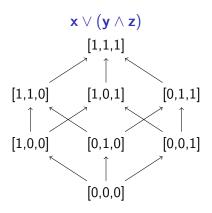
Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription

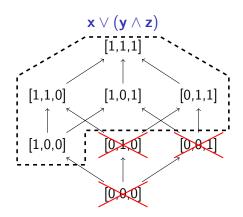
Mikoláš Janota¹ Radu Grigore² Joao Marques-Silva³

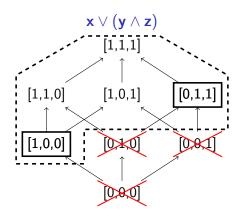
¹INESC-ID, Lisbon, Portugal

²Queen Mary, University of London

³University College Dublin, Ireland







- let τ and ψ be propositional formulas
- the problem of entailment in circumscription is to decide whether ψ holds in all minimal models of τ

$$\tau \models_{\min} \psi$$

- let τ and ψ be propositional formulas
- the problem of entailment in circumscription is to decide whether ψ holds in all minimal models of τ

$$\tau \models_{\min} \psi$$

• Generalized Closed World Assumption (GCWA) means computing variables that are 0 in all minimal models

$$\{x \mid \tau \models_{\min} \neg x\}$$

- let τ and ψ be propositional formulas
- the problem of entailment in circumscription is to decide whether ψ holds in all minimal models of τ

$$\tau \models_{\min} \psi$$

• Generalized Closed World Assumption (GCWA) means computing variables that are 0 in all minimal models

$$\{x \mid \tau \models_{\min} \neg x\}$$

• $x \lor y \models_{\min} \neg (x \land y)$

- let τ and ψ be propositional formulas
- the problem of entailment in circumscription is to decide whether ψ holds in all minimal models of τ

$$\tau \models_{\min} \psi$$

• Generalized Closed World Assumption (GCWA) means computing variables that are 0 in all minimal models

$$\{x \mid \tau \models_{\min} \neg x\}$$

•
$$x \lor y \models_{\min} \neg (x \land y)$$

• for
$$\tau = (x \lor y) \land (z \Rightarrow w)$$

$$\mathsf{GCWA}(\tau) = \{z, w\}$$

Janota et al. (INESC-ID Lisboa)

Complexity

• How hard is to decide $\tau \models_{\min} \psi$?

Complexity

- How hard is to decide $\tau \models_{\min} \psi$?
- It is in the second level of polynomial hierarchy Π_2^P

Motivation

- It is complete for Π^P₂, so other problems can be converted to it.
- Circumscription is an important form of non-monotonic reasoning.
- Recently GCWA has been applied in interactive configuration.

Plan of Attack

 $\tau \models_{\min} \psi$

• We are going to use a SAT solver — a tool that decides whether a formula is satisfiable or not.

Plan of Attack

 $\tau \models_{\min} \psi$

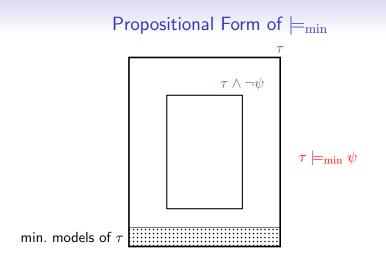
- We are going to use a SAT solver a tool that decides whether a formula is satisfiable or not.
- We are going to construct a propositional formula expressing $\tau \models_{\min} \psi$.

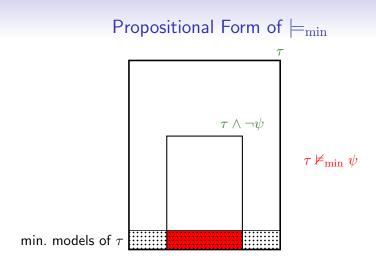
Plan of Attack

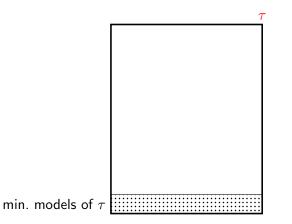
 $\tau \models_{\min} \psi$

- We are going to use a SAT solver a tool that decides whether a formula is satisfiable or not.
- We are going to construct a propositional formula expressing $\tau \models_{\min} \psi$.
- We are going to use abstraction to mitigate the size of the formula.



