On Unification of QBF Resolution-Based Calculi

Olaf Beyersdorff¹ Leroy Chew¹ Mikoláš Janota²

 $^1 \mbox{School}$ of Computing, University of Leeds, United Kingdom $^2 \mbox{INESC-ID},$ Lisbon, Portugal

MFCS Budapest, August 26, 2014

• SAT — given a Boolean formula, determine if it is satisfiable

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

QBF — given a Quantified Boolean formula, determine if it is true

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- QBF given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y. (x \leftrightarrow y)$

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- QBF given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"Yes", set y = x

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- QBF given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"Yes", set y = x

• Quantifications are shorthands for connectives ($\exists = \lor, \forall = \land$) Example:

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- QBF given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"Yes", set y = x

Quantifications are shorthands for connectives (∃ = ∨, ∀ = ∧)
 Example:

 (1) ∀x∃y. (x ↔ y)

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- QBF given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"Yes", set y = x

• Quantifications are shorthands for connectives ($\exists = \lor, \forall = \land$)

Example:

(1) $\forall x \exists y. (x \leftrightarrow y)$ (2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- QBF given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"Yes", set y = x

• Quantifications are shorthands for connectives ($\exists = \lor, \forall = \land$)

Example:

(1) $\forall x \exists y. (x \leftrightarrow y)$ (2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$ (3) $((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1))$

- SAT given a Boolean formula, determine if it is satisfiable
- Example: $(x \lor y) \land (x \lor \neg y)$

x = 1, y = 0

- QBF given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y. (x \leftrightarrow y)$

"Yes", set y = x

• Quantifications are shorthands for connectives ($\exists = \lor, \forall = \land$)

Example:

$$\begin{array}{ll} (1) & \forall x \exists y. \ (x \leftrightarrow y) \\ (2) & \forall x. \ (x \leftrightarrow 0) \lor (x \leftrightarrow 1) \\ (3) & ((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1)) \\ (4) & 1 \ (\mathsf{True}) \end{array}$$

Relation to Complexity Theory

Relation to Complexity Theory

Relation to Complexity Theory

• Deciding QBF is PSPACE complete

• In this talk we consider prenex form with CNF matrix

 In this talk we consider prenex form with CNF matrix Example ∀y₁y₂∃x₁x₂. (y
₁ ∨ x₁) ∧ (y₂ ∨ x
₂)

- In this talk we consider prenex form with CNF matrix Example $\forall y_1 y_2 \exists x_1 x_2. (\bar{y}_1 \lor x_1) \land (y_2 \lor \bar{x}_2)$
- A QBF represents a two-player games between \exists and \forall .

- In this talk we consider prenex form with CNF matrix Example $\forall y_1 y_2 \exists x_1 x_2. (\bar{y}_1 \lor x_1) \land (y_2 \lor \bar{x}_2)$
- A QBF represents a two-player games between \exists and \forall .
- ∃ wins a game if the matrix becomes true.

- In this talk we consider prenex form with CNF matrix Example $\forall y_1 y_2 \exists x_1 x_2. (\bar{y}_1 \lor x_1) \land (y_2 \lor \bar{x}_2)$
- A QBF represents a two-player games between \exists and \forall .
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game if the matrix becomes false.

- In this talk we consider prenex form with CNF matrix Example $\forall y_1 y_2 \exists x_1 x_2. (\bar{y}_1 \lor x_1) \land (y_2 \lor \bar{x}_2)$
- A QBF represents a two-player games between \exists and \forall .
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .

- In this talk we consider prenex form with CNF matrix Example $\forall y_1 y_2 \exists x_1 x_2. (\bar{y}_1 \lor x_1) \land (y_2 \lor \bar{x}_2)$
- A QBF represents a two-player games between \exists and \forall .
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for \forall .

