On Unit-Refutation Complete Formulae with Existentially Quantified Variables

Lucas Bordeaux1 \hspace{1em} Mikoláš Janota2
Joao Marques-Silva3 \hspace{1em} Pierre Marquis4

1Microsoft Research, Cambridge
2INESC-ID, Lisboa
3CASL, UCD & IST/INESC-ID
4CRIL-CNRS, U. d’Artois
CNF, Unit Propagation

- conjunctive normal form (CNF) is a popular language in solvers for its simple yet expressive structure
- unit propagation is an inference mechanism implemented virtually in all CNF-based solvers
- unit propagation can be computed polynomial time and moreover, efficient algorithms and data structures have been developed for it (watch literals)
CNF, Unit Propagation

- **conjunctive normal form (CNF)** is a popular language in solvers for its simple yet expressive structure.
- **unit propagation** is an inference mechanism implemented virtually in all CNF-based solvers.
- unit propagation can be computed **polynomial time** and moreover, efficient algorithms and data structures have been developed for it (**watch literals**)

Example of inference

Propagation

\[
\begin{align*}
\neg x \\
\neg x \lor y \\
\neg y \lor z
\end{align*}
\]
CNF, Unit Propagation

- **conjunctive normal form (CNF)** is a popular language in solvers for its simple yet expressive structure.
- **unit propagation** is an inference mechanism implemented virtually in all CNF-based solvers.
- unit propagation can be computed polynomial time and moreover, efficient algorithms and data structures have been developed for it (*watch literals*).

Example of inference

Propagation

\[\begin{array}{c}
x \\
\bar{x} \lor y \\
\bar{y} \lor z \\
\hline
\end{array}\]

\[\vdash_{\mathcal{U}} z\]
CNF, Unit Propagation

- **conjunctive normal form (CNF)** is a popular language in solvers for its simple yet expressive structure.
- **unit propagation** is an inference mechanism implemented virtually in all CNF-based solvers.
- **unit propagation** can be computed *polynomial time* and moreover, efficient algorithms and data structures have been developed for it (*watch literals*)

Example of inference

<table>
<thead>
<tr>
<th>Propagation</th>
<th>Refutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$\neg x \lor z$</td>
</tr>
<tr>
<td>$\neg x \lor y$</td>
<td>$x \lor z$</td>
</tr>
<tr>
<td>$\neg y \lor z$</td>
<td></td>
</tr>
</tbody>
</table>

$\vdash_{u} z$
CNF, Unit Propagation

- **conjunctive normal form (CNF)** is a popular language in solvers for its simple yet expressive structure.
- **unit propagation** is an inference mechanism implemented virtually in all CNF-based solvers.
- unit propagation can be computed *polynomial time* and moreover, efficient algorithms and data structures have been developed for it (*watch literals*)

Example of inference

Propagation

| x | $\overline{x} \lor y$ | $\overline{y} \lor z$ |

$\vdash_{u} z$

Refutation

| $\overline{x} \lor z$ | $x \lor z$ | \overline{z} |
CNF, Unit Propagation

- **conjunctive normal form (CNF)** is a popular language in solvers for its simple yet expressive structure.
- **unit propagation** is an inference mechanism implemented virtually in all CNF-based solvers.
- unit propagation can be computed *polynomial time* and moreover, efficient algorithms and data structures have been developed for it (*watch literals*)

Example of inference

<table>
<thead>
<tr>
<th>Propagation</th>
<th>Refutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$\overline{x} \lor z$</td>
</tr>
<tr>
<td>$\overline{x} \lor y$</td>
<td>$x \lor z$</td>
</tr>
<tr>
<td>$\overline{y} \lor z$</td>
<td>\overline{z}</td>
</tr>
</tbody>
</table>

$\vdash_u z$

$\vdash_u \bot$
Unit Refutation Completeness

- for general CNF, unit propagation is **not complete**, i.e. “it does not let us infer all the facts”

Examples

\[
\begin{align*}
\overline{u} \lor w \\
u \lor \overline{w} \\
\overline{x} \lor \overline{u} \lor \overline{w} \\
\overline{x} \lor u \lor w
\end{align*}
\]

\[
\models \overline{x} \\
\not\models_{u} \overline{x}
\]
Unit Refutation Completeness

- for general CNF, unit propagation is not complete, i.e. “it does not let us infer all the facts”

