
cmMUS: A Tool for Circumscription-Based MUS
Membership Testing

Mikoláš Janota2 and Joao Marques-Silva1,2

1 University College Dublin, Ireland
2 INESC-ID, Lisbon, Portugal

Abstract. This article presents cmMUS—a tool for deciding whether a clause
belongs to some minimal unsatisfiable subset (MUS) of a given formula. The
MUS-membership has a number of practical applications, related with under-
standing the causes of unsatisfiability. However, it is computationally challeng-
ing as it is ΣP

2 -complete. cmMUS solves the problem by translating needs to
propositional circumscription, another well-known ΣP

2 -complete problem from
the area of non-monotonic reasoning. The tool constantly outperforms other ap-
proaches to the problem, which is demonstrated on a variety of benchmarks.

1 Introduction

Unsatisfiable formulas, representing refutation-proofs or inconsistencies, appear in var-
ious areas of automated reasoning. This article presents a tool that helps us to under-
stand why a certain formula is unsatisfiable. To understand why a formula in the con-
junctive normal form (CNF), is unsatisfiable, it is sufficient to consider only some of
its subsets of clauses. More precisely, a set of clauses is called a minimally unsatis-
fiable subset (MUS) if it is unsatisfiable and any of its subsets is satisfiable. cmMUS
determines whether a given clause belongs to some MUS. This is referred to as the
MUS-MEMBERSHIP problem.

The MUS-MEMBERSHIP problem is important when one wants to restore consis-
tency of a formula: removing a clause that is not part of any MUS, will certainly not
restore consistency. Restoring consistency is an active area of research in the area of
product configuration [14,15]. For example, when configuring a product, some sets
of features result in an inconsistent configuration. Approaches for resolving conflict-
ing features often involves user intervention, e.g. to decide which features to remove.
Clearly, it is preferable to allow the user to deselect features relevant for the inconsis-
tency.

2 Background

Throughout this paper, φ and ψ denote Boolean formulas, defined on a set of vari-
ables X = {x1, . . . , xn}. Where necessary, additional variables can be considered. A
Boolean formula φ in Conjunctive Normal Form (CNF) is a conjunction of disjunctions
of literals. Each disjunction of literals is called a clause, and it is preferably represented
by ω. Where appropriate, a CNF formula is interpreted as a set of clauses.

A truth assignment µX is a mapping from a set of variables X to {0, 1}, µX : X →
{0, 1}. A truth assignment is represented by the set MX of true variables in µX , MX =
{xi ∈ X |µX(xi) = 1}. In what follows, truth assignments will be represented by the
set of true variables, since the definition of µX is implicit, given X and MX . Moreover,
MX |= φ is used to denote that truth assignment µX is a model of φ, i.e. that µX satisfies
all clauses in φ. Truth assignments will also be defined for other sets of variables, as
needed, e.g. MS , MSa , MSb

. When a formula is defined over distinct sets of variables,
e.g. X and S, MS ,MX |= φ denotes that the truth assignment to the variables in S and
the variables in X satisfies φ. Finally, a truth assignment represented by MX implicitly
denotes that MX ⊆ X . Similarly, MR implicitly denotes that MR ⊆ R. To simplify
the notation, the set containment relation will be omitted in all formulas.

A QBF formula is a Boolean formula where variables can be universally or ex-
istentially quantified. We write QBFk,∃ to denote the class of formulas of the form
∃X1∀Y1 . . . ∃Xk∀Yk. φ. An important result from the complexity theory is that the va-
lidity of a formula in QBFk,∃ is ΣP

k -complete [13].
A Disjunctive Logic Program (DLP) is a set of rules of the form a1 ∨ · · · ∨ an ←

b1, . . . , bm,∼c1, . . . ,∼ck, where aj’s, bi’s, cl’s are propositional atoms. The part a1 ∨
· · · ∨ an is called the head and is viewed as a disjunction. The part right of← is called
the body and is viewed as a conjunction. The symbol ∼ is the default negation (the
failure to prove). The empty head is denoted as ⊥. If a program comprises only rules
with k = 0, the program is called positive. The stable model semantics is assumed for
disjunctive logic programs [3,4].

Circumscription was introduced by McCarthy as a form of nonmonotonic reason-
ing [12]. While the original definition of circumscription is for first-order logic, for the
purpose of this article we consider its propositional version. For a set of variables R, a
model M of the formula φ is an R-minimal model if it is minimal with respect to the
point-wise ordering on the variables R. The circumscription inference problem is the
problem of deciding whether a formula ψ holds in allR-minimal models of a formula φ.
If a formula ψ holds in all R-minimal models of a formula φ we write φ |=circ

R ψ.
We say that a set of clauses ψ ⊆ φ is a Maximally Satisfiable Subformula (MSS) iff

ψ is unsatisfiable and any set ψ′ (ψ is satisfiable. Dually, we say that a set of clauses
ψ ⊆ φ is a Minimally Unsatisfiable Subformula (MUS) iff ψ is unsatisfiable and any set
ψ′ (ψ is satisfiable. The definition of MUSes yields the following problem.

