On Unification of QBF Resolution-Based Calculi

Olaf Beyersdorff ${ }^{1}$ Leroy Chew ${ }^{1} \quad$ Mikoláš Janota ${ }^{2}$
${ }^{1}$ School of Computing, University of Leeds, United Kingdom ${ }^{2}$ INESC-ID, Lisbon, Portugal
MFCS
Budapest, August 26, 2014

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$

$$
x=1, y=0
$$

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$ $x=1, y=0$
- QBF - given a Quantified Boolean formula, determine if it is true

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$ $x=1, y=0$
- QBF - given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$ $x=1, y=0$
- QBF - given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$

$$
\text { "Yes", set } y=x
$$

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$ $x=1, y=0$
- QBF - given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$ "Yes", set $y=x$
- Quantifications are shorthands for connectives $(\exists=\vee, \forall=\wedge)$ Example:

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$ $x=1, y=0$
- QBF - given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$
"Yes", set $y=x$
- Quantifications are shorthands for connectives $(\exists=\vee, \forall=\wedge)$ Example:
(1) $\forall x \exists y .(x \leftrightarrow y)$

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$

$$
x=1, y=0
$$

- QBF - given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$
"Yes", set $y=x$
- Quantifications are shorthands for connectives $(\exists=\vee, \forall=\wedge)$ Example:
(1) $\forall x \exists y .(x \leftrightarrow y)$
(2) $\forall x \cdot(x \leftrightarrow 0) \vee(x \leftrightarrow 1)$

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$

$$
x=1, y=0
$$

- QBF - given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$
"Yes", set $y=x$
- Quantifications are shorthands for connectives $(\exists=\vee, \forall=\wedge)$ Example:
(1) $\forall x \exists y .(x \leftrightarrow y)$
(2) $\forall x .(x \leftrightarrow 0) \vee(x \leftrightarrow 1)$
(3) $((0 \leftrightarrow 0) \vee(0 \leftrightarrow 1)) \wedge((1 \leftrightarrow 0) \vee(1 \leftrightarrow 1))$

SAT and QBF

- SAT - given a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$

$$
x=1, y=0
$$

- QBF - given a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$
"Yes", set $y=x$
- Quantifications are shorthands for connectives $(\exists=\vee, \forall=\wedge)$ Example:
(1) $\forall x \exists y .(x \leftrightarrow y)$
(2) $\forall x .(x \leftrightarrow 0) \vee(x \leftrightarrow 1)$
(3) $((0 \leftrightarrow 0) \vee(0 \leftrightarrow 1)) \wedge((1 \leftrightarrow 0) \vee(1 \leftrightarrow 1))$
(4) 1 (True)

Relation to Complexity Theory

Relation to Complexity Theory

Relation to Complexity Theory

- Deciding QBF is PSPACE complete

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$
- A QBF represents a two-player games between \exists and \forall.

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix

Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix

Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$

- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$
- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$
- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.
- A QBF is false iff there exists a winning strategy for \forall.

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$
- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.
- A QBF is false iff there exists a winning strategy for \forall.

Example

$$
\forall u \exists e .(u \vee e) \wedge(\bar{u} \vee \bar{e})
$$

Relation to Two-player Games

- In this talk we consider prenex form with CNF matrix Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)$
- A QBF represents a two-player games between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.
- A QBF is false iff there exists a winning strategy for \forall.

Example

$$
\forall u \exists e .(u \vee e) \wedge(\bar{u} \vee \bar{e})
$$

\exists wins by playing $e \leftarrow \bar{u}$.

Problem Statement

Problem Statement

What is a good proof system for false QBFs?

Problem Statement

What is a good proof system for false QBFs?

Proof systems and solving

- DPLL (QuBE, depqbf, etc.)
- Expansion (AReQS, RAReQS, Quantor, sKizzo, Nenofex)
- unification, certification, understanding of QBF solvers

Q-resolution [Büning et al., 1995]

Q-resolution $=Q$-resolution rule $+\forall$-reduction

Q-resolution [Büning et al., 1995]

Q-resolution $=Q$-resolution rule $+\forall$-reduction
Resolution

$$
\frac{I \vee C_{1} \quad \neg / \vee C_{2}}{C_{1} \vee C_{2}}(/ \text { existentially quantified })
$$

Q-resolution [Büning et al., 1995]

Q-resolution $=Q$-resolution rule $+\forall$-reduction
Resolution

$$
\frac{I \vee C_{1} \quad \neg / \vee C_{2}}{C_{1} \vee C_{2}}(/ \text { existentially quantified })
$$

\forall-reduction

$\frac{C \vee k}{C}(k \in C$ is universal with highest quant. level in $C)$

Q-resolution [Büning et al., 1995]

Q-resolution $=Q$-resolution rule $+\forall$-reduction
Resolution

$$
\frac{I \vee C_{1} \quad \neg / \vee C_{2}}{C_{1} \vee C_{2}}(/ \text { existentially quantified })
$$

\forall-reduction

$\frac{C \vee k}{C}(k \in C$ is universal with highest quant. level in $C)$
Tautologous resolvents are generally unsound and not allowed!