- In this talk we consider prenex form with CNF matrix Example $\forall y_1 y_2 \exists x_1 x_2. (\bar{y}_1 \lor x_1) \land (y_2 \lor \bar{x}_2)$
- A QBF represents a two-player games between \exists and \forall .
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for ∀.
 Example

 $\forall u \exists e. (u \lor e) \land (\bar{u} \lor \bar{e})$

- In this talk we consider prenex form with CNF matrix Example ∀y1y2∃x1x2. (ÿ1 ∨ x1) ∧ (y2 ∨ x2)
- A QBF represents a two-player games between \exists and \forall .
- ∃ wins a game if the matrix becomes true.
- ∀ wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists .
- A QBF is false iff there exists a winning strategy for ∀.
 Example

 $\forall u \exists e. (u \lor e) \land (\bar{u} \lor \bar{e})$

 \exists wins by playing $e \leftarrow \overline{u}$.

Problem Statement

Problem Statement

What is a good proof system for false QBFs?

Problem Statement

What is a good proof system for false QBFs?

Proof systems and solving

- DPLL (QuBE, depqbf, etc.)
- Expansion (AReQS, RAReQS, Quantor, sKizzo, Nenofex)
- unification, certification, understanding of QBF solvers

Q-resolution = *Q*-resolution rule + \forall -reduction

Q-resolution = *Q*-resolution rule + \forall -reduction

Resolution

$$\frac{l \lor C_1 \qquad \neg l \lor C_2}{C_1 \lor C_2} (l \text{ existentially quantified})$$

Q-resolution = *Q*-resolution rule + \forall -reduction

Resolution

$$\frac{I \lor C_1 \qquad \neg I \lor C_2}{C_1 \lor C_2}$$
 (*I* existentially quantified)

 \forall -reduction

 $\frac{C \vee k}{C} (k \in C \text{ is universal with highest quant. level in } C)$

Q-resolution = Q-resolution rule + \forall -reduction

Resolution

$$\frac{I \lor C_1 \qquad \neg I \lor C_2}{C_1 \lor C_2}$$
 (*I* existentially quantified)

∀-reduction

 $\frac{C \vee k}{C} (k \in C \text{ is universal with highest quant. level in } C)$

Tautologous resolvents are generally unsound and not allowed!

Q-resolution = Q-resolution rule + \forall -reduction

Resolution

$$\frac{I \lor C_1 \qquad \neg I \lor C_2}{C_1 \lor C_2}$$
 (*I* existentially quantified)

∀-reduction

 $\frac{C \vee k}{C} (k \in C \text{ is universal with highest quant. level in } C)$

Tautologous resolvents are generally unsound and not allowed!

long-distance Q-resolution [Balabanov and Jiang, 2012] enables tautologous resolvents in *some cases*.

Q-resolution Example $\forall u \exists e. (u \lor \overline{e}) \land (u \lor e)$

Q-resolution Example

 $\forall u \exists e. \, (u \vee \overline{e}) \land (u \vee e)$

Q-resolution Example $\forall u \exists e. (u \lor \overline{e}) \land (u \lor e)$

 $u \lor \overline{e}$ $u \lor e$ $\forall u$

Expansion

 $\forall x. \ \Phi = \Phi[0/x] \land \Phi[1/x]$

Expansion

 $\forall x. \ \Phi = \Phi[0/x] \land \Phi[1/x]$

Fresh variables in order to keep prenex form

 $\exists e_1 \forall u_2 \exists e_3. \ (\bar{e}_1 \lor e_3) \land (\bar{e}_3 \lor e_1) \land (u_2 \lor e_3) \land (\bar{u}_2 \lor \bar{e}_3)$

Expansion

 $\forall x. \ \Phi = \Phi[0/x] \land \Phi[1/x]$

Fresh variables in order to keep prenex form

 $\exists e_1 \forall u_2 \exists e_3. \ (\bar{e}_1 \lor e_3) \land (\bar{e}_3 \lor e_1) \land (u_2 \lor e_3) \land (\bar{u}_2 \lor \bar{e}_3)$

$$\exists e_1 e_3^{\bar{u}_2} e_3^{u_2}. \quad (\bar{e}_1 \lor e_3^{\bar{u}_2}) \land (\bar{e}_3^{\bar{u}_2} \lor e_1) \land \\ (\bar{e}_1 \lor e_3^{u_2}) \land (\bar{e}_3^{u_2} \lor e_1) \land \\ e_3^{\bar{u}_2} \land \\ \bar{e}_3^{u_2} \end{cases}$$

• It is not always necessary to expand both polarities.

