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Abstract.
true in every model. Backbones have been used for charzoggri
the hardness of decision and optimization problems. Maedack-
bones find other applications. For example, backbones te iofen-
tified during product configuration. Backbones can also owprthe
efficiency of solving computational problems related witlogmosi-
tional theories. These include model enumeration, minimadlel
computation and prime implicant computation. This pap&esti-
gates algorithms for computing backbones of proposititimedries,
emphasizing the integration of these algorithms with modeAT
solvers. Experimental results, obtained on represertptivblem in-
stances, indicate that the proposed algorithms are efédctpractice
and can be used for computing the backbones of large propait
theories. In addition, the experimental results indich& proposi-
tional theories can have large backbones, often represeasignif-
icant percentage of the total number of variables.

1 Introduction

Backbones of a propositional formulaare literals that take value
true in all models ofy [22, 4, 15]. Interest in backbones was orig-
inally motivated by the study of phase transitions in Bonl&atis-
fiability (SAT) problems, where the backbone size was relatéh
search complexity. In addition, backbones have also begtiest in
random 3-SAT [9] and in optimization problems [8, 27, 16,,26}
cluding Maximum Satisfiability (MaxSAT) [29, 21]. Finalljack-
bones have been the subject of recent interest, in the amafjmack-
doors [11] and in probabilistic message-passing algostfig].

Besides the theoretical work, backbones have been stuofiesh (
with other names) in practical applications of SAT. One ceteex-
ample is SAT-based product configuration [1], where thetiflea-
tion of variables with necessary values has been studidtirecent
past [18, 14, 13]. In configuration, the identification of theckbone
prevents the user from choosing values that cannot be edetud
a model (or configuration). Besides uses in practical apfios,
backbones provide relevant information that can be usedwalde
dressing other decision, enumeration and optimizatioblpros re-
lated with propositional theories. Concrete examplesuihelmodel
enumeration, minimal model computation and prime implicam-
putation, among others.

This paper has three main contributions. First, it devekmeral
algorithms for computing backbones. Some algorithms asedban
earlier work [14, 13, 11], whereas others are novel. Morecseyv-
eral new techniques are proposed for improving overallqperance
of backbone computation. Second, the paper evaluates dpeged
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Backbones of propositional theories are literals that arealgorithms in computing the backbone of large practical $#db-

lem instances, many of which taken from recent SAT compeisti

Third, and somewhat surprisingly, the results show thajelgrac-
tical problem instances can contain large backbones, iryroases
close to 90% of the variables. In addition, the experimergaults
show that, by careful implementation of some of the propcsed
gorithms, it is feasible to compute the backbone of largeler

instances.

The paper is organized as follows. Section 2 introduces ¢it@-n
tion and definitions used throughout the paper. Section 8ldps
two main algorithms for backbone computation, one basedaufemn
enumeration and the other based on iterative SAT testirgp,Ahis
section details techniques that are relevant for improtiegperfor-
mance of backbone computation algorithms, and suggesmshait
tive algorithms. Moreover, a number of algorithm configimas are
outlined, which are then empirically evaluated. Sectiomdlyzes
experimental results on large practical instances of S&ert from
recent SAT competitiofs Finally, Section 5 concludes the paper.

2 Preliminaries

A propositional theory (or formulap is defined on a set of variables
X. pisrepresented in conjunctive normal form (CNF), as a canjun
tion of disjunctions of literalsy will also be viewed as a set of sets
of literals, where each set of literals denotes a clausand a literal
is either a variable: or its complement. The following definitions
are assumed [20]. An assignmeris a mapping fronX to {0, u, 1},
v:X — {0,u,1}. vis acompleteassignment ii(x) € {0, 1} for
all z € X; otherwisev is apartial assignmentu is used for vari-
ables for which the value is lefinspecifiegwith 0 < « < 1. Given a
literall, v(1) = v(z)if |l = z,andv(l) = 1—v(x) if | = Z.vis also
used to define(w) = max;e,, v(l) andr(y) = minge, v(w). A
satisfying assignmeii an assignment for whichv(p) = 1. Given
o, SAT(p) = 1 if there exists an assignmentwith v(¢) = 1. Sim-
ilarly, SAT(yp) = 0 if for all complete assignments, v(¢) = 0. In
what follows,true variablesrepresent variables assigned value 1 un-
der a given assignment, wherdatse variablesepresent variables
assigned value 0.

