On QBF Proofs and Preprocessing

Mikoláś Janota ${ }^{1}$ Radu Grigore ${ }^{2}$ Joao Marques-Silva ${ }^{1,3}$
${ }^{1}$ INESC-ID/IST, Lisbon, Portugal
${ }^{2}$ University of Oxford, UK
${ }^{3}$ CASL/CSI, University College Dublin, Ireland
LPAR 2013, Dec 12-19

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers

Example

$$
\forall y_{1} y_{2} \exists x_{1} x_{2} \cdot\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)
$$

Quantified Boolean Formula (QBF)

- an extension of SAT with quantifiers

Example

$$
\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\bar{y}_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \bar{x}_{2}\right)
$$

- we consider prenex form with CNF matrix

$$
\forall \mathcal{U}_{1} \exists \mathcal{E}_{2} \ldots \forall \mathcal{U}_{2 N-1} \exists \mathcal{E}_{2 N \cdot} \cdot \phi
$$

- prefix: $\forall \mathcal{U}_{1} \exists \mathcal{E}_{2} \ldots \forall \mathcal{U}_{2 N-1} \exists \mathcal{E}_{2 N}$
- matrix: ϕ

Motivation for Proofs and Preprocessing

- QBF—canonical PSPACE problem

Motivation for Proofs and Preprocessing

- QBF—canonical PSPACE problem
- QBF Proofs-to certify solvers

Motivation for Proofs and Preprocessing

- QBF—canonical PSPACE problem
- QBF Proofs-to certify solvers
- QBF Proofs—useful artifacts (e.g. function synthesis)

Motivation for Proofs and Preprocessing

- QBF—canonical PSPACE problem
- QBF Proofs-to certify solvers
- QBF Proofs—useful artifacts (e.g. function synthesis)
- Preprocessing QBF—crucial for solving

Motivation for Proofs and Preprocessing

- QBF—canonical PSPACE problem
- QBF Proofs-to certify solvers
- QBF Proofs—useful artifacts (e.g. function synthesis)
- Preprocessing QBF—crucial for solving

Research Question

How to provide proofs in the context of preprocessing?

Approach

Instance

Approach

Approach

Approach

Approach

Approach

Approach

Proof Systems for QBF

DPLL-based QBF Solving

- Q-resolution (resolution $+\forall$-reduction) [Büning et al., 1995]

Proof Systems for QBF

DPLL-based QBF Solving

- Q-resolution (resolution $+\forall$-reduction) [Büning et al., 1995]
- Term-resolution (like Q-resolution but on terms generated from models of the CNF matrix) [Giunchiglia et al., 2006]

Proof Systems for QBF

DPLL-based QBF Solving

- Q-resolution (resolution $+\forall$-reduction) [Büning et al., 1995]
- Term-resolution (like Q-resolution but on terms generated from models of the CNF matrix) [Giunchiglia et al., 2006]
- Models: winning strategy for \exists / \forall player [Büning et al., 2007]

Proof Systems for QBF

DPLL-based QBF Solving

- Q-resolution (resolution $+\forall$-reduction) [Büning et al., 1995]
- Term-resolution (like Q-resolution but on terms generated from models of the CNF matrix) [Giunchiglia et al., 2006]
- Models: winning strategy for \exists / \forall player [Büning et al., 2007]
- E.g. " y wins by playing the same as x " in:
$\forall x \exists y .(\neg x \vee y) \wedge(\neg y \vee x)$

Proof Systems for QBF

DPLL-based QBF Solving

- Q-resolution (resolution $+\forall$-reduction) [Büning et al., 1995]
- Term-resolution (like Q-resolution but on terms generated from models of the CNF matrix) [Giunchiglia et al., 2006]
- Models: winning strategy for \exists / \forall player [Büning et al., 2007]
- E.g. " y wins by playing the same as x " in:

$$
\forall x \exists y .(\neg x \vee y) \wedge(\neg y \vee x)
$$

- co-NP proof check

Proof Systems for QBF

DPLL-based QBF Solving

- Q-resolution (resolution $+\forall$-reduction) [Büning et al., 1995]
- Term-resolution (like Q-resolution but on terms generated from models of the CNF matrix) [Giunchiglia et al., 2006]
- Models: winning strategy for \exists / \forall player [Büning et al., 2007]
- E.g. " y wins by playing the same as x " in:

$$
\forall x \exists y .(\neg x \vee y) \wedge(\neg y \vee x)
$$

- co-NP proof check

Expansion-based QBF Solving
$\forall E x p+$ Res-seems incomparable to Q-resolution [Janota and Marques-Silva, 2013]

Preprocessing for QBF

- mostly generalization of SAT techniques

Preprocessing for QBF

- mostly generalization of SAT techniques
- unit propagation, subsumption, selfsubsumption, equivalency replacement, pure literals

Preprocessing for QBF

- mostly generalization of SAT techniques
- unit propagation, subsumption, selfsubsumption, equivalency replacement, pure literals
- blocked clause elimination*-contains a literal that "cannot be resolved away".

