Towards Smarter MACE-style Model Finders

Mikoláš Janota1,2 Martin Suda2

1 IST/INESC-ID, University of Lisbon, Portugal
2 Czech Technical University in Prague

LPAR, 2018, Ethiopia
Does a FOL formula have a finite model?
Background and Motivation

Does a FOL formula have a finite model?

- Finite models useful:
 - “debugging” of wrong theorems
 - “debugging” of wrong programs
 - information for lemma selection learning
Does a FOL formula have a finite model?

- Finite models useful:
 - “debugging” of wrong theorems
 - “debugging” of wrong programs
 - Information for lemma selection learning

- Advantage:
 - If a finite model exists, it is found in finite time.
 - Complete for some theories (Bernays-Schönfinkel, a.k.a. EPR)
MACE-style Framework

\[k := 1 \]

\[k < \text{limit?} \]
MACE-style Framework

$k := 1$

$k < \text{limit?}$

yes

has model of size k?
MACE-style Framework

$k := 1$

$k < \text{limit}$?

yes

has model of size k?

yes

SAT
MACE-style Framework

1. $k := 1$
2. $k < \text{limit}?$
 - yes (has model of size k?)
 - yes (SAT)
 - no ($k := k + 1$)
 - no
MACE-style Framework

\[k := 1 \]

\[k < \text{limit?} \]

- **no**
 - UNSAT
- **yes**
 - has model of size \(k \)?
 - **no**
 - \(k := k + 1 \)
 - **yes**
 - SAT
Issue:
Encoding directly to SAT is exponential, eventually blows up
Avoiding Space Explosion

Issue:
Encoding directly to SAT is exponential, eventually blows up

Remedy:
Encode into SAT *lazily* by Count-Example Abstraction Guided Refinement (CEGAR)
CEGAR for Fixed Size k

$$(\exists \vec{p}) (\forall \vec{x}) \phi$$

\vec{p} predicates, \vec{f} functions, \vec{x} FOL variables

Algorithm sketch:

1. $\alpha := true$
CEGAR for Fixed Size k

\[(\exists \vec{p} \vec{f})(\forall \vec{x}) \phi \]
\[\vec{p} \text{ predicates, } \vec{f} \text{ functions, } \vec{x} \text{ FOL variables} \]

Algorithm sketch:

1. $\alpha := \text{true}$
2. Find model \mathcal{I} for α
CEGAR for Fixed Size k

$$(\exists \vec{p} \vec{f})(\forall \vec{x}) \phi$$

\vec{p} predicates, \vec{f} functions, \vec{x} FOL variables

Algorithm sketch:

1. $\alpha := true$
2. Find model I for α
3. If α UNSAT, RETURN false
(∃\vec{p} \vec{f})(\forall \vec{x}) \phi

\vec{p} \text{ predicates, } \vec{f} \text{ functions, } \vec{x} \text{ FOL variables}

Algorithm sketch:

1. \(\alpha := \text{true} \)
2. Find model \(\mathcal{I} \) for \(\alpha \)
3. If \(\alpha \) UNSAT, RETURN \text{false}
4. Find counterexample \(\mu \) to \(\mathcal{I} \) in original formula
CEGAR for Fixed Size k

$$(\exists \vec{p} \vec{f})(\forall \vec{x}) \phi$$

\vec{p} predicates, \vec{f} functions, \vec{x} FOL variables

Algorithm sketch:

1. $\alpha := true$
2. Find model \mathcal{I} for α
3. If α UNSAT, RETURN false
4. Find counterexample μ to \mathcal{I} in original formula
5. If no counterexample, RETURN true
(∃\vec{p} \vec{f})(∀\vec{x}) \phi
\vec{p} \text{ predicates, } \vec{f} \text{ functions, } \vec{x} \text{ FOL variables}

Algorithm sketch:

1. \(\alpha := \text{true} \)
2. Find model \(\mathcal{I} \) for \(\alpha \)
3. If \(\alpha \) UNSAT, \text{RETURN} \ false
4. Find counterexample \(\mu \) to \(\mathcal{I} \) in original formula
5. If no counterexample, \text{RETURN} \ true
6. Strengthen abstraction: \(\alpha := \alpha \land \phi[\mu/\vec{x}] \)
CEGAR for Fixed Size k

$\left(\exists \vec{p} \vec{f} \right) \left(\forall \vec{x} \right) \phi$

\vec{p} predicates, \vec{f} functions, \vec{x} FOL variables

Algorithm sketch:

1. $\alpha := true$
2. Find model \mathcal{I} for α
3. If α UNSAT, RETURN false
4. Find counterexample μ to \mathcal{I} in original formula
5. If no counterexample, RETURN true
6. Strengthen abstraction: $\alpha := \alpha \land \phi[\mu/\vec{x}]$
7. GOTO 2
CEGAR for Fixed Size k

$\alpha := true$

α SAT?