It is not always necessary to expand both polarities.
 Example: ∀u∃e. (u ∨ e) ∧ (u ∨ ē)

It is not always necessary to expand both polarities.
 Example: ∀u∃e. (u ∨ e) ∧ (u ∨ ē)
 ∃e^ūe^ū. e^ū ∧ ¬e^ū (expand by ū)

• It is not always necessary to expand both polarities. Example: $\forall u \exists e. (u \lor e) \land (u \lor \overline{e})$ $\exists e^{\overline{u}} e^{\overline{u}}. e^{\overline{u}} \land \neg e^{\overline{u}}$ (expand by \overline{u})

Refute as propositional (propositional resolution). Effectively this means we can use a SAT solver.

Recursive Partial Expansion

Recursive Partial Expansion

Recursive Partial Expansion

∀Exp+Res [J. and Marques-Silva, 2013]

 $\frac{C \text{ in matrix}}{\{I^{[\tau]} \mid I \in C, I \text{ is existential}\}}$ (Axiom)

- τ is a complete assignment to universal variables s.t. there is no $l \in C$ with $\tau(l) = 1$.
- $[\mu]$ takes only the part of μ that is < l

∀Exp+Res [J. and Marques-Silva, 2013]

 $\frac{C \text{ in matrix}}{\{I^{[\tau]} \mid I \in C, I \text{ is existential}\}}$ (Axiom)

- τ is a complete assignment to universal variables s.t. there is no $l \in C$ with $\tau(l) = 1$.
- $[\mu]$ takes only the part of μ that is < l

$$\frac{x^{\tau} \vee C_1 \quad \neg x^{\tau} \vee C_2}{C_1 \cup C_2}$$
(Resolution)

Example Proof in $\forall Exp+Res$

 $\exists e_1 \forall u \exists e_2$

Example Proof in $\forall Exp+Res$

 $\exists e_1 \forall u \exists e_2$

Example Proof in $\forall Exp+Res$

 $\exists e_1 \forall u \exists e_2$

What is Hard for $\forall Exp+Res$

 $\forall u_1 \exists e_2 \forall u_3 u_4 \exists e_5$

• Definition of two instantiation-based calculi: IR-calc and IRM-calc

- Definition of two instantiation-based calculi: IR-calc and IRM-calc
- IR-calc p-simulates Q-Resolution and $\forall Exp+Res$.

- Definition of two instantiation-based calculi: IR-calc and IRM-calc
- IR-calc p-simulates Q-Resolution and $\forall Exp+Res$.
- IRM-calc additionaly p-simulates Long-distance Q-Resolution.

- Definition of two instantiation-based calculi: IR-calc and IRM-calc
- IR-calc p-simulates Q-Resolution and $\forall Exp+Res$.
- IRM-calc additionaly p-simulates Long-distance Q-Resolution.
- For both IR-calc and IRM-calc we show polynomial winning-strategy extraction from IR-calc and IRM-calc refutations.

IR-calc

$$\frac{C \text{ in matrix}}{\left\{x^{[\tau]} \mid x \in C, x \text{ is existential}\right\}}$$
(Axiom)

 τ is the minimal assignment that assigns to 0 all universal literals of C

IR-calc

$$\frac{C \text{ in matrix}}{\left\{x^{[\tau]} \mid x \in C, x \text{ is existential}\right\}}$$
(Axiom)

 τ is the minimal assignment that assigns to 0 all universal literals of C

$$\frac{x^{\tau} \vee C_1 \quad \neg x^{\tau} \vee C_2}{C_1 \cup C_2}$$
(Resolution)

IR-calc

$$\frac{C \text{ in matrix}}{\left\{x^{[\tau]} \mid x \in C, x \text{ is existential}\right\}} (Axiom)$$