Examples

\[
\begin{align*}
\overline{u} \lor w \\
u \lor \overline{w} \\
\overline{x} \lor \overline{u} \lor \overline{w} \\
\overline{x} \lor u \lor w
\end{align*}
\]

\[
\models \overline{x}
\]

\[
\not\models \overline{u} \bot
\]

\[
\begin{align*}
\overline{u} \lor w \\
u \lor \overline{w} \\
\overline{x} \lor \overline{u} \lor \overline{w} \\
\overline{x} \lor u \lor w \\
x
\end{align*}
\]
Languages

Definition (URC–C)

A formula $\alpha \in \text{CNF}$ belongs to URC–C iff for every clause $\delta = l_1 \lor \cdots \lor l_k$

$$ \text{if } \alpha \models \delta \text{ then } \alpha \land \overline{l}_1 \land \cdots \land \overline{l}_k \vdash u \bot $$
Languages

Definition (URC–C)

A formula $\alpha \in \text{CNF}$ belongs to URC–C iff for every clause

$$\delta = l_1 \lor \cdots \lor l_k$$

$$\text{if } \alpha \models \delta \text{ then } \alpha \land \overline{l}_1 \land \cdots \land \overline{l}_k \not\models u$$

Definition (Closures)

- If $\alpha_1 \lor \cdots \lor \alpha_n \in \mathcal{L}$ then $(\alpha_1 \lor \cdots \lor \alpha_n) \in \mathcal{L}[\lor]$
Languages

Definition (URC–C)

A formula $\alpha \in \text{CNF}$ belongs to URC–C iff for every clause $\delta = l_1 \lor \cdots \lor l_k$

\[
\text{if } \alpha \models \delta \text{ then } \alpha \land \overline{l_1} \land \cdots \land \overline{l_k} \vdash \bot
\]

Definition (Closures)

- If $\alpha_1 \lor \cdots \lor \alpha_n \in \mathcal{L}$ then $(\alpha_1 \lor \cdots \lor \alpha_n) \in \mathcal{L}[\lor]$
- If $\alpha \in \mathcal{L}$ then $(\exists X. \alpha) \in \mathcal{L}[\exists]$
Languages

Definition (URC-C)
a formula $\alpha \in \text{CNF}$ belongs to URC-C iff for every clause
$\delta = l_1 \lor \cdots \lor l_k$

$$\text{if } \alpha \models \delta \text{ then } \alpha \land \bar{l}_1 \land \cdots \land \bar{l}_k \nvdash u \bot$$

Definition (Closures)

- if $\alpha_1 \lor \cdots \lor \alpha_n \in \mathcal{L}$ then $(\alpha_1 \lor \cdots \lor \alpha_n) \in \mathcal{L}[\lor]$
- if $\alpha \in \mathcal{L}$ then $(\exists X. \alpha) \in \mathcal{L}[\exists]$
- $\mathcal{L}[\exists, \lor]$ enables both rules
Motivation

The Quest for The Perfect Knowledge Representation Structure

- inference should be fast (tractability)
- representation should not be too large (succinctness)
Motivation

The Quest for The Perfect Knowledge Representation

Structure

- inference should be fast (tractability)
- representation should not be too large (succinctness)

If a formula is unit refutation complete ...

- which queries can be answered efficiently?
- how does the size of formulas correspond to other representations?
Knowledge Compilation Map

Succinctness (\leq_s, \leq_p)

- $\mathcal{L}_1 \leq_s \mathcal{L}_2$, if any formula in \mathcal{L}_2 can be equivalently expressed in polynomially sized formula from \mathcal{L}_1
Knowledge Compilation Map

Succinctness \((\leq_s, \leq_p)\)

- \(\mathcal{L}_1 \leq_s \mathcal{L}_2\), if any formula in \(\mathcal{L}_2\) can be equivalently expressed in polynomially sized formula from \(\mathcal{L}_1\)
- \(\mathcal{L}_1 \leq_p \mathcal{L}_2\), just as \(\leq_p\) but we also have a polynomial algorithm for it
Knowledge Compilation Map

Succinctness (\leq_s, \leq_p)

- $L_1 \leq_s L_2$, if any formula in L_2 can be equivalently expressed in polynomially sized formula from L_1
- $L_1 \leq_p L_2$, just as \leq_p but we also have a polynomial algorithm for it

Queries—can we decide in polynomial time...
consistency, clausal entailment, etc.
Knowledge Compilation Map

Succinctness \((\leq_s, \leq_p)\)

- \(\mathcal{L}_1 \leq_s \mathcal{L}_2\), if any formula in \(\mathcal{L}_2\) can be equivalently expressed in polynomially sized formula from \(\mathcal{L}_1\)
- \(\mathcal{L}_1 \leq_p \mathcal{L}_2\), just as \(\leq_p\) but we also have an polynomial algorithm for it

Queries—can we decide in polynomial time...
consistency, clausal entailment, etc.

