
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Mikoláš Janota

Automated Theorem Proving and Program
Verification

Department of Theoretical Computer Science and
Mathematical Logic

Supervisor: Prof. RNDr. Petr Štěpánek, DrSc.

Study Program: Computer Science

Prague 2005

First of all, I would like to thank my supervisor, Petr Štěpánek, for showing
me the fascinating world of mathematical logic and for his advice and many
helpful comments on earlier drafts of this Thesis.

Furthermore, I would like to thank Petr Horský for numerous discussions
on software verification and on this Thesis.

Last but not least, I would like to thank Josef Urban for his advice he gave
me during my research for this Thesis.

I declare that I have written this Master Thesis on my own and listed all
used sources. I agree with lending of the Thesis.

Prague, August 11, 2005

Mikoláš Janota

2

Contents

1 Introduction 5

2 Software Engineering 8
2.1 Evolution of Programming Languages 8
2.2 Testing . 9
2.3 Mathematical logic in Computer science 11
2.4 Specifications . 12

3 Inference Systems 14

4 Reasoning about Programs 16
4.1 Linking Programs with Logic 16
4.2 Floyd-Hoare Triples . 19
4.3 Hoare Axioms and Rules . 21
4.4 Weakest Precondition . 23
4.5 Total Correctness . 24
4.6 Annotated Programs . 25
4.7 Extensions to Hoare Logic . 26
4.8 Design by Contract . 29

5 Predicate Abstraction 30
5.1 Motivation for Abstracting Programs 30
5.2 Transition System . 32
5.3 Transition Systems and Programs 33
5.4 Predicate Transformers . 34
5.5 Abstraction of a Transition System 35
5.6 Predicate Abstraction . 37
5.7 Counter-example Refinement . 39
5.8 Syntactic Forms of Predicates 40
5.9 Efficiency . 40

3

6 A Review of Existing Systems for Verification 42
6.1 Java Modeling Language (JML) 42
6.2 PVS (SRI) . 43
6.3 ESCJava . 45
6.4 BLAST (Berkley) . 46
6.5 SATABS (Carneggie Mellon) . 46
6.6 UNO (Bell Labs) . 47
6.7 Comparing Examples . 48

6.7.1 Test 1 . 48
6.7.2 Test 2 . 48
6.7.3 Test 3 . 49
6.7.4 Test 3.1 . 50
6.7.5 Test 4 . 50
6.7.6 Summary of Tests . 51

7 Benefits and Drawbacks of the Techniques 52
7.1 Benefits of Annotated Code . 52
7.2 Problems with Annotations . 53

8 Suggestions 55
8.1 Warnings for Specification Language 55
8.2 Extend Compiler Warnings . 56
8.3 User Interface Extensions . 57
8.4 Automation . 57

9 Summary 58
9.1 Future Work . 59

4

Chapter 1

Introduction

Today’s world is full of various devices and machines. Many are controlled by
software. These are not just personal computers but also washing machines,
cellular phones, air-planes, etc. In many cases our work, property or even lives
depend on these machines. So on one hand, their proper functioning is of very
high importance. On the other hand, these machines are constantly getting
more complex and powerful. Naturally, the same holds for the controlling
software.

Throughout the years it has turned out that developing SW is extremely
difficult. Development of many projects was accompanied by serious problems.
For example in 1981 the Federal Aviation Administration (FAA) started a
program to modernize its National Airspace System (NAS). The modernization
was both in SW and HW. The Advance Automation System was the main SW
component of the system. The project took 16 years and as a whole it was a
failure1; to quote from a report by United States General Accounting Office
[17]:

Over the past 16 years, FAA’s modernization project have ex-
perienced substantial cost overruns, lengthy schedule delays, and
significant performance shortfalls. To illustrate the centerpiece of
that modernization program – the Advanced Automation System
(AAS) – was restructured in 1994 after estimated costs to develop
the system tripled from $2.25 billion to $7.6 billion and delays
inputting significantly less-than-promised system capabilities into
operation were expected to run 8 years or more over original esti-
mates.

Other notorious examples of SW failure is the failure of Ariane 5 flight 501
or FDIV design fault in the Pentium processor (see e.g. [8]). Many, less spec-

1Some pieces were salvaged through follow-up programs.

5

tacular, SW failures are experienced daily by countless amount of computer
users when their operating system stops responding or their word processor
crashes etc.

These facts are somewhat surprising. When computers are human-built
machines, why do they behave so unexpectedly? The answer is not straight-
forward but basically we are dealing with problems of two kinds.

• As it has been said above, today’s SW systems are extremely complex.
They grow rapidly with new capabilities of HW. In a larger system it is
not feasible for one person to imagine every possible situation that might
occur. Indeed, even the author of a specific piece of code very quickly
forgets how exactly the code works. Misusing old code is a common
cause for error.