Q-resolution [Büning et al., 1995]

Q-resolution $=Q$-resolution rule $+\forall$-reduction
Resolution

$$
\frac{I \vee C_{1} \quad \neg / \vee C_{2}}{C_{1} \vee C_{2}}(/ \text { existentially quantified })
$$

\forall-reduction

$\frac{C \vee k}{C}(k \in C$ is universal with highest quant. level in $C)$
Tautologous resolvents are generally unsound and not allowed!
long-distance Q-resolution [Balabanov and Jiang, 2012] enables tautologous resolvents in some cases.

Q-resolution Example

$\forall \mathbf{u} \exists \mathbf{e} .(\mathbf{u} \vee \overline{\mathbf{e}}) \wedge(\mathbf{u} \vee \mathbf{e})$
$u \vee \bar{e} \quad u \vee e$

Q-resolution Example

$\forall \mathbf{u} \exists \mathbf{e} .(\mathbf{u} \vee \overline{\mathbf{e}}) \wedge(\mathbf{u} \vee \mathbf{e})$

Q-resolution Example

$\forall \mathbf{u} \exists \mathbf{e} .(\mathbf{u} \vee \overline{\mathbf{e}}) \wedge(\mathbf{u} \vee \mathbf{e})$

Expansion

$$
\forall x . \Phi=\Phi[0 / x] \wedge \Phi[1 / x]
$$

Expansion

$$
\forall x . \Phi=\Phi[0 / x] \wedge \Phi[1 / x]
$$

Fresh variables in order to keep prenex form

$$
\exists e_{1} \forall u_{2} \exists e_{3} .\left(\bar{e}_{1} \vee e_{3}\right) \wedge\left(\bar{e}_{3} \vee e_{1}\right) \wedge\left(u_{2} \vee e_{3}\right) \wedge\left(\bar{u}_{2} \vee \bar{e}_{3}\right)
$$

Expansion

$$
\forall x . \Phi=\Phi[0 / x] \wedge \Phi[1 / x]
$$

Fresh variables in order to keep prenex form

$$
\begin{gathered}
\exists e_{1} \forall u_{2} \exists e_{3} \cdot\left(\bar{e}_{1} \vee e_{3}\right) \wedge\left(\bar{e}_{3} \vee e_{1}\right) \wedge\left(u_{2} \vee e_{3}\right) \wedge\left(\bar{u}_{2} \vee \bar{e}_{3}\right) \\
\exists e_{1} e_{3}^{\bar{u}_{2}} e_{3}^{u_{2}} \cdot\left(\bar{e}_{1} \vee e_{3}^{\bar{u}_{2}}\right) \wedge\left(\bar{e}_{3}^{\bar{u}_{2}} \vee e_{1}\right) \wedge \\
\left(\bar{e}_{1} \vee e_{3}^{u_{2}}\right) \wedge\left(\bar{e}_{3}^{u_{2}} \vee e_{1}\right) \wedge \\
e_{3}^{\bar{u}_{2}} \wedge \\
\bar{e}_{3}^{u_{2}}
\end{gathered}
$$

Partial Expansion

- It is not always necessary to expand both polarities.

Partial Expansion

- It is not always necessary to expand both polarities.

Example: $\forall u \exists e .(u \vee e) \wedge(u \vee \bar{e})$

Partial Expansion

- It is not always necessary to expand both polarities.

Example: $\forall u \exists e .(u \vee e) \wedge(u \vee \bar{e})$ $\exists e^{\bar{u}} e^{\bar{u}} . e^{\bar{u}} \wedge \neg e^{\bar{u}}$ (expand by \bar{u})

Partial Expansion

- It is not always necessary to expand both polarities.

Example: $\forall u \exists e .(u \vee e) \wedge(u \vee \bar{e})$
$\exists e^{\bar{u}} e^{\bar{u}} . e^{\bar{u}} \wedge \neg e^{\bar{u}}$ (expand by \bar{u})
Refute as propositional (propositional resolution). Effectively this means we can use a SAT solver.