2.1 Models and Implicants

In many settings, anodelof a propositional theory is interpreted as
a satisfying assignment. However, in the remainder of thjzep it

is convenient to represent a model as a set of variableslefined

as follows. Given a satisfying assignmentfor eachz € X, add
xzto M if v(z) = 1. Hence, models are represented solely with the
true variables in a satisfying assignment (see for example [, 19
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An implicant I is defined as a set of literals. Given a satisfying as-Proposition 2 (Backbones and Prime Implicants)z € X is a

signmentv, for eache € X, (i) if v(z) = 1, then includer in I; (ii)

if v(z) = 0, then includez in I. This in turn leads to the following

definitions.

Definition 1 (Minimal Model) A modelM; of ¢ is minimalif there
is no other modeM> of ¢ such thatM> C M;.

Minimal models find many applications in artificial inteligce, in-
cluding knowledge representation and non-monotonic réagdz2,
6, 17].

Definition 2 (Prime Implicant) An implicant I; of ¢ is prime if
there is no other implicani; of ¢ such thatlo C I;.

Prime implicants also find many applications in computegrsce, in-
cluding knowledge compilation in artificial intelligencacBoolean
function minimization in switching theory [24, 6, 17]. Bdsk a wide
range of practical applications, prime implicants and miali mod-
els have also been studied in computational complexityrth8de
identification of a minimum-size minimal model isiX} [log n] [19].

Minimal models can be computed with algorithms for minimum-

cost satisfiability (also referred to as the Binate CoverRrgb-
lem (BCP)) [5, 19, 10]). Prime implicants can be obtainedficom-

puted satisfying assignments. Suppose a satisfying assignment,

which can either be complete or partial. For each ¢, let 7 (w, v)
denote the true literals of, and let7 (¢, v) = Uue, T (w, v). More-
over, define the following minimum cost satisfiability prebi:

min Z l
IET (p,v) @)
st Awee VieTwm 1)

The solution to the above set covering problem represeatsrttall-
est number of true literals (among the true literals spetifig )

that satisfy the propositional theory. Hence, this solutiepresents

a prime implicant ofp.

Proposition 1 Given a satisfying assignmentof a propositional
theory, the solution of (1) is a prime implicant of.

This result summarizes the main arguments of [25]. Moreavés
well-known that the computation of prime implicants can hmdeled
with minimum-cost satisfiability [23].

2.2 Backbones

The most widely used definition of backbone is given in [28p(§3]
for an alternative definition):

Definition 3 (Backbone) Let p be a propositional theory, defined

on a set of variables{. A variablex € X is abackbone variablef
 if for every model of ¢, v(z) = v, withv € {0,1}. Letl, = z if
v =0andl, = z if v = 1. Thenl, is abackbone literal

In addition, the computation of the backbone literalsoa$ referred

to as thebackbone problenin the remainder of the paper, backbone

variables and backbone literals will be used interchangeahd the
meaning will be clear from the context. Although the focudto$
paper are satisfiable instances of SAT, there are differgiimitions
of backbone for the unsatisfiable case [22, 15]. For the #lgos
described in this paper, the backbone for unsatisfiablarnicss is
defined to be the empty set.

Furthermore, backbones can be related with the prime isupisc
of a propositional theory.

backbone variable of a propositional theogyif and only if either
2 or Z (but not both) occur in alprime implicantof .