Preprocessing for QBF

- mostly generalization of SAT techniques
- unit propagation, subsumption, selfsubsumption, equivalency replacement, pure literals
- blocked clause elimination*-contains a literal that "cannot be resolved away".
- variable elimination*

$$
\left(\phi_{1} \vee x\right) \wedge\left(\phi_{2} \vee \neg x\right) \wedge \xi \rightsquigarrow\left(\phi_{1} \vee \phi_{2}\right) \wedge \xi
$$

Preprocessing for QBF

- mostly generalization of SAT techniques
- unit propagation, subsumption, selfsubsumption, equivalency replacement, pure literals
- blocked clause elimination*-contains a literal that "cannot be resolved away".
- variable elimination*

$$
\left(\phi_{1} \vee x\right) \wedge\left(\phi_{2} \vee \neg x\right) \wedge \xi \rightsquigarrow\left(\phi_{1} \vee \phi_{2}\right) \wedge \xi
$$

Trouble with Proof Systems

- We prove that term-resolution (for true QBF) is inadequate.

Trouble with Proof Systems

- We prove that term-resolution (for true QBF) is inadequate.
- More specifically, blocked clause elimination and variable elimination cannot be pollynomially reconstructed. (details in paper)

Trouble with Proof Systems

- We prove that term-resolution (for true QBF) is inadequate.
- More specifically, blocked clause elimination and variable elimination cannot be pollynomially reconstructed. (details in paper)
- For true QBF we focus on Models (strategies) instead.

Trouble with Proof Systems

- We prove that term-resolution (for true QBF) is inadequate.
- More specifically, blocked clause elimination and variable elimination cannot be pollynomially reconstructed. (details in paper)
- For true QBF we focus on Models (strategies) instead.
- Q-resolution is sufficient to reconstructed considered techniques.

A Few Words about Reconstructions

- Reconstruction done "backwards". For preprocessings P_{1}, \ldots, P_{n} and respective reconstructions R_{1}, \ldots, R_{n} we do: $P_{n}\left(\ldots\left(P_{2}\left(P_{1}(\Psi)\right)\right) \ldots\right)$, where Ψ is a formula $R_{1}\left(\ldots\left(R_{n-1}\left(R_{n}(\pi)\right)\right) \ldots\right)$, where π is a proof

A Few Words about Reconstructions

- Reconstruction done "backwards". For preprocessings P_{1}, \ldots, P_{n} and respective reconstructions R_{1}, \ldots, R_{n} we do:

$$
\begin{aligned}
& P_{n}\left(\ldots\left(P_{2}\left(P_{1}(\Psi)\right)\right) \ldots\right) \text {, where } \Psi \text { is a formula } \\
& R_{1}\left(\ldots\left(R_{n-1}\left(R_{n}(\pi)\right)\right) \ldots\right) \text {, where } \pi \text { is a proof }
\end{aligned}
$$

- Preprocessing needs to be careful with quantification order, example:

A Few Words about Reconstructions

- Reconstruction done "backwards". For preprocessings P_{1}, \ldots, P_{n} and respective reconstructions R_{1}, \ldots, R_{n} we do: $P_{n}\left(\ldots\left(P_{2}\left(P_{1}(\Psi)\right)\right) \ldots\right)$, where Ψ is a formula $R_{1}\left(\ldots\left(R_{n-1}\left(R_{n}(\pi)\right)\right) \ldots\right)$, where π is a proof
- Preprocessing needs to be careful with quantification order, example:
- $\forall x \exists y \cdot(\bar{x} \vee y) \wedge(\bar{y} \vee x)$

A Few Words about Reconstructions

- Reconstruction done "backwards". For preprocessings P_{1}, \ldots, P_{n} and respective reconstructions R_{1}, \ldots, R_{n} we do: $P_{n}\left(\ldots\left(P_{2}\left(P_{1}(\Psi)\right)\right) \ldots\right)$, where Ψ is a formula $R_{1}\left(\ldots\left(R_{n-1}\left(R_{n}(\pi)\right)\right) \ldots\right)$, where π is a proof
- Preprocessing needs to be careful with quantification order, example:
- $\forall x \exists y .(\bar{x} \vee y) \wedge(\bar{y} \vee x) \ldots$ true

A Few Words about Reconstructions

- Reconstruction done "backwards". For preprocessings P_{1}, \ldots, P_{n} and respective reconstructions R_{1}, \ldots, R_{n} we do:
$P_{n}\left(\ldots\left(P_{2}\left(P_{1}(\Psi)\right)\right) \ldots\right)$, where Ψ is a formula $R_{1}\left(\ldots\left(R_{n-1}\left(R_{n}(\pi)\right)\right) \ldots\right)$, where π is a proof
- Preprocessing needs to be careful with quantification order, example:
- $\forall x \exists y .(\bar{x} \vee y) \wedge(\bar{y} \vee x) \ldots$ true
- $\exists x \forall y \cdot(\bar{x} \vee y) \wedge(\bar{y} \vee x)$