• Secondly, there’s always a gap between the original assignment the sys-
tem has and its implementation. Usually, the task comes from the real
world: “We need a word processor.” Then, during the system is being
developed, thousands of things occur which are not clear how they should
be implemented.

To conclude, software projects are notoriously behind schedule (sometimes
even fail), over budget and contain errors. The phenomenon was coined as
software crisis.

In this Thesis we will present and compare nowadays techniques and
tools for SW verification. The Thesis is organized as follows:

• the second chapter puts SW verification the context of software engineer-
ing

• the third chapter talks about automated and semi-automated tools that
support mathematical logic

• the fourth chapter introduced Hoare style reasoning about programs

• the fifth chapter introduces how programs can be reasoned about via
abstract interpretation and defines predicate abstraction

• the sixth chapter discusses benefits and drawbacks of the techniques
introduce in two previous chapters

• the seventh chapter presents current systems for software verification,
their weaknesses and capabilities being illustrated on a set of examples

6

• the eight chapter presents suggestions for current SW verification systems

• the last chapter summarizes the observations made in the Thesis

The reader is expected to be familiar with basics of mathematical logics
and at least one procedural language (C/C++, Java, etc.).

7

Chapter 2

Software Engineering

Proper behavior of software has become so important in our society that a new
discipline emerged: software engineering. Software engineering is comprised
of methodologies for developing and maintaining software applications. These
methodologies combine technologies and practices from many fields, such as
computer science, project management, and others. Software application is a
product and as for any other product, efficiency of development and quality
and reliability of the final outcome is of interest.

Software engineering combines two worlds: formal and pragmatic [27]. In
the formal world we are using mathematical tools, in particular mathematical
logic and algebra. Such methods are referred to as formal methods.

The pragmatic world arises from experiences with the design of large soft-
ware systems. Precise notation and firm basis are not in the main scope of
interest; the methods are focused on economical and managerial side of the
project.

As usual, the line between these two worlds might sometimes be blurred
and ideally the two worlds meet during the development. With respect to the
theme of this Thesis, it should be noted that mathematical logic can serve as
a mean of communication.

2.1 Evolution of Programming Languages

As programming in the machine code is a difficult task, a growing set of pro-
gramming languages has been developed to overcome the peculiarities to ex-
press more complex tasks by more general (and sometimes) more understand-
able constructs.

The issue of programming languages is slightly outside the scope of software
engineering. Nevertheless, the right choice of the appropriate language is very

8

important and may significantly influence the efficiency of the development
process.

Constructs of programming languages are in general driven by two main
objectives:

• to increase their expressiveness

• to make it more difficult for the programmer to make mistakes

The history is very rich. Almost every year a bunch of new concepts and
languages emerges. To name just a few: procedural programming languages
(e.g. ALGOL), object oriented programming (e.g. C++, Java), garbage col-
lector (e.g. Java, C#), etc.

Mathematical approach sets basis for functional (e.g. ML, Haskell) and logic
languages (e.g. Prolog). These languages have proven that they are suitable
for certain types of problems, mainly artificial intelligence. Indeed, one of the
reasons why we have so many languages is that different ones are suitable for
different problems.

One of the most powerful tools is data typing. Data types serve as a protec-
tion against inadvertent assignments and also are making the languages more
suitable to model a given problem. By this way data types are helpful in static
analysis of programs.

The evolution of programming languages has proven to be extremely impor-
tant. It is unquestionable that it wouldn’t be possible to develop contemporary
SW systems without higher level languages. On the other hand, it is not the
primary aim of programming languages constructs to guarantee programs’
correctness.

We should note that despite the plethora of programming languages, in
some applications, the choice of the programming language is limited. Often
because of the extra requirements on HW imposed by the higher level lan-
guages. We should also note that compiler might play an important role too.
For simpler language it is easier to verify correctness of the compiler. That is
why we should still pay attention to the languages like for example ANSI C.

2.2 Testing

Usually, a SW application is tested before it is deployed. There are various
types of tests. Basically, a SW application can be tested by automated tests,
that are part of the source code, or by manual testing, i.e. the tester is working
with the application and simultaneously reporting any non-standard behavior
of the application. Automated tests have become very important in nowadays

9

SW development. Indeed, one of the approaches of to software development,
extreme programming [3], relies on automated tests.

Thorough manual testing requires big amount of human resources and
therefore it is very expensive. Naturally, writing automated tests also requires
significant amount of human resource and ingenuity. Nevertheless, advocates
of extreme programming claim that it is worth it to write automated tests,
i.e. the amount of resources saved on debugging (due to automated tests) is
greater than the resources invested in writing the automated tests. However,
even a very extensive testing cannot guarantee that the application doesn’t
contain errors. It would be näıve to suppose that the verification methods
will eventually entirely remove the need for testing. On the other hand, the
verification methods can be in many cases more efficient with respect to the
human resources and the verification methods have the capabilities of proving
the absence of errors.

