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CNF, Unit Propagation

conjunctive normal form (CNF) is a popular language in
solvers for its simple yet expressive structure

unit propagation is an inference mechanism implemented
virtually in all CNF-based solvers

unit propagation can be computed polynomial time and
moreover, efficient algorithms and data structures have been
developed for it (watch literals)

Example of inference

Propagation

x
x̄ ∨ y
ȳ ∨ z
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Example of inference

Propagation

x
x̄ ∨ y
ȳ ∨ z

`u z

Refutation

x̄ ∨ z
x ∨ z
z̄
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Unit Refutation Completeness

for general CNF, unit propagation is not complete, i.e. “it
does not let us infer all the facts”

Examples

ū ∨ w
u ∨ w̄
x̄ ∨ ū ∨ w̄
x̄ ∨ u ∨ w

|= x̄
0u x̄
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Languages

Definition (URC-C)

a formula α ∈ CNF belongs to URC-C iff for every clause
δ = l1 ∨ · · · ∨ lk

if α |= δ then α ∧ l1 ∧ ... ∧ lk `u ⊥

Definition (Closures)

if α1 ∨ · · · ∨ αn ∈ L then (α1 ∨ · · · ∨ αn) ∈ L[∨]

if α ∈ L then (∃X . α) ∈ L[∃]

L[∃,∨] enables both rules
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Motivation

The Quest for The Perfect Knowledge Representation
Structure

inference should be fast (tractability)

representation should not be too large (succinctness)

If a formula is unit refutation complete ...

which queries can be answered efficiently?

how does the size of formulas correspond to other
representations?
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Knowledge Compilation Map

Succinctness (≤s , ≤p)

L1 ≤s L2, if any formula in L2 can be equivalently expressed
in polynomially sized formula from L1

L1 ≤p L2, just as ≤p but we also have an polynomial
algorithm for it

Queries—can we decide in polynomial time...

consistency, clausal entailment, etc.

Transformations—can we construct in polynomial time...

Conditioning (α[x ]), disjunction (α1 ∨ · · · ∨ αn), etc.
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Trivia for URC-C

for α, α1, α2 ∈ URC-C

clausal entailment α |= γ can be decided in polynomial time
I negate γ and run unit propagation

consistency of α can be decided in polynomial time
I check that the empty clause is an implicate of α

equivalence of α1, α2 decidable in polynomial time
I check that each clause in α1 is an implicate of α2

I check that each clause in α2 is an implicate of α1

if β ∈ CNF contains all of its prime implicates then β ∈ URC-C
I if β |= γ, then there is a prime implicate γ′ ⊆ γ and

immediately β ∧ ¬γ′ `u ⊥
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Enabling Existential Variables

Motivation: Using fresh variables in CNF enables...

polynomial Boolean logic representation (Tseitin)

cardinality encodings

other constraints, e.g. XOR(x1, . . . , xn)

Definition (∃URC-C)

a formula ∃X . α ∈ CNF[∃] belongs to ∃URC-C iff for every clause
δ = l1 ∨ · · · ∨ lk

if ∃X . α |= δ then α ∧ l1 ∧ ... ∧ lk `u ⊥
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∃URC-C ∼p ∃URC-C[∨]

α = (∃X1. α1) ∨ · · · ∨ (∃Xn. αn)

[prenex] α′ = ∃X . α1 ∨ · · · ∨ αn

[Tseitin] α′′ = ∃X τ1 . . . τn. τ̄1 ∨ α1

. . .
τ̄n ∨ αn

τ1 ∨ · · · ∨ τn

α′′ is not necessarily unit refutation complete!

if α |= γ, then (∃Xi . αi ) |= γ, for i ∈ 1..n

since αi ∈ ∃URC-C, then α′′ ∧ τi ∧ ¬γ `u ⊥, for i ∈ 1..n

add new variables that “simulate” unit propagation on the
disjuncts and derive ⊥ if all derive ⊥
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Queries Results

L CO VA CE IM EQ SE CT ME MC

∃URC-C
√

◦
√

◦ ◦ ◦ ◦
√ √

URC-C[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

URC-C
√ √ √ √ √ √

◦
√ √

√
means “satisfies”

◦ means “does not satisfy unless P=NP”
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Succinctness Results

1. ∃URC-C ≤s URC-C[∨, ∃] <s URC-C <s PI

2. URC-C 6≤∗s CNF and CNF ≤s URC-C

3. ∃URC-C 6≤∗s CNF and CNF 6≤s ∃URC-C
4. URC-C 6≤s DNF, URC-C 6≤s SDNNF, and URC-C 6≤s d-DNNF,

5. DNF 6≤s URC-C, SDNNF 6≤s URC-C, and FBDD 6≤s URC-C

6. ∃URC-C ≤s DNNF

7. ∃URC-C <s DNF

8. ∃URC-C <s SDNNF

9. ∃URC-C <∗s d-DNNF

L1 6≤∗s L2 means that L1 is not at least as succinct as L2
unless PH collapses
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Transformations Results

L CD FO SFO ∧ C ∧BC ∨C ∨BC ¬C

∃URC-C
√ √ √

◦ ◦
√ √

◦
URC-C[∨,∃]

√ √ √
◦ ◦

√ √
◦

URC-C
√

• ? ◦ ◦ • ? •

√
means “satisfies”

• means “does not satisfy”

◦ means “does not satisfy unless P=NP”

Bordeaux et al Unit-Refutation Complete Formulas 12 / 13



Conclusions and Future Work

we studied the unit refutation complete language URC-C and
its existential extension ∃URC-C

the languages have number of favorable KR properties

URC-C is powerful in answering queries, e.g. clausal
entailment, equivalence

∃URC-C loses some ability to answer queries but is (strictly)
more succinct than number of interesting languages

in the future we are interested in practical algorithms for
compilation into URC-C

how can existential variables be employed (∃URC-C)
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