A Few Words about Reconstructions

- Reconstruction done "backwards". For preprocessings P_{1}, \ldots, P_{n} and respective reconstructions R_{1}, \ldots, R_{n} we do:
$P_{n}\left(\ldots\left(P_{2}\left(P_{1}(\Psi)\right)\right) \ldots\right)$, where Ψ is a formula $R_{1}\left(\ldots\left(R_{n-1}\left(R_{n}(\pi)\right)\right) \ldots\right)$, where π is a proof
- Preprocessing needs to be careful with quantification order, example:
- $\forall x \exists y .(\bar{x} \vee y) \wedge(\bar{y} \vee x) \ldots$ true
- $\exists x \forall y .(\bar{x} \vee y) \wedge(\bar{y} \vee x) \ldots$ false

A Few Words about Reconstructions

- Reconstruction done "backwards". For preprocessings P_{1}, \ldots, P_{n} and respective reconstructions R_{1}, \ldots, R_{n} we do:
$P_{n}\left(\ldots\left(P_{2}\left(P_{1}(\Psi)\right)\right) \ldots\right)$, where Ψ is a formula $R_{1}\left(\ldots\left(R_{n-1}\left(R_{n}(\pi)\right)\right) \ldots\right)$, where π is a proof
- Preprocessing needs to be careful with quantification order, example:
- $\forall x \exists y .(\bar{x} \vee y) \wedge(\bar{y} \vee x) \ldots$ true
- $\exists x \forall y .(\bar{x} \vee y) \wedge(\bar{y} \vee x) \ldots$ false
- In both cases, all literals are blocked in the "classical sense".

Experimental Evaluation

Conclusions and Future Work

- The paper tackles the generation of proofs for QBF in the context of preprocessing.

Conclusions and Future Work

- The paper tackles the generation of proofs for QBF in the context of preprocessing.
- Reconstruction approached by tracing-"backwards", incrementally.

Conclusions and Future Work

- The paper tackles the generation of proofs for QBF in the context of preprocessing.
- Reconstruction approached by tracing-"backwards", incrementally.
- Tracing can be done with a relatively small overhead.

Conclusions and Future Work

- The paper tackles the generation of proofs for QBF in the context of preprocessing.
- Reconstruction approached by tracing-"backwards", incrementally.
- Tracing can be done with a relatively small overhead.
- Valid QBF can be certified by term-resolution but that does not have short proofs for variable elimination and blocked clause elimination.

Conclusions and Future Work

- The paper tackles the generation of proofs for QBF in the context of preprocessing.
- Reconstruction approached by tracing-"backwards", incrementally.
- Tracing can be done with a relatively small overhead.
- Valid QBF can be certified by term-resolution but that does not have short proofs for variable elimination and blocked clause elimination.
- We certified valid QBFs with a strategies, these are useful but cannot be checked in polynomial time.

Conclusions and Future Work

- The paper tackles the generation of proofs for QBF in the context of preprocessing.
- Reconstruction approached by tracing-"backwards", incrementally.
- Tracing can be done with a relatively small overhead.
- Valid QBF can be certified by term-resolution but that does not have short proofs for variable elimination and blocked clause elimination.
- We certified valid QBFs with a strategies, these are useful but cannot be checked in polynomial time.
- For future: More preprocessing techniques.

Conclusions and Future Work

- The paper tackles the generation of proofs for QBF in the context of preprocessing.
- Reconstruction approached by tracing-"backwards", incrementally.
- Tracing can be done with a relatively small overhead.
- Valid QBF can be certified by term-resolution but that does not have short proofs for variable elimination and blocked clause elimination.
- We certified valid QBFs with a strategies, these are useful but cannot be checked in polynomial time.
- For future: More preprocessing techniques.
- How to polynomially certify preprocessing for true QBFs?

Thank you for your attention!
Questions?

園 Büning, H. K., Karpinski, M., and Flögel, A. (1995). Resolution for quantified Boolean formulas. Inf. Comput., 117(1).

R Büning, H. K., Subramani, K., and Zhao, X. (2007). Boolean functions as models for quantified boolean formulas. J. Autom. Reasoning, 39(1):49-75.

Riunchiglia, E., Narizzano, M., and Tacchella, A. (2006). Clause/term resolution and learning in the evaluation of quantified Boolean formulas.
Journal of Artificial Intelligence Research, 26(1):371-416.
囦 Janota, M. and Marques-Silva, J. (2013).
On propositional QBF expansions and Q-resolution. In Järvisalo, M. and Van Gelder, A., editors, SAT, pages 67-82. Springer.