Recursive Partial Expansion

Recursive Partial Expansion

Recursive Partial Expansion

$\forall E x p+R e s[J$. and Marques-Silva, 2013]

$$
\frac{C \text { in matrix }}{\left\{I^{[\tau]} \mid I \in C, I \text { is existential }\right\}} \text { (Axiom) }
$$

- τ is a complete assignment to universal variables
s.t. there is no $I \in C$ with $\tau(I)=1$.
- [μ] takes only the part of μ that is <1

$\forall E x p+R e s$ [J. and Marques-Silva, 2013]

$$
\frac{C \text { in matrix }}{\{[I \tau]|I \in C,| \text { is existential }\}} \text { (Axiom) }
$$

- τ is a complete assignment to universal variables
s.t. there is no $I \in C$ with $\tau(I)=1$.
- [μ] takes only the part of μ that is <1

$$
\frac{x^{\tau} \vee C_{1} \quad \neg x^{\tau} \vee C_{2}}{C_{1} \cup C_{2}} \text { (Resolution) }
$$

Example Proof in \forall Exp + Res

$\exists \mathbf{e}_{1} \forall \mathbf{u} \exists \mathbf{e}_{2}$

Example Proof in \forall Exp + Res

$\exists \mathbf{e}_{1} \forall \mathbf{u} \exists \mathbf{e}_{2}$

Example Proof in \forall Exp+Res

$\exists \mathbf{e}_{1} \forall \mathbf{u} \exists \mathbf{e}_{2}$

What is Hard for $\forall \operatorname{Exp}+$ Res

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \mathbf{u}_{4} \exists \mathbf{e}_{5}$

Our Contributions

- Definition of two instantiation-based calculi: IR-calc and IRM-calc

Our Contributions

- Definition of two instantiation-based calculi: IR-calc and IRM-calc
- IR-calc p-simulates Q-Resolution and $\forall E x p+R e s$.

Our Contributions

- Definition of two instantiation-based calculi: IR-calc and IRM-calc
- IR-calc p-simulates Q-Resolution and $\forall \operatorname{Exp}+$ Res.
- IRM-calc additionaly p-simulates Long-distance Q-Resolution.

Our Contributions

- Definition of two instantiation-based calculi: IR-calc and IRM-calc
- IR-calc p-simulates Q-Resolution and $\forall \operatorname{Exp}+$ Res.
- IRM-calc additionaly p-simulates Long-distance Q-Resolution.
- For both IR-calc and IRM-calc we show polynomial winning-strategy extraction from IR-calc and IRM-calc refutations.

IR-calc

$$
\frac{C \text { in matrix }}{\left\{x^{[\tau]} \mid x \in C, x \text { is existential }\right\}}(\text { Axiom })
$$

τ is the minimal assignment that assigns to 0 all universal literals of C

IR-calc

$$
\frac{C \text { in matrix }}{\left\{x^{[\tau]} \mid x \in C, x \text { is existential }\right\}}(\text { Axiom })
$$

τ is the minimal assignment that assigns to 0 all universal literals of C

$$
\frac{x^{\tau} \vee C_{1} \quad \neg x^{\tau} \vee C_{2}}{C_{1} \cup C_{2}} \text { (Resolution) }
$$

IR-calc

$$
\frac{C \text { in matrix }}{\left\{x^{[\tau]} \mid x \in C, x \text { is existential }\right\}} \text { (Axiom) }
$$

τ is the minimal assignment that assigns to 0 all universal literals of C

$$
\begin{gathered}
\frac{x^{\tau} \vee C_{1} \quad \neg x^{\tau} \vee C_{2}}{C_{1} \cup C_{2}} \text { (Resolution) } \\
\frac{I_{1}^{\tau_{1}} \vee \cdots \vee I_{k}^{\tau_{k}}}{I_{1}^{\left[\tau_{1} \unrhd \sigma\right]} \vee \ldots \vee I_{k}^{\left[\tau_{k} \underline{V}\right.}}(\text { Instantiation by } \sigma)
\end{gathered}
$$

$\tau_{i} \underline{\vee} \sigma$ "completes" τ_{i} with σ. E.g. $\left(\bar{u}_{1} u_{2} \underline{\vee} u_{1} u_{3}\right)=\bar{u}_{1} u_{2} u_{3}$

Example Proof in IR-calc

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \forall \mathbf{u}_{4} \exists \mathbf{e}_{5}$

$u_{1} \vee e_{2} \vee u_{3} \vee u_{4} \vee e_{5}$
$\bar{u}_{1} \bar{u}_{3} \bar{u}_{4}$
$e_{2}^{e_{1}} \vee e_{5}^{\bar{u}_{1} \bar{u}_{3} \bar{u}_{4}}$

Example Proof in IR-calc

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \forall \mathbf{u}_{4} \exists \mathbf{e}_{5}$