When erroneous behavior is discovered during testing, it is not always easy
to find the primary cause of the problem in the source code. In fact, the
problem is undecidable in general. This is due to the fact that undesired
behavior of a piece of code can cause undesired behavior of another piece of
code. This effect can grow into a chain of arbitrary length and therefore the
undesired behavior may be observed by the tests far from the primary cause or
the error. The process of finding the primary cause of the error in the source
code after it has been observed is called post-mortem analysis.

To help capturing the undesired behavior as close to its primary cause as
possible, two important concepts have been developed in modern program-
ming languages, assertions (see e.g. [28]) and exceptions (see e.g. [18]). By
the assertion construct the programmer expresses statements that he or she
assumes to be valid at certain points of execution.

Example 2.2.1 A C code with an assertion:

void someLoop(int n, int k)

{

assert(k > 0 && n > 0);

i = 0;

while (i < n)

{

i = i + k;

}

}

10

In the example 2.2.1 the author of the code expects that the values of k
and n are positive1. If the property declared by the assertion is broken, the
program halts and reports the error. Assertions are usually not included in
the final product and therefore they serve only as an aid for the programmers
during the development phase.

The exception construct is for the cases when it is not clear, in the current
context, how a specific situation should be handled. A typical use of the
exception construct is illustrated by the following example.

Example 2.2.2 A Java code throwing an exception:

int[] createOnes(int n)

{

if (n <= 0)

throw new Exception("Illegal argument");

int[] retv = new int[n];

for (int i = 0; i < n; i++)

retv[i] = 1;

return retv;

}

This Java function in the example 2.2.2 allocates and returns an array of
length n with all its elements set to 1. Again, the programmer didn’t know
what was supposed to happen when the argument of the function n is not
positive. When the value of n is not positive, the code evokes (throws) illegal
argument exception. Then, the exception is handled (caught) by some other
part of the program. Exceptions are usually included in the final product.

Assertions and exceptions are worth noticing with respect to program veri-
fication. Instead of testing the code we can try to prove that assertions always
hold and exceptions never occur.

2.3 Mathematical logic in Computer science

Mathematical logic is a powerful tool. It can be used to express things of
various nature. In computer science, mathematical logic is mostly used to
model behavior of various systems and then to reason about such a model. Here

1For the loop to terminate it is sufficient to assume k > 0∨n ≤ 0, therefore the assertion
that n should be positive provides additional semantic information about n.

11

are some examples of areas where mathematical logic and computer science
meet.

• Reasoning about HW

• Reasoning about communication protocols (security)

• Reasoning about specifications

• Reasoning about the correspondence between a program and its specifi-
cation

• Reasoning about programs’ properties

• Automated code synthesis from specification

This list illustrates how broad the field is. It is out of the scope of this Thesis
to give a detailed view of all these subjects. Instead, we give overview of
nowadays principles and techniques, involving mathematical logic, that help
us to write correct software.

2.4 Specifications

Before a piece of program is written, it should be clear what its purpose and
function is. In other words, its function should be specified. During develop-
ment, specifications appear in various forms and roles.

Often, the first specification is the initial motivation for the SW coming
from the needs of the eventual users. Usually, this idea is proposed by someone
who is not a programmer and so it may be vague and too general. Such a
requirement might for example look like this: “We want a system to collect
feedback from our customers.”

Successful development requires good planning. Many questions have to be
answered: “In what order parts of the system will be developed?”, “How much
time/people/resources do we need?”, etc. To be able to conduct the project,
the original demand has to be refined. Unclear spots have to be clarified: “Do
you want to do that via the Internet or mail?” The task has to be decomposed
into smaller ones: “We need a web interface, email interface a database part,
etc”. A good specification of the system helps us to answer these questions
before we start to write the code. Naturally, people with minimal knowledge
of programming get involved in the process and it is often very hard to obtain
precise specification of the goal.

12

Nevertheless, eventually there is someone who actually implements the sys-
tem. A common scenario is that partial goals are distributed among the pro-
gramming team. Such a partial task might look like that: “I want you to
develop a web interface with such and such properties.” On one hand, the
programmer has to decide what exactly the system will do – programs cannot
be vague. On the other hand, the programmer might have limited knowledge
about the issue itself. That is, he or she might not have sufficient knowledge
to decide certain things. Therefore very precise specifications are needed here.

Some SW is written by programmers for programmers, libraries typically.
Again, precise specifications are of very high importance. Source code of the
library might not be publicly available and the user of the library relies solely
on the documentation.

Altogether, different people with different skills and knowledge are involved
in SW development. As many different people, so many different ways how
they describe their products and express their requirements. Typical means
of communication are natural language, drawings, diagrams, etc. In this The-
sis we will be discussing formal specifications. More precisely, specifications
expressed by the means of mathematical logic.

Throughout the history of SW development it has been discovered that not
only it is difficult to develop correct SW but it is also difficult to specify what
the correct behavior is. Moreover, a mistake in the design of a program can
have severe economical consequences when discovered too late.

