On Instantiation-Based Calculi for QBF

Mikoláš Janota ${ }^{1}$ Olaf Beyersdorff ${ }^{2}$ Leroy Chew ${ }^{2}$

${ }^{1}$ INESC-ID/IST, Lisbon, Portugal
School of Computing, University of Leeds, United Kingdom
QBF Workshop 2014, July 13

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers

Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$

- we consider prenex form with maximal blocks of variables, and CNF matrix

$$
\forall \mathcal{U}_{1} \exists \mathcal{E}_{2} \ldots \forall \mathcal{U}_{2 N-1} \exists \mathcal{E}_{2 N} \cdot \phi
$$

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$
- we consider prenex form with maximal blocks of variables, and CNF matrix

$$
\forall \mathcal{U}_{1} \exists \mathcal{E}_{2} \ldots \forall \mathcal{U}_{2 N-1} \exists \mathcal{E}_{2 N} \cdot \phi
$$

Solving and Proof Systems

- DPLL — Q-Resolution (QuBE, depqbf, etc.)
- Expansion - \forall Exp+Res (Quantor, sKizzo, Nenofex)
- "Careful" expansion (AReQS,RAReQS)

Q-resolution

Q-resolution $=Q$-resolution rule $+\forall$-reduction

Q-resolution

Q-resolution $=Q$-resolution rule $+\forall$-reduction
Q-resolution rule
C_{1}, C_{2} with one and only one complementary literal $/$, where I is existential

- derive $C_{1} \cup C_{2} \backslash\{I, \bar{l}\}$

Q-resolution

Q-resolution $=Q$-resolution rule $+\forall$-reduction
Q-resolution rule
C_{1}, C_{2} with one and only one complementary literal I, where / is existential

- derive $C_{1} \cup C_{2} \backslash\{I, \bar{l}\}$
\forall-reduction
- if $k \in C$ is universal with highest level in C, remove k from C

Q-resolution

Q-resolution $=Q$-resolution rule $+\forall$-reduction
Q-resolution rule
C_{1}, C_{2} with one and only one complementary literal I, where I is existential

- derive $C_{1} \cup C_{2} \backslash\{I, \bar{l}\}$
\forall-reduction
- if $k \in C$ is universal with highest level in C, remove k from C

Tautologous resolvents are generally unsound and not allowed!

Expansion

$$
\begin{aligned}
& \forall x . \Phi=\Phi[0 / x] \wedge \Phi[1 / x] \\
& \exists x . \Phi=\Phi[0 / x] \vee \Phi[1 / x]
\end{aligned}
$$

Expansion

$$
\begin{aligned}
& \forall x . \Phi=\Phi[0 / x] \wedge \Phi[1 / x] \\
& \exists x . \Phi=\Phi[0 / x] \vee \Phi[1 / x]
\end{aligned}
$$

Fresh variables in order to keep prenex form

$$
\exists e_{1} \forall u_{2} \exists e_{3} .\left(\bar{e}_{1} \vee e_{3}\right) \wedge\left(\bar{e}_{3} \vee e_{1}\right) \wedge\left(u_{2} \vee e_{3}\right) \wedge\left(\bar{u}_{2} \vee \bar{e}_{3}\right)
$$

Expansion

$$
\begin{aligned}
& \forall x . \Phi=\Phi[0 / x] \wedge \Phi[1 / x] \\
& \exists x . \Phi=\Phi[0 / x] \vee \Phi[1 / x]
\end{aligned}
$$