Following the definition of backbone, a possible solutiondom-
puting the backbone of a propositional theory consiststersecting
all of its models. The final result represents the backbonepdsi-
tions 1 and 2 can be used for developing procedures for gpthia
backbone problem, including: (i) intersection of the primglicants
based on enumeration of satisfying assignments; and t@)saction
of the prime implicants based on enumeration of the mininzdets
of a modified propositional theory [23].

Moreover, additional alternative approaches can be deviGiy
et al. [16] indicate that the backbone problem is NP-eqaivialand
that deciding whether a variable is a backbone of a projpositithe-
ory is NP-easy, because this can be decided with a SAT tesrig|
this suggests computing the backbone of a propositionalyheith
a sequence of SAT tests that grows wjiff|. Hence, the backbone
problem can be solved by a polynomial number of calls to a SAT
solver, and so the backbone problem ishf. The basic result can
be stated as follows:

Proposition 3 Let ¢ be a propositional theory, defined on a set of
variablesX, and consider the modified theorieg = ¢ U {z} and
o~ = ¢ U {z}. Then one of the following holds:

1. If op andpn are both unsatisfiable, thepis also unsatisfiable.
2. If pp is satisfiable andpx is unsatisfiable, them: € X is a

backbone such that is satisfiable if and only i = 1 holds.

3. If pn is satisfiable andpp is unsatisfiable, then: € X is a

backbone such that is satisfiable if and only i: = 0 holds.

4. If bothpx andpp are satisfiable, them € X is not a backbone.

Proposition 3 can be used to develop algorithms that comjhete
backbone of a propositional theory with a number of SAT tdsis
grows with|X|, as suggested for example in [14, 13, 11]. The dif-
ferent approaches outlined in this section for solving thekbone
problem are described in more detail in the next section.

3 Computing Backbones

This section develops algorithms for backbone computatidre
first algorithm follows the definition of backbone literalekice, it
enumerates and intersects the satisfying assignments gdrtpo-
sitional theory. As will be shown in Section 4, this algonitidoes
not scale for large propositional theories. The secondribgo con-
sists of iteratively performing satisfiability tests, camesing one or
two truth values for each variable. This algorithm followeslesr
work [14, 13, 11], and is amenable to a number of optimization
This section also outlines a number of different algorittonfigura-
tions, which will be evaluated in Section 4.

3.1 Model Enumeration

An algorithm for computing the backbone of a propositiotedry
based on model enumeration is shown in Algorithm 1. The algo-
rithm consists in enumerating the satisfying assignmeinaspoopo-
sitional theory. For each satisfying assignment, the bai&besti-
mate is updated. In addition,docking clausde.g. [25]) is added

to the propositional theory. A blocking clause represehésdom-
plement of the computed satisfying assignment, and prsviat
same satisfying assignment from being computed again. deror



Input : CNF formulap
Output: Backbone ofp, vr

1 VR < (Z)

2 repeat

3 (outc, v) < SAT(p) /'l SAT sol ver call
4 if outc = false then

5 L retun vg // Termnate if unsatisfiable
6 if vr = () then

7 | vrv /1 1nitial backbone estinate
8 else

9 | vr<wvrNv /1 Update backbone estimate
10 wp « Bl ockC ause(v) /1 Bl ock nodel
11 Y <— peUwp

12 until outc = false or vg = 0

13 return

Algorithm 1: Enumeration-based backbone computation

to improve the efficiency of the algorithm, the blocking dlas are
heuristically minimized using standard techniques, eagable lift-

ing [25]. In addition, a SAT solver with an incremental irffeare [3] is

used. The incremental interface reduces significantly ¢mencuni-

cation overhead with the SAT solver, and automatically enpénts
clause reuse [20].

It is interesting to observe that Algorithm 1 maintains aesspt
of the backbone after the first satisfying assignment is caeth
Hence, at each iteration of the algorithm, and after thegatsfying
assignment is computed, the sizewgf represents anpper bound
on the size of the backbone.