This gave birth to so-called specification languages – such as Z or VDM [34].
Later in this Thesis we will present PVS language. These languages are based
on higher order logic which gives them a very high level of expressiveness. Their
primary modus operandi is to write down the specification in the specification
language and then use automated tools to check consistency and properties of
the specification.

Second major area where logic specifications are used is when we connect a
specification with source code. Then the source can be verified with respect to
the logic specification; we will discuss this approach in chapter 4. Conversely,
the logic specification serves as a documentation of the source code.

Sometimes, we do not insist on that the logic specification completely spec-
ifies the code’s behavior. Roughly speaking, it just points out some of the
desired properties. In the language JML, which will be presented later, the
terms light-weight and heavy-weight are used to distinguish such character of
a logic specification.

13

Chapter 3

Inference Systems

Automated reasoning plays an important role in SW verification and in formal
methods in general. In many cases the verification process requires proving
or disproving some conjectures. Technically, proving and disproving could be
done by hand. Obviously, that is not preferable. Often, the proofs are not
very difficult but big amount of the proofs is needed. Lack of user-friendly
tools for automated reasoning is considered as one of the major obstacles to
wide-spread use of formal methods.

An inference system is in [38] defined as follows

“... a program or computer assisted tool which is able to per-
form logical operations in the framework of the formal method(s)
under consideration.”

Then we talk about three different kinds of inference systems

• model checkers

• interactive theorem provers (ITPs for short)

• automated theorem provers (ATPs for short)

Model checkers are tools that show validity, invalidity respectively, of a
formulae in temporal propositional logic on a finite state-transition systems
(e.g. see [29]).

Interactive theorem provers, or proof assistants, are in principle similar to
pocket calculators. A proof assistant provides the user with a set of inference
rules that help the user to construct the proof. Later in this Thesis we will
present the proof assistant PVS.

Automated theorem proving has been around nearly for fifty years and
these fifty were marked by substantial improvement of ATPs. There were some

14

impressive accomplishments in the mathematical field by ATPs. Nevertheless,
ATPs still haven’t made its way to the wide public. It should be noted that
general theorem proving implies incompleteness [36]. That means that some
conjectures are neither provable nor refutable. Moreover, there is no upper
bound for length of proofs (disproofs respectively) for conjectures that are
provable (refutable respectively). General ATPs, based rather on the resolution
method (see e.g. [31]), lack support for arithmetic1 which is crucial for most
of the proof tasks that arise during SW verification.

Some theories are decidable (e.g. Presburger arithmetic). Various algo-
rithms [20], called decision procedures, DP for short, were developed to effi-
ciently reason in these theories. Using DPs for SW verification has a long
tradition. For example in [39] a theorem prover based on the Fourier-Motzkin
method of linear programming was used to implement an automated array
bound checker.

Obviously the most important advantage of DPs is that they are guaran-
teed to return yes/no answer in a finite amount of time. Despite this fact,
complexity of DPs is a significant problem. Although Presburger arithmetic is
a decidable theory, it was proved [21] that every decision algorithm for the the-
ory is super-exponential. Therefore, many DPs deal with subsets of Presburger
arithmetic.

Relying merely on DPs implies losing completeness property2. Moreover,
DPs might be implemented with bugs in them which make them hard to rely
upon3.

Therefore it is desirable to combine classical resolution-based ATPs with
DPs. Such a fusion is a subject of research.

Another way how to help the general ATPs is to pre-process the proof
tasks; simplify the proof tasks and add axioms that will most likely be useful
(e.g. see [13]).

The techniques presented in this Thesis all rely on proving. Big amount
of proof tasks have to be discharged and therefore it would not be feasible to
perform all the proofs by hand. Improvements of ATPs have a direct positive
impact on the range of use of these techniques. For more details on theorem
proving in software engineering see [38].

1Conjectures in arithmetic have to be proven directly from the arithmetic axioms, which
is in general very inefficient.

2A calculus is complete if every valid conjecture (i.e. holds in every model of the theory)
can be proven via the calculus.

3This can be overcome by enhancing the DP with a possibility of producing a proof.
Such a proof can be checked by a different tool (a proof checker).

15

Chapter 4

Reasoning about Programs

Since programs can be seen as mathematical structures, it is quite natural
to ask whether we can prove that a program complies with its specification.
Unlike testing, reasoning enables to guarantee that certain properties of a
program hold for arbitrary large (even infinite) sets of inputs.

From Computation Theory we know that this task is in general undecid-
able1 . Even for a program whose correctness can be proven, the proof might
still be extremely complicated. A notorious example is a program that halts
if and only if the Last Fermat’s theorem doesn’t hold. Such a program is easy
to write but showing that the program never halts implies providing a proof
of the theorem.