Name: MUS-MEMBERSHIP

Given: A CNF formula φ and a clause ω.
Question: Is there an MUS ψ of φ such that ω ∈ ψ?

Name: MUS-OVERLAP

Given: CNF formulas φ and γ.
Question: Is there an MUS ψ of φ such that γ ∩ ψ 6= ∅?

Observe that MUS-MEMBERSHIP is a special case of MUS-OVERLAP if only a
single clause is considered, and, that MUS-OVERLAP can be expressed as a disjunction
of k instances of MUS-MEMBERSHIP, where k is the number of clauses in the for-
mula γ. However, cmMUS solves directly the more general problem MUS-OVERLAP.

2

It has been shown that MUS-MEMBERSHIP, and therefore MUS-OVERLAP, is ΣP
2 -

complete [10].

3 cmMUS Description

cmMUS3 solves MUS-OVERLAP by translating it to propositional circumscription. It
accepts a formula in the DIMACS format and a list of indices representing the clauses
tested for overlap. To decide MUS-OVERLAP for a formula φ and a set of clauses γ the
tool performs the following steps.

1. It introduces the relaxed form of the formula φ∗ = {ω ∨ rω | ω ∈ φ}, where rω are
fresh variables.

2. It generates the circumscription entailment problem φ∗ |=circ
R

∨
ω∈γ ¬rω .

3. It solves the entailment by a dedicated algorithm based on counterexample guided
abstraction refinement [8].

4. If the answer to the entailment problem is “valid”, then there is no overlap between
MUSes of φ and the clauses γ. If the answer to the entailment problem is “invalid”,
then there is an overlap. Further, if rω has the value 0 in a counterexample to the
entailment, the clause ω overlaps with some MUS of φ.

Apart from the “yes”/“no” answer to the given MUS-OVERLAP problem, in the case
of an overlap (“yes”), the tool outputs a formula φ′ ⊆ φ such that φ′ is unsatisfiable
and any of its MUSes overlaps with γ. Details of the translation are explained in the
pertaining technical report [9].

4 Experimental Results

The following tools where considered for the experimental evaluation in addition to
cmMUS.

look4MUS is a tool dedicated to MUS-MEMBERSHIP based on MUS enumeration,
guided by heuristics based on a measure of inconsistency [6].

Quantified Boolean Formula (QBF) The problem was expressed as a QBF [9] and
inputted to the QBF solver QuBE 7.14. The solver was chosen because it solved the
most instances in the 2QBF track of QBF Evaluation 20105. The solver was invoked
with all its preprocessing techniques [5] (using the -all switch).

MSS enum. A clause appears in some MUS if there exists an MSS that does not
contain it. The tool CAMUS [11] was used to enumerate MSSes of the given formula.
The enumeration stops if it encounters an MSS that does not contain at least one of the
clauses in γ.

Disjunctive Logic Programming The translation to disjunctive logic programming
(DLP) was performed in a sequence of steps.

1. Translate the relaxed version φ∗ into a positive disjunctive logic program by putting
positive atoms in the head and negative in the body.

3 Available at http://sat.inesc-id.pt/~mikolas/sw/cmmus
4 Available at www.star.dist.unige.it/~qube/.
5 http://www.qbflib.org/

3

http://sat.inesc-id.pt/~mikolas/sw/cmmus
www.star.dist.unige.it/~qube/
http://www.qbflib.org/

cmMUS look4MUS MSS enum. QBF DLP
Nemesis (bf) (223) 223 223 31 8 0
Daimler-Chrysler (84) 46 13 49 0 0
dining philosophers (22) 18 17 4 0 0
dimacs (87) 87 82 51 48 0
ezfact (41) 21 11 11 0 0
crafted (24) 24 14 13 12 5
total (481) 419 360 159 68 5

Table 1. Number of solved instances by the different approaches

2. Apply the tool circ2dlp [7] to produce a disjunctive logic program whose stable
models correspond to the R-minimal models of the given formula.

3. To find out whether the set of clauses ω1, ω2, ..., ωn overlaps with any MUS of φ∗,
add to this program the rule ⊥ ← ∼rω1

,∼rω2
, ...,∼rωn

which disables the stable
models where none of the clauses in question are relaxed. The resulting program
has at least one model iff there exists an MSS such that at least one of the clauses
in question is relaxed, an approach suggested in [2].

4. Run the DLP solver claspD [1] to decide whether it has at least one model are not.

A variety of unsatisfiable formulas was selected from the benchmarks used for SAT
competitions6 and from well-known applications of SAT (namely ATPG and product
configuration). The selected formulas are relatively easy for modern SAT solvers be-
cause MUS-MEMBERSHIP is significantly harder than satisfiability. Even so, instances
with tens of thousands of clauses were used (e.g. dining philosophers).

For each of these formulas the MUS-OVERLAP was computed using the various ap-
proaches. The 1st, 3rd, 5th, and 7th clauses in the formula’s representation were chosen
as the set γ for which the overlap was to be determined—this testing methodology was
also used in [6].