Is model? yes

Strengthen no

UNSAT no
CEGAR for Fixed Size k

$\alpha := true$

α SAT?

yes

complete model
CEGAR for Fixed Size k

$\alpha := \text{true}$

α SAT?

- yes

- complete model

- Is model?
CEGAR for Fixed Size k

$\alpha := true$

α SAT?

- yes: complete model

Is model?

- yes: SAT

- no: UNSAT

Strengthen α no
CEGAR for Fixed Size k

$\alpha := true$

α SAT?

- yes
 - complete model
 - Is model?
 - yes
 - SAT
 - no
 - Strengthen α

- no
 - Strengthen α
CEGAR for Fixed Size k

- $\alpha := true$
- α SAT?
 - yes: complete model
 - no:
 - UNSAT
 - Is model?
 - yes: SAT
 - no:
 - Strengthen α
 - no
We have model of ground α.

Example:

$$p(0), \neg q(0) \models p(0) \lor q(0)$$
Completing Models

We have model of ground α,

Example:

\[p(0), \neg q(0) \models p(0) \lor q(0) \]

We need to complete into interpretation of original Examples for \((\forall x)(p(x) \lor \neg q(y)) \)

\[p \triangleq \{0\}, q \triangleq \{\} \]

\[p \triangleq \{0\}, q \triangleq \{1\} \]

\[p \triangleq 2^{1..k}, q \triangleq \{\} \]
Completing Models Contd.

Natural approach: set undefined to false/true

Examples

\[\{ p(0), \neg p(1), \neg p(2) \} \ldots p \triangleq 2^{1\ldots k} \setminus \{1, 2\} \]

\[\{ p(0), \neg p(1), \neg p(2) \} \ldots p \triangleq \{p(0)\} \]
Completing Models Contd.

Natural approach: set undefined to false/true

Examples

\[\{p(0), \neg p(1), \neg p(2)\} \ldots p \triangleq 2^{1\ldots k} \setminus \{1, 2\} \]

\[\{p(0), \neg p(1), \neg p(2)\} \ldots p \triangleq \{p(0)\} \]

Issue: completion uninformed
Completing Models Contd.

Natural approach: set undefined to false/true

Examples

\[\{ p(0), \neg p(1), \neg p(2) \} \ldots p \triangleq 2^{1..k} \setminus \{1, 2\} \]

\[\{ p(0), \neg p(1), \neg p(2) \} \ldots p \triangleq \{ p(0) \} \]

Issue: completion uninformed

Remedy:
Learn the completion with Machine Learning techniques.
1. \((\forall \vec{x}) \ p(x_1, \ldots, x_n) \iff (x_1 = t)\)
\[1 \quad (\forall \vec{x}) \ p(x_1, \ldots, x_n) \leftrightarrow (x_1 = t)\]

\[2 \quad \text{Ground by } \{x_1 \mapsto 0, x_2 \mapsto 0, \ldots, x_n \mapsto 0\}: \ p(0, \ldots, 0) \leftrightarrow 0 = t\]
1. $(\forall \vec{x}) \, p(x_1, \ldots, x_n) \leftrightarrow (x_1 = t)$

2. Ground by $\{x_1 \mapsto 0, x_2 \mapsto 0, \ldots, x_n \mapsto 0\} : p(0, \ldots, 0) \leftrightarrow 0 = t$

3. Ground by $\{x_1 \mapsto 1, x_2 \mapsto 0, \ldots, x_n \mapsto 0\} : p(1, \ldots, 0) \leftrightarrow 1 = t$
1. $(\forall \vec{x})\; p(x_1,\ldots,x_n) \leftrightarrow (x_1 = t)$

2. Ground by $\{x_1 \mapsto 0, x_2 \mapsto 0, \ldots, x_n \mapsto 0\}$: $p(0,\ldots,0) \leftrightarrow 0 = t$

3. Ground by $\{x_1 \mapsto 1, x_2 \mapsto 0, \ldots, x_n \mapsto 0\}$: $p(1,\ldots,0) \leftrightarrow 1 = t$

4. $\alpha = (p(0,\ldots,0) \leftrightarrow 0 = t) \land (p(1,\ldots,0) \leftrightarrow 1 = t)$
(1) \((\forall \vec{x}) \ p(\vec{x}) \leftrightarrow (x_1 = t) \)