Despite these, rather pessimistic, facts we should note that the term pro-
gram is very general and in real applications, we deal only with specific types
of programs. To cite Dijkstra:

“We must not forget that it is not our business to make pro-
grams, it is our business to design classes of computations that will
display a desired behaviour.” [16]

Roughly speaking, programs mostly solve problems from the real world.
They are written by humans. The common scenario is that the programmer
has the goal in mind and is achieving it inductively. That is, the goal is
decomposed into subgoals, which can be decomposed later on etc.

4.1 Linking Programs with Logic

To be able to reason about programs we need some mathematical construct to
model them. Although Turing machine has shown its usefulness in Recursion

1For example the halting problem and the Rice’s Theorem [35].

16

Theory and Complexity Theory it is not very suitable to model programs
written in today’s programming languages.

In this chapter we will show how programs can be connected with math-
ematical logic. In order to do that, we need a programming language, logic
language and a theory. The framework presented here is very general thus we
will make as little assumptions as possible; for details see [23].

In this Thesis we will be speaking about imperative programs. A program
operates on a finite fixed number of variables. Each variable has a data type
(type for short). We will not go into details of data types; here we will assume
only basic types as integer, boolean, array of thereof, etc. Most of the examples
will rely on the type NaturalNumber which denotes {0, 1, 2, . . .}.

We assume that the expressions in the programs do not contain constructs
with side-effects. For integers and booleans we assume classical operators (+,
−, OR, AND, etc.).

In the logic language we will assume conventional boolean connectives, true,
false, quantification and standard operators (<, =, +, etc.). A logic formula
will usually appear in context of a program. In that case we assume that
the free variables that are shared by the program and the formula are used
appropriately according to their data type. So for a program containing a
variable b of type boolean and x of type integer the expression x + b < 0 has
no meaning.

We will assume a theory T that corresponds to the semantics of expressions
in the programming language. We will use |= C to denote that a formula C is
valid in the theory T .

It should be noted that conventional imperative languages operate on in-
tegers with bounded domain. Then we have to face problems with overflow.
There are different kinds of behavior of programs when overflow is encoun-
tered. Mostly, modulo or error2. For modulo behavior we should use theory
that captures such behavior. For error behavior it should be proved that
overflow doesn’t occur. Nevertheless, in practice this is often neglected and
bounded-domain integers are modeled as generic integers.

We will use the operational semantics of programs. A program’s execution
is modeled as a sequence of the program’s states. A state is a total function
from the program’s variables to their values3.

2Roughly speaking, modulo behavior guarantees that results of operations are correct
modulo some number (typically maximal value + 1). Error behavior produces an error if
the overflow occurs.

3If convenient, we can use tuples to represent states.

17

Example 4.1.1 For the following program:

x, y: NaturalNumber;
if (x < 0) ∧ (y < 4) then
x← 0

else
y ← 0

end if

An example of a state of this program is {(x, 10), (y, 2)}.
We will use the term predicate to denote a well formed formula where the

set of free variables is a subset of the program’s variables. Thus, the following
are predicates:

(x < 0) ∧ (y < 4)

(x = 0)

Note that the predicate (x = 0)∨ (y = 0) holds at the end of any execution of
the program from example 4.1.1.

In a program’s context, a predicate represents a subset of program’s possible
states. This subset is formed by those states in which the predicate holds.

Example 4.1.2 Here are some examples of predicates where x and y are both
natural numbers:

• x = y represents {{(x, 0), (y, 0)}, {(x, 1), (y, 1)}, {(x, 2), (y, 2)}, . . .}
• x = 3 represents {{(x, 3), (y, 0)}, {(x, 3), (y, 1)}, {(x, 3), (y, 2)}, . . .}

• false represents the empty set of states

• true represents all possible states:

{{(x, vx), (y, vy)}|vx, vy ∈ {0, 1, 2, . . .}}

Conversely, not every set is necessarily representable by some predicate.
Which sets are representable depends on the strength of the logic language
and theory that is used.

Definition 4.1.3 For any predicates P and Q such that |= P ⇒ Q.

• We say that the predicate Q is weaker than the predicate P .

• We say that the predicate P is stronger than the predicate Q.

Especially, the predicate true represents all possible states and is weaker
than any other predicate. The predicate false represents the empty set of
states and is stronger than any other predicate.

18

4.2 Floyd-Hoare Triples

In the previous chapter we have shown how to use predicates to represent
sets of programs’ states. In this section we will present how to use the above
described formalism to specify program’s correctness. It should be stressed,
that in what follows we are not concerned with how the program computes
but with what it computes.

We describe the behavior of a program by two predicates. The first predi-
cate represents the set of states in which the program can be started; we call
it the precondition of the program. The second set represents the set of states
in which the program should terminate; we call it the postcondition of the
program. Such description does not say anything about executions that begin
in states that do not satisfy the precondition.

Example 4.2.1 For the function maximum that computes maximum of two
integers we have

• variables: a, b and result. All three of type integer.