Fresh variables in order to keep prenex form

$$
\begin{aligned}
& \exists e_{1} \forall u_{2} \exists e_{3} \cdot\left(\bar{e}_{1} \vee e_{3}\right) \wedge\left(\bar{e}_{3} \vee e_{1}\right) \wedge\left(u_{2} \vee e_{3}\right) \wedge\left(\bar{u}_{2} \vee \bar{e}_{3}\right) \\
& \exists e_{1} e_{3}^{\bar{u}_{2}} e_{3}^{u_{2}} \cdot\left(\bar{e}_{1} \vee e_{3}^{\bar{u}_{2}}\right) \wedge\left(\bar{e}_{3}^{\bar{u}_{2}} \vee e_{1}\right) \wedge \\
&\left(\bar{e}_{1} \vee e_{3}^{u_{2}}\right) \wedge\left(\bar{e}_{3}^{u_{2}} \vee e_{1}\right) \wedge \\
& e_{3}^{\bar{u}_{2}} \wedge \\
& \bar{e}_{3}^{u_{2}}
\end{aligned}
$$

Recursive Partial Expansion

Recursive Partial Expansion

Recursive Partial Expansion

Different View on $\forall \operatorname{Exp}+$ Res

$$
\frac{C \text { in matrix }}{\left\{I^{[\tau]} \mid I \in C, I \text { is existential }\right\}} \text { (Axiom) }
$$

- τ is a complete assignment to universal variables s.t. there is no $I \in C$ with $\tau(I)=1$.
- [μ] takes only the part of μ that is <1

Different View on $\forall \operatorname{Exp}+$ Res

$$
\frac{C \text { in matrix }}{\left\{I^{[\tau]} \mid I \in C, I \text { is existential }\right\}} \text { (Axiom) }
$$

- τ is a complete assignment to universal variables s.t. there is no $I \in C$ with $\tau(I)=1$.
- [μ] takes only the part of μ that is <1

$$
\frac{x^{\tau} \vee C_{1} \quad \neg x^{\tau} \vee C_{2}}{C_{1} \cup C_{2}} \text { (Resolution) }
$$

Example Proof in \forall Exp + Res

$\exists \mathbf{e}_{1} \forall \mathbf{u} \exists \mathbf{e}_{2}$

Example Proof in \forall Exp + Res

$\exists \mathbf{e}_{1} \forall \mathbf{u} \exists \mathbf{e}_{2}$

Example Proof in \forall Exp+Res

$\exists \mathbf{e}_{1} \forall \mathbf{u} \exists \mathrm{e}_{2}$

What is Hard for $\forall \operatorname{Exp}+$ Res

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \mathbf{u}_{4} \exists \mathbf{e}_{5}$

IR-calc, "lazy instantiation"

$$
\frac{C \text { in matrix }}{\left\{x^{[\tau]} \mid x \in C, x \text { is existential }\right\}}(\text { Axiom })
$$

τ is the minimal assignment that assigns to 0 all universal literals of C

IR-calc, "lazy instantiation"

$$
\frac{C \text { in matrix }}{\left\{x^{[\tau]} \mid x \in C, x \text { is existential }\right\}} \text { (Axiom) }
$$

τ is the minimal assignment that assigns to 0 all universal literals of C

$$
\frac{x^{\tau} \vee C_{1} \quad \neg x^{\tau} \vee C_{2}}{C_{1} \cup C_{2}} \text { (Resolution) }
$$

IR-calc, "lazy instantiation"

$$
\frac{C \text { in matrix }}{\left\{x^{[\tau]} \mid x \in C, x \text { is existential }\right\}} \text { (Axiom) }
$$

τ is the minimal assignment that assigns to 0 all universal literals of C

$$
\begin{gathered}
\frac{x^{\tau} \vee C_{1} \neg x^{\tau} \vee C_{2}}{C_{1} \cup C_{2}} \text { (Resolution) } \\
\frac{I_{1}^{\tau_{1}} \vee \cdots \vee I_{k}^{\tau_{k}}}{l_{1}^{\left[\tau_{1} \unrhd \sigma\right]} \vee \ldots \vee I_{k}^{\left[\tau_{k} \underline{\vee}\right.}}(\text { Instantiation by } \sigma)
\end{gathered}
$$

$\tau_{i} \underline{\vee} \sigma$ "completes" τ_{i} with σ. E.g. $\left(\bar{u}_{1} u_{2} \underline{\vee} u_{1} u_{3}\right)=\bar{u}_{1} u_{2} u_{3}$