3.2 lterative SAT Testing

The algorithm described in the previous section can be iwgulo
upon. As shown in Proposition 3, a variable is a backboneigeav
exactly one of the satisfiability tests SAGFU{z}) and SATpU{Z})

is unsatisfiable. This observation allows devising Aldorit2. This
algorithm is inspired by earlier solutions [14, 13]. Obsetkat if a
literal is declared a backbone, then it can be added to the IGNF
mula, as shown in lines 9 and 12; this is expected to simphigy t
remaining SAT tests. Clearly, the worst case number of SAT tier
Algorithm 2is2 - | X|.

Analysis of Algorithm 2 reveals a number of possible optianiz
tions. First, it is unnecessary to test variabld there exist at least
two satisfying assignments wheretakes different values. Also,
modern SAT solvers compute complete assignments [20].riglea
some variable assignments may be irrelevant for satisfyiagCNF
formula. More importantly, these irrelevant variable gasients are
notbackbone literals. These observations suggest a differgani-
zation, corresponding to Algorithm 3. The first SAT test pdes a
reference satisfying assignment, from which at njost SAT tests
are obtained. Theg& | SAT tests (denoted h¥ in the pseudo-code)
are iteratively executed, and serve to decide which lisesed back-

Input : CNF formulayp, with variablesX
Output: Backbone ofp, vr

vp + 0

foreachz € X do

(outcy, v) + SAT(p U {z})

(outco, v) < SAT(p U {z})

if outc; = false and outcy = false then
| return 0

if outc; = false then
8 VR < vr U {:E}
9 L e+ puU{z}

10 if outcy = false then
11 vr < vr U {z}
12 L p+— pU{z}

return vgr

o g A~ W N P

~

/1l z is backbone

/1l x is backbone

13

Algorithm 2: lIterative algorithm (two tests per variable)

Input : CNF formulayp, with variablesX
Output: Backbone ofp, vr

(outc, v) < SAT(p)
if outc = false then
| return 0

4 v + ReduceModel (v)

s A« {l|lev}

6 VR < (Z)

7 foreachl € A do

8 (outc,v) + SAT(p U {i})

w NP

[l Sinmplify ref nodel
/1 SAT tests planned

9 if outc = false thgn

10 VR < VR u_{l} /1 Backbone identified
11 | P U {l}

12 else

v < ReduceModel (v)
foreachxz € X do

15 ifx v Az &vthen
16 | Ae=A—{z,z}
foreachl, € v do

18 if I, € Athen
19 | A=A—{L}

/1 Sinplify nodel

/1 Var filtering

/1 Var filtering

20 return vg

Algorithm 3: lIterative algorithm (one test per variable)

Different techniques can be used for removing variablesfro
computed satisfying assignments. One examplezagable lift-
ing [25]. Lifting consists of analyzing each variable and dislbag
the variable if it is not used for satisfying any clause. Amgtex-
ample is (approximate3et covering[25]. The set covering model
is created by associating with each variable the subsetaokesk it

bones and to reduce the number of SAT tests that remain torbe cosatisfies. The goal is then to select a minimal set of variathlat sat-

sidered. The organization of Algorithm 3 guarantees thexécutes

isfies all clauses (see (1) in Section 2.1). Since the seticgvprob-

at most| X | + 1 SAT tests. Besides the reduced number of SAT tests|em is NP-hard, approximate solutions are often used. Oample

Algorithm 3 filters from backbone consideration (i) any edole that
takes more than one truth value in previous iterations ofallge-
rithm (lines 17 to 19), and (ii) any variable that can be reatbfrom
the computed satisfying assignment (lines 14 to 16).

is a greedy approximation algorithm for the set coveringbfam
(e.g. [7]). The integration of either of these two technigjissshown
inlines 4 and 13.

In contrast to the enumeration-based approach, iteratye- a



rithms refine a subset of the backbone. Hence, at each aerati
the algorithm, the size afr represents bbwer boundon the size of
the backbone. For complex instances of SAT, the enumeratsad
and the iteration-based can be used to provide approximpatr and
lower bounds on the size of the backbone, respectively.