Transformations—can we construct in polynomial time...
Conditioning \((\alpha[x])\), disjunction \((\alpha_1 \lor \cdots \lor \alpha_n)\), etc.
Triva for URC–C

for \(\alpha, \alpha_1, \alpha_2 \in \text{URC–C} \)

- clausal entailment \(\alpha \models \gamma \) can be decided in polynomial time
 - negate \(\gamma \) and run unit propagation
Trivia for URC–C

for $\alpha, \alpha_1, \alpha_2 \in \text{URC–C}$

- **clausal entailment** $\alpha \models \gamma$ can be decided in polynomial time
 - negate γ and run unit propagation
- **consistency** of α can be decided in polynomial time
 - check that the empty clause is an implicate of α
for $\alpha, \alpha_1, \alpha_2 \in \text{URC-C}$

- **clausal entailment** $\alpha \models \gamma$ can be decided in polynomial time
 - negate γ and run unit propagation

- **consistency** of α can be decided in polynomial time
 - check that the empty clause is an implicate of α

- **equivalence** of α_1, α_2 decidable in polynomial time
 - check that each clause in α_1 is an implicate of α_2
 - check that each clause in α_2 is an implicate of α_1
Trivia for URC–C

for $\alpha, \alpha_1, \alpha_2 \in \text{URC–C}$

- **clausal entailment** $\alpha \models \gamma$ can be decided in polynomial time
 - negate γ and run unit propagation
- **consistency** of α can be decided in polynomial time
 - check that the empty clause is an implicate of α
- **equivalence** of α_1, α_2 decidable in polynomial time
 - check that each clause in α_1 is an implicate of α_2
 - check that each clause in α_2 is an implicate of α_1
- if $\beta \in \text{CNF}$ contains all of its prime implicants then $\beta \in \text{URC–C}$
 - if $\beta \models \gamma$, then there is a prime implicate $\gamma' \subseteq \gamma$ and immediately $\beta \wedge \neg \gamma' \not\vdash_u \bot$
Enabling Existential Variables

Motivation: Using fresh variables in CNF enables...

- polynomial Boolean logic representation (Tseitin)
- cardinality encodings
- other constraints, e.g. XOR(x_1, \ldots, x_n)
Enabling Existential Variables

Motivation: Using fresh variables in CNF enables...

- polynomial Boolean logic representation (Tseitin)
- cardinality encodings
- other constraints, e.g. XOR(x_1, \ldots, x_n)

Definition (∃URC–C)

A formula $\exists X. \alpha \in \text{CNF}[\exists]$ belongs to $\exists\text{URC–C}$ iff for every clause $\delta = l_1 \lor \cdots \lor l_k$

$$\text{if } \exists X. \alpha \models \delta \text{ then } \alpha \land \bar{l}_1 \land \cdots \land \bar{l}_k \models u \perp$$
\(\exists \text{URC-C} \sim_p \exists \text{URC-C} [\lor] \)

\[\alpha = (\exists X_1. \alpha_1) \lor \cdots \lor (\exists X_n. \alpha_n) \]
∃URC-C ≈_{p} ∃URC-C[\lor]

\alpha = (\exists X_1. \alpha_1) \lor \cdots \lor (\exists X_n. \alpha_n)

[prenex] \alpha' = \exists X. \alpha_1 \lor \cdots \lor \alpha_n
$$\exists \text{URC-C} \sim_p \exists \text{URC-C}[\lor]$$

$$\alpha = (\exists X_1. \alpha_1) \lor \cdots \lor (\exists X_n. \alpha_n)$$

[prenex] $$\alpha' = \exists X. \alpha_1 \lor \cdots \lor \alpha_n$$

[Tseitin] $$\alpha'' = \exists X \tau_1 \cdots \tau_n. \bar{\tau}_1 \lor \alpha_1$$
$$\cdots$$
$$\bar{\tau}_n \lor \alpha_n$$
$$\tau_1 \lor \cdots \lor \tau_n$$