Example Proof in IR-calc

$\forall \mathbf{u}_{1} \exists \mathbf{e}_{2} \forall \mathbf{u}_{3} \forall \mathbf{u}_{4} \exists \mathbf{e}_{5}$

Simulation by IR-calc

- Theorem. IR-calc p-simulates Q-resolution

Simulation by IR-calc

- Theorem. IR-calc p-simulates Q-resolution
- Theorem. IR-calc p-simulates \forall Exp + Res

Simulation by IR-calc

- Theorem. IR-calc p-simulates Q-resolution
- Theorem. IR-calc p-simulates \forall Exp+Res
- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_{1}} \vee C_{1}$ and $\neg x^{\tau_{2}} \vee C_{2}$ never has contradiction in τ_{1}, τ_{2}, which lets us make the annotation equal by instantiation.

Simulation by IR-calc

- Theorem. IR-calc p-simulates Q-resolution
- Theorem. IR-calc p-simulates \forall Exp + Res
- Since Q-Res does not allow tautologous clauses, a resolution $x^{\tau_{1}} \vee C_{1}$ and $\neg x^{\tau_{2}} \vee C_{2}$ never has contradiction in τ_{1}, τ_{2}, which lets us make the annotation equal by instantiation.
- To simulate $\forall E x p+R e s$, immediately instantiate by the complete assignments used in the \forall Exp+Res proof.

IRM-calc- "Merging" calculus

- enables merging $b^{1 / u} \vee b^{0 / u}$ into $b^{* / u}$.
- However, restricts resolution, $b^{* / u}$ and $\neg b^{c / u}$ cannot be resolved.

IRM-calc- "Merging" calculus

- enables merging $b^{1 / u} \vee b^{0 / u}$ into $b^{* / u}$.
- However, restricts resolution, $b^{* / u}$ and $\neg b^{c / u}$ cannot be resolved.

$$
\frac{x^{\tau \cup \xi} \vee C_{1} \quad \neg x^{\tau \cup \sigma} \vee C_{2}}{\operatorname{inst}\left(\sigma, C_{1}\right) \cup \operatorname{inst}\left(\xi, C_{2}\right)} \text { (Resolution) }
$$

$\operatorname{dom}(\tau), \operatorname{dom}(\xi)$ and $\operatorname{dom}(\sigma)$ are mutually disjoint. $\operatorname{rng}(\tau)=\{0,1\}$

$$
\frac{C \vee b^{\mu} \vee b^{\sigma}}{C \vee b^{\xi}}(\text { Merging })
$$

$\operatorname{dom}(\mu)=\operatorname{dom}(\sigma)$
$\xi=\{c / u \mid c / u \in \mu, c / u \in \sigma\} \cup\{* / u \mid c / u \in \mu, d / u \in \sigma, c \neq d\}$

Properties of IRM-calc

- Theorem. IRM-calc p-simulates IR-calc

Properties of IRM-calc

- Theorem. IRM-calc p-simulates IR-calc
- Theorem. IRM-calc p-simulates long-distance Q-resolution

Properties of IRM-calc

- Theorem. IRM-calc p-simulates IR-calc
- Theorem. IRM-calc p-simulates long-distance Q-resolution
- Theorem. A winning strategy for \forall can be computed from a IRM-calc refutation in polynomial time.

Summary and Future Work

- Proof systems for QBF are not yet well understood.

Summary and Future Work

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.

Summary and Future Work

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall E x p+$ Res.

Summary and Future Work

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall E x p+$ Res.
- IRM-calc additionally simulates long-distance Q-resolution.

Summary and Future Work

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall E x p+$ Res.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.

Summary and Future Work

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall E x p+$ Res.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.

Summary and Future Work

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall E x p+$ Res.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates Q-res but is it more powerful?

Summary and Future Work

- Proof systems for QBF are not yet well understood.
- We have introduced novel systems based on expansion: IR-calc, IRM-calc.
- IR-calc simulates both Q-resolution and $\forall E x p+$ Res.
- IRM-calc additionally simulates long-distance Q-resolution.
- A \forall winning strategy can by extracted in polynomial time.
- Expansion can be done by considering only one polarity (instantiate by \bar{u} only) but also by partial assignments.
- IR-calc simulates Q-res but is it more powerful?
- Is IRM-calc needed?

Thank you for your attention!

Questions?

嗇 Balabanov，V．and Jiang，J．－H．R．（2012）． Unified QBF certification and its applications． Formal Methods in System Design，41（1）：45－65．

嗇 Büning，H．K．，Karpinski，M．，and Flögel，A．（1995）． Resolution for quantified Boolean formulas． Inf．Comput．，117（1）．

囯 J．，M．and Marques－Silva，J．（2013）．
On propositional QBF expansions and Q－resolution．
In SAT．