Example Proof in IR-calc

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \forall \mathbf{u}_{4} \exists \mathbf{e}_{5}$
$u_{1} \vee e_{2} \vee u_{3} \vee u_{4} \vee e_{5}$
$\bar{u}_{1} \bar{u}_{3} \bar{u}_{4}$
$e_{2}^{\bar{u}_{1}} \vee e_{5}^{\bar{u}_{1} \bar{u}_{3} \bar{u}_{4}}$

$u_{1} \vee \neg e_{2} \vee u_{3} \vee \neg u_{4} \vee e_{5}$
$\bar{u}_{1} \bar{u}_{3} u_{4}$
$\neg e_{2}^{\bar{u}_{1}} \vee e_{5}^{\bar{u}_{1} \bar{u}_{3} u_{4}}$

Example Proof in IR-calc

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \forall \mathbf{u}_{4} \exists \mathbf{e}_{5}$

Example Proof in IR-calc

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \forall \mathbf{u}_{4} \exists \mathbf{e}_{5}$

Simulation by IR-calc

- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_{1}} \vee C_{1}$ and $x^{\tau_{2}} \vee C_{2}$ never has contradiction in τ_{1}, τ_{2}, which lets us make the annotation equal by instantiation.

Simulation by IR-calc

- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_{1}} \vee C_{1}$ and $x^{\tau_{2}} \vee C_{2}$ never has contradiction in τ_{1}, τ_{2}, which lets us make the annotation equal by instantiation.
- To simulate $\forall E x p+$ Res , immediately instantiate by the complete assignments used in the $\forall \operatorname{Exp}+$ Res proof.

Simulation by IR-calc

- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_{1}} \vee C_{1}$ and $x^{\tau_{2}} \vee C_{2}$ never has contradiction in τ_{1}, τ_{2}, which lets us make the annotation equal by instantiation.
- To simulate $\forall E x p+$ Res , immediately instantiate by the complete assignments used in the $\forall \operatorname{Exp}+$ Res proof.
- To simulate \forall-expansion

$$
\forall u \exists x_{1} \ldots x_{k} \cdot \phi \quad \rightsquigarrow \quad \exists x_{1}^{\bar{u}} x_{1}^{u} \ldots x_{k}^{\bar{u}} x_{k}^{u} \cdot\left(\phi^{\bar{u}} \wedge \phi^{u}\right)
$$

introduce two copies of ϕ by instantiating all clauses by u and \bar{u}, respectively (or do so lazily).

Summary and Future Work

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and $\forall \operatorname{Exp}+$ Res.

Summary and Future Work

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and $\forall \operatorname{Exp}+$ Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.

Summary and Future Work

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and $\forall \operatorname{Exp}+$ Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and $\forall E x p+R e s$ but how does it compare to long-distance-Q-resolution?

Summary and Future Work

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and $\forall \operatorname{Exp}+$ Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and \forall Exp+Res but how does it compare to long-distance-Q-resolution?
- IR-calc simulates Q-res but is it more powerful?

Summary and Future Work

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and $\forall \operatorname{Exp}+$ Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and \forall Exp+Res but how does it compare to long-distance-Q-resolution?
- IR-calc simulates Q-res but is it more powerful?
- Strategy extraction exists [Beyersdorff et al., 2014]

Summary and Future Work

- We have introduced an instantiation-based calculus IR-calc which simulates both Q-res and $\forall \operatorname{Exp}+$ Res.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates both Q-resolution and \forall Exp+Res but how does it compare to long-distance-Q-resolution?
- IR-calc simulates Q-res but is it more powerful?
- Strategy extraction exists [Beyersdorff et al., 2014]
- An extension of IR-calc exists that simulates long-distance-Q-resolution (IRM-calc) [Beyersdorff et al., 2014].

Thank you for your attention!

Questions?

围 Beyersdorff, O., Chew, L., and Janota, M. (2014). On unification of QBF resolution-based calculi. In Mathematical Foundations of Computer Science (MFCS). to appear.

