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SAT and QBF

• SAT — given a Boolean formula, determine if it is satisfiable

• Example: (x ∨ y) ∧ (x ∨ ¬y)

x = 1, y = 0

• QBF — given a Quantified Boolean formula, determine if it is
true

• Example: ∀x∃y . (x ↔ y)

“Yes”, set y = x

• Quantifications are shorthands for connectives (∃ = ∨, ∀ = ∧)

Example:

(1) ∀x∃y . (x ↔ y)
(2) ∀x . (x ↔ 0) ∨ (x ↔ 1)
(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
(4) 1 (True)
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Relation to Complexity Theory

P

ΣP
1 = NPΠP

1 = co-NP
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• Deciding QBF is PSPACE complete
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Relation to Two-player Games

• In this talk we consider prenex form with CNF matrix

Example ∀y1y2∃x1x2. (ȳ1 ∨ x1) ∧ (y2 ∨ x̄2)

• A QBF represents a two-player games between ∃ and ∀.

• ∃ wins a game if the matrix becomes true.

• ∀ wins a game if the matrix becomes false.

• A QBF is true iff there exists a winning strategy for ∃.

• A QBF is false iff there exists a winning strategy for ∀.

Example
∀u∃e. (u ∨ e) ∧ (ū ∨ ē)

∃ wins by playing e ← ū.
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Problem Statement

What is a good proof system for false QBFs?

Proof systems and solving

• DPLL (QuBE, depqbf, etc.)

• Expansion (AReQS, RAReQS, Quantor, sKizzo, Nenofex)

• unification, certification, understanding of QBF solvers
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Q-resolution [Büning et al., 1995]

Q-resolution = Q-resolution rule+∀-reduction

Resolution

l ∨ C1 ¬l ∨ C2 (l existentially quantified)
C1 ∨ C2

∀-reduction

C ∨ k (k ∈ C is universal with highest quant. level in C )
C

Tautologous resolvents are generally unsound and not allowed!

long-distance Q-resolution [Balabanov and Jiang, 2012] enables
tautologous resolvents in some cases.
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Q-resolution [Büning et al., 1995]

Q-resolution = Q-resolution rule+∀-reduction

Resolution

l ∨ C1 ¬l ∨ C2 (l existentially quantified)
C1 ∨ C2

∀-reduction

C ∨ k (k ∈ C is universal with highest quant. level in C )
C

Tautologous resolvents are generally unsound and not allowed!

long-distance Q-resolution [Balabanov and Jiang, 2012] enables
tautologous resolvents in some cases.

Janota et al. On Unification of QBF Resolution-Based Calculi 6 / 21
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Q-resolution Example

∀u∃e. (u ∨ ē) ∧ (u ∨ e)

u ∨ eu ∨ ē
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Q-resolution Example

∀u∃e. (u ∨ ē) ∧ (u ∨ e)

u ∨ eu ∨ ē

e

u

⊥
∀u
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Expansion

∀x . Φ = Φ[0/x ] ∧ Φ[1/x ]

Fresh variables in order to keep prenex form

∃e1∀u2∃e3. (ē1 ∨ e3) ∧ (ē3 ∨ e1) ∧ (u2 ∨ e3) ∧ (ū2 ∨ ē3)

∃e1e
ū2
3 eu2

3 . (ē1 ∨ e ū2
3 ) ∧ (ē ū2

3 ∨ e1) ∧
(ē1 ∨ eu2

3 ) ∧ (ēu2
3 ∨ e1) ∧

e ū2
3 ∧
ēu2

3
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Partial Expansion

• It is not always necessary to expand both polarities.

Example: ∀u∃e. (u ∨ e) ∧ (u ∨ ē)

∃e ūe ū. e ū ∧ ¬e ū (expand by ū)

Refute as propositional (propositional resolution). Effectively
this means we can use a SAT solver.
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Recursive Partial Expansion

∀U1

∃E2

∀U3

∃E4

φ
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Recursive Partial Expansion

∧
. . .∃E2 ∃E2

∀U3

∃E4

φσ1

σ1 σk

∀U3

∃E4

φσk
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Recursive Partial Expansion

∧
. . .∃E2 ∃E2

σ1 σk

∧
. . . ∃E4

φσ1τi

∃E4

φσ1τ1

τiτ1

∧
. . .∃E4

φσkξ1

∃E4

φσkξj

ξ1 ξj
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∀Exp+Res [J. and Marques-Silva, 2013]

C in matrix (Axiom){
l [τ ] | l ∈ C , l is existential

}
- τ is a complete assignment to universal variables

s.t. there is no l ∈ C with τ(l) = 1.

- [µ] takes only the part of µ that is < l

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

Janota et al. On Unification of QBF Resolution-Based Calculi 11 / 21



∀Exp+Res [J. and Marques-Silva, 2013]

C in matrix (Axiom){
l [τ ] | l ∈ C , l is existential

}
- τ is a complete assignment to universal variables

s.t. there is no l ∈ C with τ(l) = 1.