3.3

The previous sections outlined two main algorithmic solusi for
computing the backbone of a propositional theory. In additia
number of optimizations was proposed. Nevertheless, irrorol
achieve the best possible performance, the practical immgaiéation
of the algorithms involves essential optimizations. Fayoathms
that require iterated calls to a SAT solver, a well-knowrhteque is
the use of an incremental interface (e.g. [20]). For theltegu this
paper, the incremental interface of the PicoSAT [3] solvaswon-
sidered. Nevertheless, an incremental interface is stdridanodern
SAT solvers [20]. For backbone computation, the increménter-
face allows specifying a target assumption (i.e. the vatuassign
to a variable) in each iteration. As a result, there is no rteec-
create the internal data structures of the SAT solver. Odéiadal
advantage of using an incremental interface is that claaisser[20]
is implemented by default. Hence, unit clauses from back&bare
automatically inferred.

Table 1 summarizes the algorithm configurations to be etediia
Section 4. Enumeratiordenotes an implementation of Algorithm 1.
Iterationwith 2 tests denotes an implementation of Algorithmit2.
erationwith 1 test denotes an implementation of Algorithm/B8-

Implementation & Configurations

Feature bbl bb2 bb3 bb4 bb5 bb6 bb7 bb8 bb9
Enumeration X

Iteration, 2 tests X X

Iteration, 1 test X X X X X X
Incremental X X X X X X X
Variable filtering X X X X X
Variable lifting X X X

Appr set covering X

Table 1. Summary of algorithm configurations

bounds. Such algorithm could terminate as soon as both lsdaed
come equal. The experiments in Section 4 suggest that aufireett
iterative algorithm, integrating the techniques outlirsgbve, is a
fairly effective solution, and enumeration tends to perfguoorly

on large practical instances. Finally, as suggested in@e2t2 and
Proposition 2, an alternative algorithm would involve tmeimera-
tion of prime implicants, instead of model enumeration.a&lthm 1

could be modified to invoke a procedure for computing primplim
cants. However, given the less promising results of modeirema-

tion, prime implicant enumeration is unlikely to outperfothe best
algorithms described in earlier sections.

4 Results

The nine algorithm configurations outlined in Section 3.3aveval-
uated on representative SAT problem instances. First, ssieple
satisfiable instances were taken from standard encodingamfing
into SAT [26]. These instances provide a baseline for compaall

crementatenotes implementing repeated SAT tests through an ing|gorithms. In addition, a fe@dIx instances were selected from the

cremental interfaceVariable filteringrepresents the elimination of
unnecessary SAT tests using the pseudo-code in lines 17it0Al9

SAT 2002 competition. Finally, instances from the SAT 202307
and 2009 competitions were selected. These include irssanom

gorithm 3. variable liftingrepresents the elimination of unnecessary themaris, grieu, narain, ibm andaproveclasses of benchmarks. The

SAT tests obtained by simplifying computed satisfying gssients
using standard variable lifting [25RAppr set coveringepresents the
elimination of unnecessary SAT tests obtained by simpldfytom-
puted satisfying assignments using an approximation oteestr-
ing [25]. These two techniques correspond to calling fuorcte-
duceModel in lines 4 and 13 of Algorithm 3, and serve for further
elimination of unnecessary SAT tests, as shown in lines 146to
of Algorithm 3. In Table 1, bothb3, bb8, andbb9 correspond to
Algorithm 3. The main differences are (ip3 does not use the SAT
solver’s incremental interface, and (ii) the satisfyingiggment sim-
plification algorithm used differs.