2. Ground by \(\{x_1 \mapsto 0, x_2 \mapsto 0, \ldots, x_n \mapsto 0\} \): \(p(0, \ldots, 0) \leftrightarrow 0 = t \)

3. Ground by \(\{x_1 \mapsto 1, x_2 \mapsto 0, \ldots, x_n \mapsto 0\} \): \(p(1, \ldots, 0) \leftrightarrow 1 = t \)

4. \(\alpha = (p(0, \ldots, 0) \leftrightarrow 0 = t) \land (p(1, \ldots, 0) \leftrightarrow 1 = t) \)

5. Model of \(\alpha \):
 - \(t \triangleq 1 \)
 - \(p(0, \ldots, 0) \triangleq \text{False} \)
 - \(p(1, \ldots, 0) \triangleq \text{True} \)
1. \((\forall \vec{x}) \; p(x_1, \ldots, x_n) \iff (x_1 = t)\)

2. Ground by \(\{x_1 \mapsto 0, x_2 \mapsto 0, \ldots, x_n \mapsto 0\}\): \(p(0, \ldots, 0) \iff 0 = t\)

3. Ground by \(\{x_1 \mapsto 1, x_2 \mapsto 0, \ldots, x_n \mapsto 0\}\): \(p(1, \ldots, 0) \iff 1 = t\)

4. \(\alpha = (p(0, \ldots, 0) \iff 0 = t) \land (p(1, \ldots, 0) \iff 1 = t)\)

5. Model of \(\alpha\):
 \(t \triangleq 1\)
 \(p(0, \ldots, 0) \triangleq \text{False}\)
 \(p(1, \ldots, 0) \triangleq \text{True}\)

6. **Learn:**
 \(t \triangleq 1\)
 \(p(x_1, \ldots, x_n) \triangleq (x_1 = 1)\)
Learning by decision trees
Learning by **decision trees**

- Function and predicates eliminated by **Ackermann reduction**
Learning by decision trees
Function and predicates eliminated by Ackermann reduction
Finite domains encoded to SAT by unary encoding
Learning by **decision trees**
- Function and predicates eliminated by **Ackermann reduction**
- Finite domains encoded to SAT by **unary encoding**
- Incremental SAT (**minisat**)
- Learning by **decision trees**
- Function and predicates eliminated by **Ackermann reduction**
- Finite domains encoded to SAT by **unary encoding**
- Incremental SAT (**minisat**)
- Support for non-prenex
Learning by **decision trees**

- Function and predicates eliminated by **Ackermann reduction**
- Finite domains encoded to SAT by **unary encoding**
- Incremental SAT (**minisat**)
- Support for non-prenex
- Symmetry breaking, e.g. \(c_1 \triangleq 0 \)
Results EPR

- cegar+learn
- vam-fm
- cvc4
- cvc4-epr
- z3
- iprover

CPU time (s) vs instances for different solvers.
Results EPR: QFM

CPU time (s)
instances
cegar+learn
cegar
expand
Results EPR: Learning Method

The graph shows the CPU time (in seconds) against the number of instances for two different methods: cegar+learn-DT-LEQ (red line) and cegar+learn-DT-EQ (blue line). The x-axis represents the number of instances, while the y-axis shows the CPU time. The data indicates a steady increase in CPU time as the number of instances grows.
Results EPR: Learning Method (SAT)

- cegar+learn-DT-LEQ
- cegar+learn-DT-EQ

CPU time (s) vs instances graph.
Results SAT NON-EPR

CPU time (s)

instances

vam-fm
cegar
iprover
cvc4
expand
cegar+learn
z3
Summary and Future

- CEGAR for lazy SAT-based model finite model finding
CEGAR for lazy SAT-based model finite model finding
Observing a formula while solving, learn from that
Summary and Future

- CEGAR for lazy SAT-based model finite model finding
- Observing a formula while solving, learn from that
- Better learning methods?
Summary and Future

- CEGAR for lazy SAT-based model finite model finding
- Observing a formula while solving, learn from that
- Better learning methods?
- Learning in the presence of theories?
CEGAR for lazy SAT-based model finite model finding
- Observing a formula while solving, learn from that
- Better learning methods?
- Learning in the presence of theories?
- Infinite domains?
http://sat2019.tecnico.ulisboa.pt