• precondition: all possible states, i.e. true

• postcondition: such states where the value of result equals either to the
value a or the value b and the value of result is greater or equal to the
value of a and the value of b, i.e.

((a = result) ∨ (b = result)) ∧ (a ≤ result) ∧ (b ≤ result)

Definition 4.2.2 The triple, precondition, program and postcondition is called
a Floyd-Hoare triple. The following definition introduces notation for Floyd-
Hoare triples4 .

For any predicates P , Q and a program S

• Partial correctness

{P} S {Q} denotes that if the program S is executed in a state satisfying
the predicate P and the execution terminates then the predicate Q is
satisfied by the resulting state.

• Total correctness

[P] S [Q] denotes that if the program S is executed in a state satisfying
the predicate P then the execution terminates and the predicate Q is
satisfied by the resulting state.

4The notation we are introducing here is slightly different from the original one. In the
original notation {P}S{Q} was used to denote total correctness and P{S}Q was used to
denote partial correctness.

19

Example 4.2.3 In the above notation the example 4.2.1 can be written as
follows:

a, b, result : integer;
{true}
if a > b then
result← a

else
result← b

end if
{((a = result) ∨ (b = result)) ∧ (a ≤ result) ∧ (b ≤ result)}

Comment. Here the thoughtful reader might spot a flaw. The definition
doesn’t say anything about which variables may or may not be changed by
the program. Which means that a program that sets all three variables to 0
satisfies the same condition.

Therefore we need to refer to the initial values of a and b; for this purpose
we introduce special variables (sometimes called ghost variables).

Example 4.2.4

a, b, result : integer;
{a = A ∧ b = B}
if a > b then
result← a

else
result← b

end if
{((A = result) ∨ (B = result)) ∧ (A ≤ result) ∧ (B ≤ result)}

Moreover, if we want to state that, for example, a shouldn’t be modified
by the program, we add a = A to the postcondition.

In implementations a special notation is introduced that enables expressing
which variables may be changed (or which may not). Often, special notation
is also introduced to refer to the initial values of variables. The problem of
specifying the variables that a subprogram can/cannot change is called the
frame problem5.

5This problem gets particularly difficult when we are dealing with un-bounded amount
of objects (e.g. dynamically allocated structures), because then we are not able to specify
variables that should remain unchanged.

20

4.3 Hoare Axioms and Rules

The previous section has introduced notation that enables us to describe the
desired behavior of a program but still we lack the calculus that would tell
us whether the program really displays such behavior. The calculus we will
present in this chapter was first introduced by C. A. R. Hoare in [25] and
therefore it is referred to as Hoare logic.

In what follows we consider a small programming language with the fol-
lowing commands6:

skip | x← E | S1;S2 | while B do S endwhile |

| if b then S1 else S2 endif

These constructs form a core of every conventional imperative language. Ad-
ditional features can be added and we will make some comments on the ex-
tensions in the section 4.7.

Definition 4.3.1 The skip command is an empty command and so it does
not affect the state of the program. Therefore, for any predicate Q:

{Q}skip{Q}

Definition 4.3.2 The Assignment Axiom For a variable V , expression E
and a postcondition P

{P [V/E]}V ← E{P}

This axiom tells us that if P is the postcondition of an assignment com-
mand, then P with all occurrences of V replaced by the expression E is the
precondition.

Example 4.3.3 For integer variables X and Y the following statements hold
by the assignment axiom.

{5 > 4}X ← 5{X > 4}

{X + 1 > 10}X ← X + 1{X > 10}
{2 ∗ Y = Y }X ← 2 ∗ Y {X = Y }

6The construct if B then C endif can be defined as a shorthand for if B then C else
skip endif

21

Definition 4.3.4 The Sequence Rule For any predicates P , Q, R, pro-
grams C1 and C2:

{P}C1{Q} {Q}C2{R}
{P}C1;C2{R}

.

The sequence rule tells us how to join pieces of code. Note that the logical
rules, defined bellow, can be used to generalize this rule to:

{P}C1{Q1} {Q}C2{R} Q1 ⇒ Q

{P}C1;C2{R}
.

Definition 4.3.5 Conditional Rules For any predicates P , Q, boolean ex-
pression S and programs C1 and C2:

{P ∧ S}C1{Q} {P ∧ ¬S}C2{Q}
{P}if S then C1 elseif C2 endif{Q}

This rule splits reasoning about the if-then-else command into the case
when the condition holds and when it does not.

Definition 4.3.6 The While Rule For any predicates P , I, Q, boolean ex-
pression S and a program C:

P ⇒ I {I ∧ S}C{I} (¬S ∧ I)⇒ Q

{P}while S do {I}C end while{Q}
Note that the predicate I appears both as a precondition and a postcondition
of the loop body. The predicate I is called the loop invariant. This rule is
analogous to the proof by induction in mathematics. The loop invariant holds
when the program enters the loop and every subsequent iteration of the loop
preserves the invariant. Note that in the while rule and the conditional rule we
slightly abuse the notation because S is a boolean expression in the program
but also used as a predicate.