3.4 Additional Solutions

Besides the algorithms outlined in the previous sectiond,vehich
will be evaluated in Section 4, a number of additional aldonis and
techniques can be envisioned. A simple technique is to densi
initial SAT tests that implement different branching hstids, dif-
ferent default truth assignments and different initialdam seeds. A
similar technique would be to consider local search to lfetainitial
satisfying assignments, after the first satisfying assigmnis com-
puted. Both techniques could allow obtaining satisfyingjgements
with more variables assuming different values. This wolildhaset
A to be further reduced. The experiments in Section 4 indittete

selected instances are solved by a modern SAT solver in adew s
onds (usually less than 20s), to allow computing the baockhinra
reasonable time limit. Nevertheless, some of the instanoasid-
ered have in excess of 70,000 variables, and a few hundredahd
clauses. In total, 97 satisfiable instances were evaluaieéxper-
imental results were obtained on an Intel Xeon 5160 3GHzeserv
running RedHat Enterprise Linux WS4. The experiments wére o
tained with a memory limit of 2GB and a time limit of 1,000 sec-
onds. In the results below, TO indicates that the CPU timé livas
exceeded. Figure 1 presents a plot by increasing run timeékeof
problem instances for each configuration. The x-axis repssthe
number of instances solved for a given run time, which is show
the y-axis (in seconds). In addition, Table 2 presents tkali®in
more detail for a representative subset of the instancesfifigt col-
umn gives the instance name, the second one its number abiesj
the third one the percentage of variables which belong tdéuk-
bone, and the following ones the CPU time (in seconds) redui
run each of the algorithm configurations.

One main conclusion of the experimental results, is thatlbae
computation for large practical instances is feasible. &algorithm
configurations allow computing the backbone for problentanses
with more than 70,000 variables (and more than 250,000 etjus
Another main conclusion is that the size of the backboneHesé
large problem instances can represent a significant pagewf the

in most cases the number of SAT tests tracks the size of the bac number of variables. For some of the large problem instartbes

bone, and so it was deemed unnecessary to consider muitipé i
SAT tests. Another approach consists of executing enurarahd
iteration based algorithms in parallel, since enumeratafimes up-
per bounds on the size of the backbone, and iteration refavesr |

backbone can represent 90% of the variables, and for a feer oth
examples, the backbone can exceed 90%. Moreover, the baekbo
size is never below 10%. The identification of large backisooe
non-random instances agrees with, but significantly exteedrlier