α'' is not necessarily unit refutation complete!
\[\exists \text{URC-C} \sim_\rho \exists \text{URC-C}[\lor] \]

\[\alpha = (\exists X_1. \alpha_1) \lor \cdots \lor (\exists X_n. \alpha_n) \]

[prenex] \[\alpha' = \exists X. \alpha_1 \lor \cdots \lor \alpha_n \]

[Tseitin] \[\alpha'' = \exists X \tau_1 \ldots \tau_n. \bar{\tau}_1 \lor \alpha_1 \]

\[\cdots \]

\[\bar{\tau}_n \lor \alpha_n \]

\[\tau_1 \lor \cdots \lor \tau_n \]

\[\alpha'' \text{ is not necessarily unit refutation complete!} \]
\[\exists \text{URC-C} \sim_p \exists \text{URC-C}[\lor] \]

\[\alpha = (\exists X_1. \alpha_1) \lor \cdots \lor (\exists X_n. \alpha_n) \]

[prenex] \[\alpha' = \exists X. \alpha_1 \lor \cdots \lor \alpha_n \]

[Tseitin] \[\alpha'' = \exists X \tau_1 \ldots \tau_n. \bar{\tau}_1 \lor \alpha_1 \]

\[\ldots \]

\[\bar{\tau}_n \lor \alpha_n \]

\[\tau_1 \lor \cdots \lor \tau_n \]

- \(\alpha'' \) is not necessarily unit refutation complete!

- If \(\alpha \models \gamma \), then \((\exists X_i. \alpha_i) \models \gamma \), for \(i \in 1..n \)
∃URC-C \sim_p ∃URC-C[\lor]

\alpha = (\exists X_1. \alpha_1) \lor \cdots \lor (\exists X_n. \alpha_n)

[prenex] \alpha' = \exists X. \alpha_1 \lor \cdots \lor \alpha_n

[Tseitin] \alpha'' = \exists X \tau_1 \cdots \tau_n. \bar{\tau}_1 \lor \alpha_1

\cdots

\bar{\tau}_n \lor \alpha_n

\tau_1 \lor \cdots \lor \tau_n

\begin{itemize}
 \item \alpha'' \text{ is not necessarily unit refutation complete!}
 \item if \alpha \models \gamma, then (\exists X_i. \alpha_i) \models \gamma, for i \in 1..n
 \item since \alpha_i \in \exists\text{URC-C}, then \alpha'' \land \tau_i \land \neg \gamma \vdash_u \bot, for i \in 1..n
\end{itemize}
\[\exists_{\text{URC-C}} \sim_p \exists_{\text{URC-C}}[\forall] \]

\[\alpha = (\exists X_1. \alpha_1) \lor \cdots \lor (\exists X_n. \alpha_n) \]

[prenex] \[\alpha' = \exists X. \alpha_1 \lor \cdots \lor \alpha_n \]

[Tseitin] \[\alpha'' = \exists X \tau_1 \ldots \tau_n. \bar{\tau}_1 \lor \alpha_1 \]
\[\ldots \]
\[\bar{\tau}_n \lor \alpha_n \]
\[\tau_1 \lor \cdots \lor \tau_n \]

- \(\alpha'' \) is not necessarily unit refutation complete!

- if \(\alpha \models \gamma \), then \((\exists X_i. \alpha_i) \models \gamma \), for \(i \in 1..n \)
- since \(\alpha_i \in \exists_{\text{URC-C}} \), then \(\alpha'' \land \tau_i \land \neg \gamma \vdash_u \bot \), for \(i \in 1..n \)
- add new variables that “simulate” unit propagation on the disjuncts and derive \(\bot \) if all derive \(\bot \)
Queries Results

<table>
<thead>
<tr>
<th>\mathcal{L}</th>
<th>CO</th>
<th>VA</th>
<th>CE</th>
<th>IM</th>
<th>EQ</th>
<th>SE</th>
<th>CT</th>
<th>ME</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>\existsURC-C</td>
<td>$\sqrt{}$</td>
<td>⬜</td>
<td>$\sqrt{}$</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>$\sqrt{}$</td>
</tr>
<tr>
<td>URC-C[\lor, \exists]</td>
<td>$\sqrt{}$</td>
<td>⬜</td>
<td>$\sqrt{}$</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>$\sqrt{}$</td>
</tr>
<tr>
<td>URC-C</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>⬜</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
</tr>
</tbody>
</table>