Definition 4.3.7 Logical Rules For any predicates P , P ′, Q, Q′ and pro-
gram C:

• Precondition strengthening

P ⇒ P ′ {P ′}C{Q}
{P}C{Q}

• Postcondition weakening

Q⇒ Q′ {P}C{Q}
{P}C{Q′}

22

4.4 Weakest Precondition

The previous section introduced a set of rules and axioms that can be used to
determine validity of a Floyd-Hore triple. Nevertheless, the calculus doesn’t
provide us with a way how the validity could be computed. Therefore, we will
extend the scheme with the operator of weakest precondition.

Definition 4.4.1 For any program C and postcondition Q

• Weakest liberal precondition wlp(C,Q) denotes such a predicate W
that if for any predicate P , {P}C{Q} then W ⇒ P

• Weakest precondition wp(C,Q) denotes such a predicate W that if
for any predicate P , [P]C[Q] then W ⇒ P

For a fixed program, the weakest precondition operator is in the role of a
predicate transformer. Roughly speaking, given the set of states in which the
program should terminate, the weakest precondition operator returns the set
of all possible initial states.

In the following we will use ≡ to denote graphical equality.

Lemma 4.4.2 The following statements hold

1. 7 wlp(X ← E,Q)⇔ Q[X/E]

2. wlp(S1; S2, Q)⇔ wlp(S1, wlp(S2, Q))

3. wlp(if B then S1 else S2 endif)⇔ ((B∧wlp(S1, Q))∨(¬B∧wlp(S2, Q))

4. wlp(S,Q) ∧B ⇒ wlp(S1, wlp(S,Q))
where S ≡ while B do {I}S1 end while

5. wlp(S,Q) ∧ ¬B ⇒ Q
where S ≡ while B do {I}S1 end while

6. {P}S{Q} iff P ⇒ wlp(S,Q)

Since in our language while command is the only command that can cause
a program not to terminate, the same properties hold for wp for programs that
do not contain loops.

Lemma 4.4.3 Let S, S1, S2 be programs that do not contain the while com-
mand. Then the following statements hold:

7Compare with the assignment axiom (definition 4.3.2).

23

1. wp(X ← E,Q)⇔ Q[X/E]

2. wp(S1; S2, Q)⇔ wlp(S1, wlp(S2, Q))

3. wp(if B then S1 else S2 endif)⇔ ((B∧wp(S1, Q))∨ (¬B∧wp(S2, Q))

Note that the equivalences 1-3 in both lemmata provide a way how to
back-propagate a postcondition. The weakest precondition can be computed
for programs using only assignments and if-then-else commands.

Example 4.4.4 We will show that after an execution of the maximum func-
tion, the result is greater or equal to the first argument. We will do this by
computing the weakest precondition, using lemma 4.4.3.
wp(if a > b then result← a; else result← b end if, result ≥ a) ≡(by3)

(a > b ∧ wp(result← a, result ≥ a))∨
∨(a ≤ b ∧ wp(result← b, result ≥ a)) ≡(by1)

(a > b ∧ a ≥ a) ∨ (a ≤ b ∧ b ≥ a) ≡(by logic)

true
This shows that the maximum function brings about the postcondition in-

dependently from the state the execution begins in.

Unfortunately, the propagation of the weakest preconditions is not possible
for loops8. To reason about loops the while rule has to be used instead.

4.5 Total Correctness

Intuitively, a program might not terminate only due to an infinite loop. To
show that a loop is finite we need to provide well-founded ordering (i.e. with
no infinite decreasing chains) and an expression T that is decreased w.r.t. the
ordering by each iteration of the loop.

Example 4.5.1 For the following program, the expression T =def 100 − i
decreases, w.r.t <, by 1 each iteration of the loop. Since the predicate
i ≤ 100 is an invariant of the loop, 0 ≤ T holds and therefore T is
always a natural number. The ordering < on natural numbers is well-
founded.

i, s : integer;
i← 0;
s← 0;
while i < 100 do

8This is not a very surprising fact since while command is the source of undecidability.

24

s← i2 + s;
i← i + 1;

end while

Total correctness can be shown by first demonstrating the partial correct-
ness and then showing termination.

4.6 Annotated Programs

The Hoare logic gives us a mean to reason about programs via standard math-
ematical logic. A natural question is, how it should be applied to programs. In
this section we will introduce a concept of annotated programs. An annotated
program is such a program where preconditions, postconditions and loop in-
variants are inserted directly in the source code. Note that a precondition can
be joined with the postcondition of the previous command.

Example 4.6.1

1: {true}
2: i← 0;
3: {i = 0}
4: k ← i + 1;
5: {k = 1 ∧ i = 0}

It is not required for each command to be surrounded by annotations (es-
pecially simple assignments). Therefore the previous example can be rewritten
as follows:

Example 4.6.2

{true}
i← 0;
k ← i+ 1;
{k = 1 ∧ i = 0}

If it is to be verified that the annotations correspond to the program, the
annotated source code is translated to set of conjectures using Hoare logic.