Instance #vars | %bb bb1 bb2 bb3 bb4 bb5 bb6 bb7 bb8 bb9
crawford-4blocksb 410 | 86.3 0.1 9.4 8.6 0.6 0.5 0.4 0.4 0.5 0.4
dimacs-hanoi5 1931 | 100.0 0.6 | 805.9 | 800.9 1.8 1.7 1.5 1.5 1.5 1.5
selman-f7hh.15 5315 | 13.2 TO | 335.3| 624 | 989 | 457 | 545| 252 11.2| 11.9
selman-facts7hh.13 4315 | 15.6 TO | 165.4| 34.7| 446| 223| 23.6| 12.6 5.4 5.4
2dIx_cc.mc_ex_bp_f2_bug001 4821 | 36.6 TO TO | 322.4| 78.0| 21.1| 414| 151 | 149 1438
2dIx_cc.mc_ex bp.f2_bug005 4824 | 447 TO TO TO 64.8| 25.3| 444 | 22.1| 179 18.3
2dIx_cc.mc_ex_bp_f2_bug009 4824 | 34.8 TO | 489.2| 290.2| 65.6| 16.7| 35.1| 123| 124| 121
maris-sat05-depots@0la 1498 | 82.6 TO | 86.1| 73.6 7.6 5.7 6.5 5.4 5.4 5.5
maris-sat05-ferry&01i 1745 | 63.3 TO TO TO 409 | 26.5| 33.5| 188 19.4| 18.9
maris-sat05-roversks99i 1437 | 23.7 TO 30.0| 15.3 4.9 2.3 3.0 1.8 1.8 1.8
maris-sat05-satellite@01i 853 | 80.1 16| 18.4| 15.7 1.0 0.8 0.7 0.6 0.6 0.6
grieu-vmpc-s05-25 625 | 100.0 || 263.6 TO TO 91.9| 921 129.9| 131.4| 131.1| 139.1
grieu-vmpc-s05-27 729 | 92.9 TO TO TO | 591.2 | 602.4 | 882.2 | 853.9| 859.3| 742.2
narain-sat07-clauses-2 75528 | 89.3 TO TO TO TO TO | 974.4| 869.3 | 868.9 | 865.8
IBM _FV_01.SAT_dat.k20 15069 | 36.9 TO TO TO | 526.5| 367.1| 564.0| 357.6 | 379.2 | 406.5
IBM_FV_02.2_SAT_dat.k20 12088 | 19.4 TO TO | 203.9| 303.1| 41.9| 1584 | 24.1| 23.3| 23.0
IBM _FV_03.SAT_dat.k35 34174 | 59.8 TO TO TO TO | 553.4 | 931.6 | 323.7| 322.1| 320.8
IBM _FV_04_SAT_dat.k25 27670 | 78.4 TO TO TO | 545.1| 317.4| 297.4| 163.6 | 172.4 | 175.7
IBM _FV_04_SAT_dat.k30 33855| 70.5 TO TO TO | 898.5| 454.2 | 513.1| 224.5| 223.7 | 224.7
IBM _FV_06_SAT_dat.k35 42801 | 50.8 TO TO TO TO TO TO | 669.3| 728.1 | 655.4
IBM _FV_06_SAT_dat.k40 49126 | 45.0 TO TO TO TO TO TO TO | 994.3 | 977.9
IBM_FV_1.02.3_SAT_dat.k20 || 15775| 17.4 TO TO TO | 566.2 | 59.7| 316.1| 43.9| 36.8| 37.0
IBM_FV_1.16_2_SAT_dat.k20 7410 | 29.7 TO | 1749| 56.8| 67.1| 155| 344 8.6 8.1 8.2
IBM_FV_1.16.2_SAT_dat.k50 || 19110 | 19.8 TO TO | 373.4| 7795 | 1425| 408.7| 82.1| 827| 77.3
IBM _FV_19_SAT_dat.k30 73337 | 28.9 TO TO TO TO TO TO | 947.0| 684.9 | 634.7
IBM_FV_2_.16_2_SAT_dat.k20 7416 | 29.7 TO | 182.0| 60.3| 35.3 8.7 18.1 4.9 4.9 4.9
IBM_FV_2.16.2_SAT_dat.k50 || 19116 | 19.8 TO TO | 378.3| 483.5| 88.9| 242.3| 47.6| 47.2| 47.2
IBM_FV_3.02.3_SAT_dat.k20 || 15775| 17.5 TO TO TO | 492.1| 38.1| 207.2| 259 | 244| 244
IBM_FV_4.16.2_SAT_dat.k20 || 10371 | 34.6 TO | 395.6| 137.4| 69.4| 15.6| 35.7 9.2 9.2 9.2
IBM_FV_4.16.2_SAT_dat.k50 || 25971 | 25.1 TO TO | 786.3| 952.9 | 152.8 | 487.6| 83.5| 83.5| 834
IBM_FV_5.02.3_SAT_dat.k20 || 15775| 17.5 TO TO TO | 374.4| 385| 1955| 26.2| 21.8| 21.7
IBM_FV_5.16.2_SAT_dat.k50 || 25582 | 25.4 TO TO | 666.6 TO | 206.2 | 669.5| 113.0| 116.1 | 1155
AProVE09-03 59231 | 51.7 TO TO TO TO TO TO | 743.3| 779.5| 783.1
AProVEQ9-05 14685 | 76.3 41.7 TO TO | 1465| 720| 97.2| 61.8| 61.6| 61.6
AProVEQ09-07 8567 | 77.4 | 108.3 TO TO | 147.2| 117.7| 120.0| 106.2 | 108.4 | 114.3
AProVE09-11 20192 | 50.5 TO TO TO | 475.3| 102.1| 269.7| 79.4| 81.8| 81.9
AProVE09-13 7606 | 64.5 TO | 222.1| 123.3| 335| 11.9| 16.3 8.7 8.4 8.5
AProVEQ9-17 33894 | 65.4 TO TO TO TO | 895.2 TO | 839.9| 629.8 | 669.9
AProVEQ9-22 11557 | 45.5 TO | 724.2| 295.7 | 144.7| 29.6| 754 | 19.1| 19.1| 19.2
AProVEQ09-24 61164 | 18.0 TO TO TO TO | 897.0 TO | 687.2 | 697.3 | 648.0