$\sqrt{}$ means “satisfies”

○ means “does not satisfy unless P=NP”
Succinctness Results

1. \(\exists \) URC-C \(\leq_s \) URC-C[\(\lor, \exists \)] <\(s \) URC-C <\(s \) PI
2. URC-C \(\not\leq^* \) CNF and CNF \(\leq_s \) URC-C
3. \(\exists \) URC-C \(\not\leq^* \) CNF and CNF \(\not\leq_s \) \(\exists \) URC-C
4. URC-C \(\not\leq_s \) DNF, URC-C \(\not\leq_s \) SDNNF, and URC-C \(\not\leq_s \) d-DNNF,
5. DNF \(\not\leq_s \) URC-C, SDNNF \(\not\leq_s \) URC-C, and FBDD \(\not\leq_s \) URC-C
6. \(\exists \) URC-C \(\leq_s \) DNNF
7. \(\exists \) URC-C <\(s \) DNF
8. \(\exists \) URC-C <\(s \) SDNNF
9. \(\exists \) URC-C <\(^* \) d-DNNF

- \(\mathcal{L}_1 \not\leq^* \mathcal{L}_2 \) means that \(\mathcal{L}_1 \) is not at least as succinct as \(\mathcal{L}_2 \) unless PH collapses
Transformations Results

<table>
<thead>
<tr>
<th>\mathcal{L}</th>
<th>CD</th>
<th>FO</th>
<th>SFO</th>
<th>$\land C$</th>
<th>$\land BC$</th>
<th>$\lor C$</th>
<th>$\lor BC$</th>
<th>$\neg C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists URC-C$</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>○</td>
<td>○</td>
<td>√</td>
<td>√</td>
<td>○</td>
</tr>
<tr>
<td>$URC-C[\lor, \exists]$</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>○</td>
<td>○</td>
<td>√</td>
<td>√</td>
<td>○</td>
</tr>
<tr>
<td>$URC-C$</td>
<td>√</td>
<td>•</td>
<td>?</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>?</td>
<td>●</td>
</tr>
</tbody>
</table>

- √ means “satisfies”
- ● means “does not satisfy”
- ○ means “does not satisfy unless $P=NP$”
Conclusions and Future Work

- we studied the unit refutation complete language URC-C and its existential extension $\exists \text{URC-C}$.
Conclusions and Future Work

- we studied the **unit refutation complete** language $\text{URC} - \text{C}$ and its existential extension $\exists \text{URC} - \text{C}$
- the languages have number of favorable KR properties
Conclusions and Future Work

- we studied the unit refutation complete language $\mathsf{URC-C}$ and its existential extension $\exists \mathsf{URC-C}$
- the languages have number of favorable KR properties
- $\mathsf{URC-C}$ is powerful in answering queries, e.g. clausal entailment, equivalence
Conclusions and Future Work

- we studied the unit refutation complete language URC-C and its existential extension $\exists\text{URC-C}$
- the languages have number of favorable KR properties
- URC-C is powerful in answering queries, e.g. clausal entailment, equivalence
- $\exists\text{URC-C}$ loses some ability to answer queries but is (strictly) more succinct than number of interesting languages
Conclusions and Future Work

- we studied the unit refutation complete language URC-C and its existential extension $\exists\text{URC-C}$
- the languages have number of favorable KR properties
- URC-C is powerful in answering queries, e.g. clausal entailment, equivalence
- $\exists\text{URC-C}$ loses some ability to answer queries but is (strictly) more succinct than number of interesting languages
- in the future we are interested in practical algorithms for compilation into URC-C
Conclusions and Future Work

- we studied the *unit refutation complete* language \(\text{URC-C}\) and its existential extension \(\exists\text{URC-C}\)
- the languages have number of favorable KR properties
- \(\text{URC-C}\) is powerful in answering queries, e.g. clausal entailment, equivalence
- \(\exists\text{URC-C}\) loses some ability to answer queries but is (strictly) more succinct than number of interesting languages
- in the future we are interested in practical algorithms for compilation into \(\text{URC-C}\)
- how can existential variables be employed (\(\exists\text{URC-C}\))