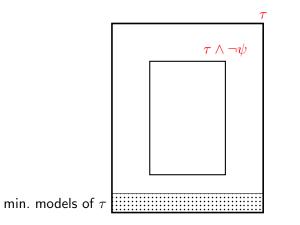




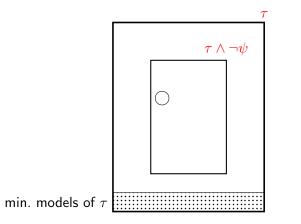


Janota et al. (INESC-ID Lisboa)

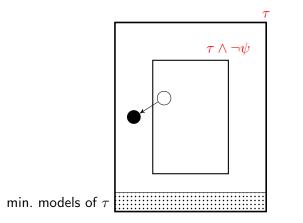
Circumscription and Abstraction

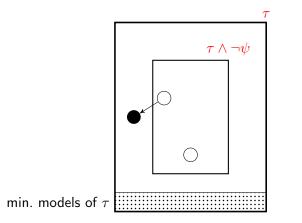


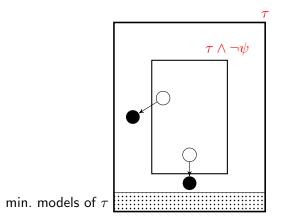
Janota et al. (INESC-ID Lisboa)

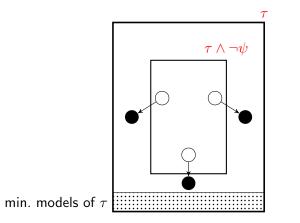


Janota et al. (INESC-ID Lisboa)



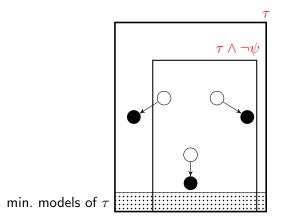






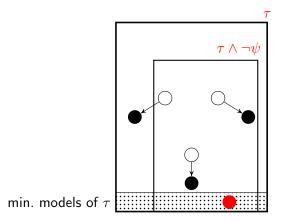
Janota et al. (INESC-ID Lisboa)

Circumscription and Abstraction

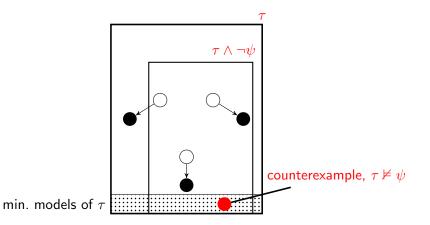


Janota et al. (INESC-ID Lisboa)

Circumscription and Abstraction



Janota et al. (INESC-ID Lisboa)



Janota et al. (INESC-ID Lisboa)

Circumscription and Abstraction

• To prove $\tau \models_{\min} \psi$

- To prove $\tau \models_{\min} \psi$
- we show that for any model ν of $\tau \land \neg \psi$

- To prove $\tau \models_{\min} \psi$
- we show that for any model ν of $\tau \land \neg \psi$
- there exists a model ν' of ψ s.t. $\nu' < \nu$

- To prove $\tau \models_{\min} \psi$
- we show that for any model ν of $\tau \land \neg \psi$
- there exists a model ν' of ψ s.t. $\nu' < \nu$

• For
$$\nu \models \tau \land \neg \psi$$

- To prove $\tau \models_{\min} \psi$
- we show that for any model $\pmb{\nu}$ of $\tau \wedge \neg \psi$
- there exists a model ν' of ψ s.t. $\nu' < \nu$
- For $\nu \models \tau \land \neg \psi$
- there exists a set of variables S s.t. $\nu \models \tau[S \rightarrow 0]$