Table 2. Experimental results for the 9 algorithm configurations

results [11]. It should be emphasized that these large loagsare
observed in problem instances originating from well-kngsactical
applications of SAT, including planningnaris, and the initial set
of benchmarks), formal verificatior2lX), model finding tarain),

model checking ibm), termination in term-rewritingaprove and
cryptanalysis drieu).

In addition, the experimental results allow drawing sevgem-
eral conclusions. With a few exceptions, it can be conclutiatithe
enumeration-based algorithms do not scale for large paqrob-
lem instances. Despite the poor results, it should be ndtadal-

for computing a reference assignment, is an effective fgalenthat
can reduce the run times substantially. Some of the simgtifio
techniques are key for solving larger problem instancesc@e
examples include filtering of variables with complementeajues
in different models, and recording backbone literals as clauses.
The simplification of models for additional filtering of vakiles can
be significant for some of the most difficult problem instandee-
garding Table 2, and with the exception of a few outliers, ke
formance improves (often significantly) with the integoatiof the
techniques proposed in this papas9, bb8 andbb7 are the best al-

gorithm bb1 is fairly optimized. For example, blocking clauses are gorithms for 20, 18 and 14 instances, respectively. The inta

minimized with variable lifting [25], and the SAT solversdremen-
tal interface is used [3], which also provides clause reliseative
algorithms that do not use the incremental SAT solver intafalso
perform poorly. This is justified by (i) learned clauses aseneused,
and (ii) repeated creation of the SAT solver’s internal caitactures.
The use of a single test per variable, with an additionalahtest

algorithms combined are the best performing for only 4 insts.
Similarly, for Figure 1, out of the test set of 97 instandas solved
78 instance, closely followed kb9 andbb7, that solve 76 and 75
instances, respectively.
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5 Conclusions

This paper develops algorithms for backbone computatidwe. al-
gorithms build on earlier work, but integrate new technijueming
improved performance. In addition, the paper conducts apcem
hensive experimental study of backbones on practical ast of
SAT. The experimental results suggest that iterative #lyos, re-
quiring at most one satisfiability test per variable, arertiuest effi-
cient. However, the best performance requires exploitiregincre-
mental interface of modern SAT solvers, and the implemunmtaif
a number of key techniques. These techniques include feaomiit
clauses from identified backbones, clause reuse, varidtielérfg due
to simplified models, and variables having more than oné walue
in satisfying assignments. In addition, the experimergauits show
that the proposed algorithms allow computing the backbonkafge
practical instances of SAT, with variables in excess of @0,and
clauses in excess of 250,000. Furthermore, the experiinestats
also show that these practical instances of SAT can have tzagk-

(3]
(4]

(5]

(6]
[7]
(8]
9]

[20]

(11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

bones, in some cases representing more than 90% of the nwiber

variables and, in half of the cases, representing more td%ncf the
number of variables.

The experimental results confirm that backbone computasion
feasible for large practical instances. This conclusiotivates fur-
ther work on applying backbone information for solving déan and
optimization problems related with propositional thesrimcluding
model enumeration, minimal model computation and primelikmp
cant computation. Finally, the integration of additionabael sim-
plification techniques could yield additional performaigeéns.
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