All experimental results were obtained on an Intel Xeon 5160 3GHz with 4GB of
memory. The experiments were obtained with a time limit of 1,000 seconds. The results
of the measurements are presented by Table 1 and Figure 1. Table 1 presents the number
of solved instances by each of the approaches for each set of benchmarks. Figure 1
presents the computation times with cactus plots—the horizontal axis represents the
number of instances that were solved within the time represented by the vertical axis.

Out of the presented approaches, the cmMUS is the most robust one: it has solved
the most instances (419) and except for one class of benchmarks it exhibits the short-
est overall running times. The set of benchmarks where cmMUS came second are the
Daimler-Chrysler. In these benchmarks the simple MSS enumeration solved 3 more
instances.

The dedicated algorithm look4MUS came second in terms of number of the solved
instances (360) and it solved a number of benchmarks in a short time (Nemesis-bf),
although slower than cmMUS. However, it turned out not to be robust (e.g. a small
number of instances were solved in suite Daimler-Chrysler and ezfact).

6 http://www.satcompetition.org/

4

http://www.satcompetition.org/

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

instances

dimacs

cmMUS
look4MUS

MSS enum.
QBF

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

C
P

U
 ti

m
e

instances

Nemesis (bf)

cmMUS
look4MUS

MSS enum.
QBF

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16 18

C
P

U
 ti

m
e

instances

dining philosophers

cmMUS
look4MUS

MSS enum.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

instances

Daimler Chrysler

cmMUS
look4MUS

MSS enum.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

C
P

U
 ti

m
e

instances

ez fact

cmMUS
look4MUS

MSS enum.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

C
P

U
 ti

m
e

instances

crafted

cmMUS
look4MUS

MSS enum.
QBF
DLP

Fig. 1. Cactus plots for the measurements (number of instances x solved in less than y seconds)

The QBF and DLP approaches turned out to be the least successful ones. In the case
of DLP this is most likely attributed to the relatively small number of variables on which
the circumscription is being minimized (the set P). This weakness has already been
highlighted by the authors of circ2dlp [7]. However, to our knowledge, the solver
claspD does not use such extensive preprocessing techniques as Qube 7.1. Hence,
this could be investigated in the future.

5 Summary

This article presents cmMUS—a tool for deciding the MUS-MEMBERSHIP problem,
i.e. it decides whether a given clause belongs to some minimally unsatisfiable set. The
tool translates the problem into entailment in propositional circumscription, on which
it invokes a dedicated algorithm based on abstraction counterexample refinement [8].

5

A variety of benchmarks shows that the tool outperforms existing approaches to the
problem.

Acknowledgement. This work is partially supported by SFI PI grant BEACON (09/
IN.1/I2618), by FCT through grant ATTEST (CMU-PT/ELE/0009/2009), and by INESC-
ID multiannual funding from the PIDDAC program funds.

References

1. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-driven disjunctive answer set solving. In: Brewka, G., Lang, J. (eds.) KR. pp. 422–
432. AAAI Press (2008)

2. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence 15, 289–323 (1995)

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New generation computing 9(3), 365–385 (1991)

4. Gelfond, M.: Handbook of Knowledge Representation, chap. Answer Sets. Elsevier (2008)
5. Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-reasoning.

In: 2nd International Workshop on Quantification in Constraint Programming (QiCP) (2008)
6. Grégoire, E., Mazure, B., Piette, C.: Does this set of clauses overlap with at least one MUS?

In: Proceedings of the 22nd International Conference on Automated Deduction. pp. 100–115.
CADE-22, Springer-Verlag, Berlin, Heidelberg (2009)

7. Janhunen, T., Oikarinen, E.: Capturing parallel circumscription with disjunctive logic pro-
grams. In: European Conf. on Logics in Artif. Intell. pp. 134–146 (2004)

8. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction refinement
algorithm for propositional circumscription. In: Proceeding of the 12th European Conference
on Logics in Artificial Intelligence (JELIA) (2010)

9. Janota, M., Marques-Silva, J.: Models and algorithms for MUS membership testing. Tech.
Rep. TR-07/2011, INESC-ID (January 2011)

10. Kullmann, O.: Constraint satisfaction problems in clausal form: Autarkies and minimal un-
satisfiability. Electronic Colloquium on Computational Complexity (ECCC) 14(055) (2007)

11. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of
constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

12. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell. 13(1-2),
27–39 (1980)

13. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squar-
ing requires exponential space. In: Switching and Automata Theory, 1972., IEEE Conference
Record of 13th Annual Symposium on (October 1972)

14. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations for inter-
active constraint satisfaction. In: van Beek, P. (ed.) CP. Lecture Notes in Computer Science,
vol. 3709, pp. 445–459. Springer (2005)

15. Papadopoulos, A., O’Sullivan, B.: Relaxations for compiled over-constrained problems. In:
Stuckey, P.J. (ed.) CP. Lecture Notes in Computer Science, vol. 5202, pp. 433–447. Springer
(2008)

6

	cmMUS: A Tool for Circumscription-Based MUS Membership Testing