- To prove $\tau \models_{\min} \psi$
- we show that for any model ${m
 u}$ of $au \wedge
 eg \psi$
- there exists a model ν' of ψ s.t. $\nu' < \nu$
- For $\nu \models \tau \land \neg \psi$
- there exists a set of variables S s.t. $u \models \tau[S \rightarrow 0]$

$$\tau = (x \lor y)$$

$$\psi = \neg (x \land y)$$

- To prove $\tau \models_{\min} \psi$
- we show that for any model ${m
 u}$ of $au \wedge
 eg \psi$
- there exists a model ν' of ψ s.t. $\nu' < \nu$
- For $\nu \models \tau \land \neg \psi$
- there exists a set of variables S s.t. $u \models \tau[S \rightarrow 0]$

$$\begin{aligned} \tau &= (x \lor y) \\ \psi &= \neg (x \land y) \end{aligned}$$
$$\{x = 1, y = 1\} \models (x \lor y) \land (x \land y) \end{aligned}$$

- To prove $\tau \models_{\min} \psi$
- we show that for any model ${m
 u}$ of $au \wedge
 eg \psi$
- there exists a model ν' of ψ s.t. $\nu' < \nu$
- For $\nu \models \tau \land \neg \psi$
- there exists a set of variables S s.t. $u \models \tau[S \rightarrow 0]$

$$\tau = (x \lor y)$$

$$\psi = \neg (x \land y)$$

$$\{x = 1, y = 1\} \models (x \lor y) \land (x \land y)$$

$$\{x = 1, y = 1\} \models (0 \lor y)$$

 $\tau \models_{\min} \psi$

 $\tau \models_{\min} \psi$

iff

$$(\forall \nu). \ (\nu \models \tau \land \neg \psi) \Rightarrow (\exists S \in \wp(V)). \ \nu \models \tau[S \to 0]$$

 $\tau \models_{\min} \psi$

iff

 $(\forall \nu). \ (\nu \models \tau \land \neg \psi) \Rightarrow (\exists S \in \wp(V)). \ \nu \models \tau[S \to 0] \land \exists_{x \in S}. \ \nu(x) = 1$

 $\tau \models_{\min} \psi$

iff

$$(\forall \nu) . \ (\nu \models \tau \land \neg \psi) \Rightarrow (\exists S \in \wp(V)) . \nu \models \tau[S \to 0] \land \exists_{x \in S} . \nu(x) = 1$$
iff

TAUT:
$$\tau \land \neg \psi \Rightarrow \bigvee_{S \in \wp(V)} \left(\tau[S \to 0] \land \bigvee_{x \in S} x \right)$$

 $\tau \models_{\min} \psi$

iff

$$(\forall \nu) . \ (\nu \models \tau \land \neg \psi) \Rightarrow (\exists S \in \wp(V)) . \nu \models \tau[S \to 0] \land \exists_{x \in S} . \nu(x) = 1$$

iff

TAUT:
$$\tau \land \neg \psi \Rightarrow \bigvee_{S \in \wp(V)} \left(\tau[S \to 0] \land \bigvee_{x \in S} x \right)$$

iff

UNSAT:
$$\tau \land \neg \psi \land \bigwedge_{S \in \wp(V)} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right)$$

Abstraction

Abstract

$$\tau \land \neg \psi \land \bigwedge_{S \in \wp(V)} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right)$$

Abstraction

Abstract

$$\tau \land \neg \psi \land \bigwedge_{S \in \wp(V)} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right)$$

as

$$\tau \land \neg \psi \land \bigwedge_{S \in W} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right)$$

for some $W \in \wp(\wp(V))$

Abstraction

Abstract

$$\tau \land \neg \psi \land \bigwedge_{S \in \wp(V)} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right)$$

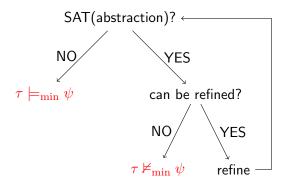
as

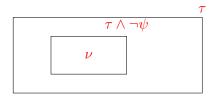
$$\tau \land \neg \psi \land \bigwedge_{S \in W} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right)$$

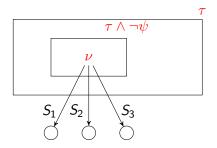
for some $W \in \wp(\wp(V))$

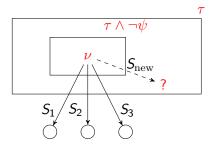
The abstraction is weaker. If the abstraction is shown UNSAT, the original formula is UNSAT.