 τ is the minimal assignment that assigns to 0 all universal literals of C

$$\frac{x^{\tau} \vee C_1 \qquad \neg x^{\tau} \vee C_2}{C_1 \cup C_2}$$
(Resolution)

$$\frac{l_1^{\tau_1} \vee \cdots \vee l_k^{\tau_k}}{l_1^{[\tau_1 \vee \sigma]} \vee \ldots \vee l_k^{[\tau_k \vee \sigma]}}$$
(Instantiation by σ)

 $\tau_i \leq \sigma$ "completes" τ_i with σ . E.g. $(\bar{u}_1 u_2 \leq u_1 u_3) = \bar{u}_1 u_2 u_3$

Example Proof in IR-calc

Example Proof in IR-calc

 $\forall u_1 \exists e_2 \forall u_3 \forall u_4 \exists e_5$

Example Proof in IR-calc

 $\forall u_1 \exists e_2 \forall u_3 \forall u_4 \exists e_5$

• Theorem. IR-calc p-simulates Q-resolution

- Theorem. IR-calc p-simulates Q-resolution
- **Theorem.** IR-calc p-simulates $\forall Exp+Res$

- Theorem. IR-calc p-simulates Q-resolution
- Theorem. IR-calc p-simulates $\forall Exp+Res$
- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_1} \vee C_1$ and $\neg x^{\tau_2} \vee C_2$ never has contradiction in τ_1 , τ_2 , which lets us make the annotation equal by instantiation.

- Theorem. IR-calc p-simulates Q-resolution
- Theorem. IR-calc p-simulates $\forall Exp+Res$
- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_1} \vee C_1$ and $\neg x^{\tau_2} \vee C_2$ never has contradiction in τ_1 , τ_2 , which lets us make the annotation equal by instantiation.
- To simulate ∀Exp+Res, immediately instantiate by the complete assignments used in the ∀Exp+Res proof.

IRM-calc— "Merging" calculus

- enables merging $b^{1/u} \vee b^{0/u}$ into $b^{*/u}$.
- However, restricts resolution, $b^{*/u}$ and $\neg b^{c/u}$ cannot be resolved.

IRM-calc— "Merging" calculus

- enables merging $b^{1/u} \vee b^{0/u}$ into $b^{*/u}$.
- However, restricts resolution, b^{*/u} and ¬b^{c/u} cannot be resolved.

$$\frac{x^{\tau \cup \xi} \vee C_1 \qquad \neg x^{\tau \cup \sigma} \vee C_2}{\operatorname{inst}(\sigma, C_1) \cup \operatorname{inst}(\xi, C_2)}$$
(Resolution)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0,1}

$$\frac{C \vee b^{\mu} \vee b^{\sigma}}{C \vee b^{\xi}}$$
(Merging)

 $dom(\mu) = dom(\sigma)$ $\xi = \{c/u \mid c/u \in \mu, c/u \in \sigma\} \cup \{*/u \mid c/u \in \mu, d/u \in \sigma, c \neq d\}$

Properties of IRM-calc

• Theorem. IRM-calc p-simulates IR-calc

Properties of IRM-calc

- Theorem. IRM-calc p-simulates IR-calc
- Theorem. IRM-calc p-simulates long-distance Q-resolution

Properties of IRM-calc

- Theorem. IRM-calc p-simulates IR-calc
- Theorem. IRM-calc p-simulates long-distance Q-resolution
- **Theorem.** A winning strategy for ∀ can be computed from a IRM-calc refutation in polynomial time.

• Proof systems for QBF are not yet well understood.

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$.

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$.
- IRM-calc additionally simulates long-distance Q-resolution.

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates Q-res but is it more powerful?

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall Exp+Res$.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates Q-res but is it more powerful?
- Is IRM-calc needed?

Thank you for your attention!

Questions?

Balabanov, V. and Jiang, J.-H. R. (2012). Unified QBF certification and its applications. Formal Methods in System Design, 41(1):45–65.

Büning, H. K., Karpinski, M., and Flögel, A. (1995). Resolution for quantified Boolean formulas. *Inf. Comput.*, 117(1).

 J., M. and Marques-Silva, J. (2013).
 On propositional QBF expansions and Q-resolution. In SAT.