- [µ] takes only the part of µ that is < l

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

Janota et al. On Unification of QBF Resolution-Based Calculi 11 / 21



Example Proof in ∀Exp+Res

∃e1∀u∃e2

e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2

e1 ∨ e ū2 ¬e1 ∨ eu2

ū u

¬e2

¬e ū2 ¬eu2

ū u

Janota et al. On Unification of QBF Resolution-Based Calculi 12 / 21



Example Proof in ∀Exp+Res

∃e1∀u∃e2

e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2
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e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2

e1 ∨ e ū2 ¬e1 ∨ eu2

ū u

¬e2

¬e ū2 ¬eu2

ū u

e ū2 ∨ eu2

eu2

⊥
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What is Hard for ∀Exp+Res

∀u1∃e2∀u3u4∃e5

⊥

u1 ∨ e2

u1 ∨ e2 ∨ u3 ∨ u4

u1 ∨ e2 ∨ u3 ∨ u4 ∨ e5 u3 ∨ ē5

u1 ∨ ē2

u1 ∨ ē2 ∨ u3 ∨ ū4

u1 ∨ ē2 ∨ u3 ∨ ū4 ∨ e5

∀u3u4 ∀u3ū4
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Our Contributions

• Definition of two instantiation-based calculi:
IR-calc and IRM-calc

• IR-calc p-simulates Q-Resolution and ∀Exp+Res.

• IRM-calc additionaly p-simulates Long-distance Q-Resolution.

• For both IR-calc and IRM-calc we show polynomial
winning-strategy extraction from IR-calc and IRM-calc
refutations.
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IR-calc

C in matrix (Axiom){
x [τ ] | x ∈ C , x is existential

}
τ is the minimal assignment that assigns to 0 all universal literals
of C

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

lτ1
1 ∨ · · · ∨ lτkk (Instantiation by σ)

l
[τ1 Y σ]
1 ∨ . . . ∨ l

[τk Y σ]
k

τi Y σ “completes” τi with σ. E.g. (ū1u2 Y u1u3) = ū1u2u3
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Example Proof in IR-calc

∀u1∃e2∀u3∀u4∃e5

u3 ∨ ¬e5

¬e ū3
5

ū3

u1 ∨ ¬e2 ∨ u3 ∨ ¬u4 ∨ e5

¬e ū1
2 ∨ e ū1ū3u4

5

u1 ∨ e2 ∨ u3 ∨ u4 ∨ e5

e ū1
2 ∨ e ū1ū3ū4

5

ū1ū3u4ū1ū3ū4
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u3 ∨ ¬e5

¬e ū3
5

ū3

u1 ∨ ¬e2 ∨ u3 ∨ ¬u4 ∨ e5

¬e ū1
2 ∨ e ū1ū3u4

5

u1 ∨ e2 ∨ u3 ∨ u4 ∨ e5

e ū1
2 ∨ e ū1ū3ū4

5

ū1ū3u4ū1ū3ū4

¬e ū1ū3u4
5¬e ū1ū3ū4

5

ū1ū3u4ū1ū3ū4

¬e ū1
2e ū1

2

⊥

ū1ū3u4ū1ū3ū4
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Simulation by IR-calc

• Theorem. IR-calc p-simulates Q-resolution

• Theorem. IR-calc p-simulates ∀Exp+Res

• Since Q-Res does not allow tautologous clauses, a resolution
xτ1 ∨ C1 and ¬xτ2 ∨ C2 never has contradiction in τ1, τ2,
which lets us make the annotation equal by instantiation.

• To simulate ∀Exp+Res, immediately instantiate by the
complete assignments used in the ∀Exp+Res proof.
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IRM-calc— “Merging” calculus

• enables merging b1/u ∨ b0/u into b∗/u.

• However, restricts resolution, b∗/u and ¬bc/u cannot be
resolved.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ,C1)∪ inst(ξ,C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∨ bµ ∨ bσ (Merging)
C ∨ bξ

dom(µ) = dom(σ)
ξ = {c/u | c/u ∈ µ, c/u ∈ σ}∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}
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Properties of IRM-calc

• Theorem. IRM-calc p-simulates IR-calc

• Theorem. IRM-calc p-simulates long-distance Q-resolution

• Theorem. A winning strategy for ∀ can be computed from a
IRM-calc refutation in polynomial time.
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Summary and Future Work

• Proof systems for QBF are not yet well understood.

• We have introduced novel systems based on expansion:
IR-calc, IRM-calc.

• IR-calc simulates both Q-resolution and ∀Exp+Res.

• IRM-calc additionally simulates long-distance Q-resolution.

• A ∀ winning strategy can by extracted in polynomial time.

• Expansion can be done by considering only one polarity
(instantiate by ū only) but also by partial assignments.

• IR-calc simulates Q-res but is it more powerful?

• Is IRM-calc needed?
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Thank you for your attention!

Questions?
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