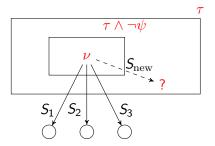
Abstraction-Refinement Loop







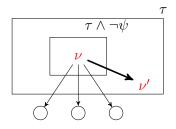


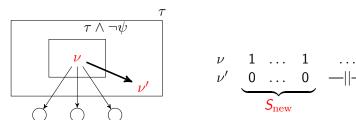


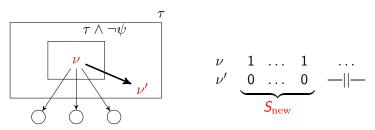
$$\mathsf{SAT}\left(\tau \land \bigwedge_{\nu(x)=0} \neg x \land \bigvee_{\nu(x)=1} \neg x\right)$$

Janota et al. (INESC-ID Lisboa)

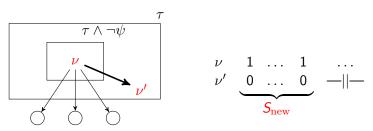
Circumscription and Abstraction







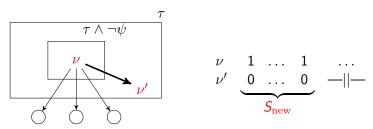
 $W' = W \cup \{S_{new}\}$



$$W' = W \cup \{S_{\text{new}}\}$$

$$\tau \land \neg \psi \land \bigwedge_{S \in W} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right)$$

Janota et al. (INESC-ID Lisboa)



$$W' = W \cup \{S_{\text{new}}\}$$

$$\begin{aligned} \tau \wedge \neg \psi & \wedge \quad \bigwedge_{S \in W} \left(\neg \tau[S \to 0] \lor \bigwedge_{x \in S} \neg x \right) \\ \wedge \quad \neg \tau[S_{\text{new}} \to 0] \lor \bigwedge_{x \in S_{\text{new}}} \neg x \end{aligned}$$

Algorithm

```
\omega \leftarrow \tau \land \neg \psi
while true do
      (\mathsf{outc}_1, \nu) \leftarrow \mathsf{SAT}(\omega)
     if outc_1 = false then
          return true // no counterexample was found
      end
       // refine test
      (\mathsf{outc}_2,\nu') \leftarrow \mathsf{SAT}\left(\tau \land \bigwedge_{\nu(x)=0} \neg x \land \bigvee_{\nu(x)=1} \neg x\right)
      if outc_2 = false then
                                                                            // \nu is minimal
           return false // abstraction cannot be refined
      end
       // refine
     S \leftarrow \{x \in V \mid \nu(x) = 1 \land \nu'(x) = 0\}\omega \leftarrow \omega \land (\neg \tau[S \mapsto 0] \lor \bigwedge_{x \in S} \neg x)
end
```

Experimental evaluation

		Our Approach		circ2dlp+gnt	
	tests	solved	time[<i>s</i>]	solved	time[<i>s</i>]
e-shop	174	174	2.1	95	2.4
BerkeleyDB	30	30	0.9	30	< 0.1
model-transf	41	41	1.1	35	2.8
SAT2009	15	3	7.6	2	2.5
TOTAL		248		162	

• We also tried a QBF solver but that has solved **none** of the 260 instances within the time limit.

Summary

- we tackled the problem of entailment in propositional circumscription using a SAT solver
- in order to do so, they express the problem as a propositional formula
- such formula is exponential a large
- we construct an abstraction of the formula, which enables us to decide the problem without constructing exponentially large one
- we are able to decide instances for which it was previously not possible