_3^{\bar{u}_2} e_3^{u_2}. \quad \left(\bar{e}_1 \lor e_3^{\bar{u}_2}\right) \land \left(\bar{e}_3^{\bar{u}_2} \lor e_1\right) \land \\ \left(\bar{e}_1 \lor e_3^{u_2}\right) \land \left(\bar{e}_3^{u_2} \lor e_1\right) \land \\ e_3^{\bar{u}_2} \land \\ \bar{e}_3^{u_2} \end{array}$$

Recursive Partial Expansion

Recursive Partial Expansion

Recursive Partial Expansion

Different View on $\forall Exp+Res$

 $\frac{C \text{ in matrix}}{\{I^{[\tau]} \mid I \in C, I \text{ is existential}\}}$ (Axiom)

- τ is a complete assignment to universal variables s.t. there is no $l \in C$ with $\tau(l) = 1$.
- $[\mu]$ takes only the part of μ that is < l

Different View on $\forall Exp+Res$

 $\frac{C \text{ in matrix}}{\{I^{[\tau]} \mid I \in C, I \text{ is existential}\}}$ (Axiom)

- τ is a complete assignment to universal variables s.t. there is no $l \in C$ with $\tau(l) = 1$.
- $[\mu]$ takes only the part of μ that is < l

$$\frac{x^{\tau} \vee C_1 \quad \neg x^{\tau} \vee C_2}{C_1 \cup C_2}$$
(Resolution)

Example Proof in $\forall Exp+Res$

Example Proof in \forall Exp+Res

Example Proof in $\forall Exp+Res$

 $\exists e_1 \forall u \exists e_2$

What is Hard for $\forall Exp+Res$

 $\forall u_1 \exists e_2 \forall u_3 u_4 \exists e_5$

IR-calc, "lazy instantiation"

$$\frac{C \text{ in matrix}}{\left\{x^{[\tau]} \mid x \in C, x \text{ is existential}\right\}}$$
(Axiom)

 τ is the minimal assignment that assigns to 0 all universal literals of C

IR-calc, "lazy instantiation"

$$\frac{C \text{ in matrix}}{\left\{x^{[\tau]} \mid x \in C, x \text{ is existential}\right\}}$$
(Axiom)

 τ is the minimal assignment that assigns to 0 all universal literals of C

$$\frac{x^{\tau} \vee C_1 \qquad \neg x^{\tau} \vee C_2}{C_1 \cup C_2}$$
(Resolution)

IR-calc, "lazy instantiation"

$$\frac{C \text{ in matrix}}{\left\{x^{[\tau]} \mid x \in C, x \text{ is existential}\right\}} (Axiom)$$

 τ is the minimal assignment that assigns to 0 all universal literals of C

$$\frac{x^{\tau} \vee C_1 \qquad \neg x^{\tau} \vee C_2}{C_1 \cup C_2}$$
(Resolution)

$$\frac{I_1^{\tau_1} \vee \cdots \vee I_k^{\tau_k}}{I_1^{[\tau_1 \, \forall \, \sigma]} \vee \ldots \vee I_k^{[\tau_k \, \forall \, \sigma]}}$$
(Instantiation by σ)

 $\tau_i \leq \sigma$ "completes" τ_i with σ . E.g. $(\bar{u}_1 u_2 \leq u_1 u_3) = \bar{u}_1 u_2 u_3$

Example Proof in IR-calc

$$\forall u_1 \exists e_2 \forall u_3 \forall u_4 \exists e_5$$

Example Proof in IR-calc

 $\forall u_1 \exists e_2 \forall u_3 \forall u_4 \exists e_5$

Example Proof in IR-calc

 $\forall u_1 \exists e_2 \forall u_3 \forall u_4 \exists e_5$

Simulation by IR-calc

Since Q-Res does not allow tautologous clauses, a resolution x^{τ1} ∨ C₁ and x^{τ2} ∨ C₂ never has contradiction in τ₁, τ₂, which lets us make the annotation equal by instantiation.

Simulation by IR-calc

- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_1} \vee C_1$ and $x^{\tau_2} \vee C_2$ never has contradiction in τ_1 , τ_2 , which lets us make the annotation equal by instantiation.
- To simulate ∀Exp+Res , immediately instantiate by the complete assignments used in the ∀Exp+Res proof.

Simulation by IR-calc

- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_1} \vee C_1$ and $x^{\tau_2} \vee C_2$ never has contradiction in τ_1 , τ_2 , which lets us make the annotation equal by instantiation.
- To simulate ∀Exp+Res , immediately instantiate by the complete assignments used in the ∀Exp+Res proof.
- To simulate ∀-expansion

$$\forall u \exists x_1 \dots x_k. \phi \quad \rightsquigarrow \quad \exists x_1^{\bar{u}} x_1^u \dots x_k^{\bar{u}} x_k^u. (\phi^{\bar{u}} \wedge \phi^u)$$

introduce two copies of ϕ by instantiating all clauses by u and \overline{u} , respectively (or do so lazily).

• We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and ∀Exp+Res.

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and ∀Exp+Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and ∀Exp+Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$ but how does it compare to long-distance-Q-resolution?

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and ∀Exp+Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$ but how does it compare to long-distance-Q-resolution?
- IR-calc simulates Q-res but is it more powerful?

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and ∀Exp+Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$ but how does it compare to long-distance-Q-resolution?
- IR-calc simulates Q-res but is it more powerful?
- Strategy extraction exists [Beyersdorff et al., 2014]

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and ∀Exp+Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$ but how does it compare to long-distance-Q-resolution?
- IR-calc simulates Q-res but is it more powerful?
- Strategy extraction exists [Beyersdorff et al., 2014]
- An extension of IR-calc exists that simulates long-distance-Q-resolution (IRM-calc) [Beyersdorff et al., 2014].

Thank you for your attention!

Questions?

Beyersdorff, O., Chew, L., and Janota, M. (2014).
 On unification of QBF resolution-based calculi.
 In *Mathematical Foundations of Computer Science (MFCS)*.
 to appear.