Example 4.6.3 To verify that the annotations in the example 4.6.1 corre-
spond to the source code.

• For lines 1-3 we need to show

{true}i← 0{i = 0}

25

which is translated (using points 6 and 1 of the lemma 4.4.3) into

true⇒ 0 = 0

• Lines 3-5 we need to show

{i = 0}k ← i + 1{k = 1 ∧ i = 0}

which is translated (using points 6 and 1 of the lemma 4.4.3) into

(i = 0)⇒ ((i+ 1 = 1) ∧ (i = 0))

Such implications are called verification conditions and automated reason-
ing can be used to discharge them.

4.7 Extensions to Hoare Logic

In the previous sections we have presented a calculus for a very basic program-
ming language. Nevertheless, the calculus may be extended to reason about
more complicated constructs. In this section we will present a few examples
of such extensions.

To be able to reason about function calls, we need to provide the function’s
precondition and postcondition.

Example 4.7.1
Requires: a > b
Ensures: (a > c⇒ result = a) ∧ (c > b⇒ result = b)∧
(a ≥ c ∧ c ≤ b⇒ result = c)
function Trim(a, b, c : NaturalNumber) returns NaturalNumber;
begin

returnV alue: NaturalNumber;
if a > c then
returnV alue← a

else if c > b then
returnV alue← b

else
returnV alue← c

end if
return returnV alue

end

Here, we can see two additional constructs:

26

• Requires part, i.e. the precondition that must be established before the
function is called.

• Ensures part9 , i.e. the postcondition that will hold after the function
terminates and the execution of the function begun in a state satisfying
the Requires part.

The following example illustrates how such a specification of a function can
be used when reasoning about a function call:

Example 4.7.2 Consider the function from the example 4.7.1. Then showing
validity of the triple

{true} trimmed← Trim(4, 10, 5) {trimmed = 5}

is translated to

• true⇒ 4 < 10, i.e. that the Requires part is guaranteed by the precon-
dition.

• ((4 > 5⇒ trimmed = 4) ∧ (5 > 10⇒ trimmed = 10)∧
(4 ≥ 5 ∧ 5 ≤ 10⇒ trimmed = 5))⇒ (trimmed = 5),
i.e. that the Ensures part of Trim in the current context implies the
desired postcondition.

Note that the body of the function does not appear in the proof concerning
the call of the function. Thus, when reasoning about the function itself we
show that the function’s Requires and Ensures parts are the function’s valid
precondition and postcondition. When reasoning about function calls, we rely
merely on Requires and Ensures. For more details on function calls see [23].

Other extensions are needed when reasoning about object oriented pro-
grams. Namely, object invariants. Use of an object invariant is illustrated by
the following example:

Example 4.7.3 An example of a Java class with an object invariant 10.

9In conventional imperative programming languages (e.g. Java), a function may modify
parameters passed by value. Such modifications are not visible to the caller of the function
and therefore in the Ensures part we are always referring to the initial values of these
parameters.

10In this example we are using JML as the annotation language, for more details on JML
see section 6.1.

27

class Class1

{

/* The object invariant */

/* @ invariant j + i = N &

@ N >= 0 & N < 100 &

@ j >= 0 & i > 0

*/

int i, j;

int N;

//@ requires initN < 100;

public Class1(int initN)

{

N = initN;

i = 0;

j = N;

/* The constructor has established the invariant */

}

//@ \result == j;

public int readJ()

{

return j;

}

//@ requires j > 0;

public void incI()

{

/* We know that the object invariant holds now */

i = i + 1; /* Here the object invariant is broken */

/* for a while */

j = j - 1; /* The contract specifies that this method */

/* cannot be called when j <= 0. */

/* Here the object invariant holds again. */

}

}

Note that if we hadn’t specified the conditions on ranges of the member
fields we would have run into problems with integer overflow.

Informally, the object can break its invariant but the states in which the
invariant is broken shouldn’t be visible to the outer world. For the above
example it is sufficient to prove that the constructor establishes the object

28

invariant and every method of a class implicitly has the invariant as a part of
its Ensures and Requires11. For details on object invariants see e.g. [33].

It should also be noted that we have been discussing only sequential pro-
grams. For extensions on concurrent programs see [1].

4.8 Design by Contract

The previous section illustrated how Hoare logic can be extended so it can be
used in object oriented programming languages12. Annotations bring another
dimensions to programs and the question is how this should be reflected by
the design process. A common approach is design by contract [32].

In design by contract the main idea is to approach programming as a type
of a business transaction. For a procedure, the implementation of the proce-
dure is the supplier, the code that calls the procedure is the client, the logic
specification of the procedure is the contract. Then the client is responsible
for establishing the precondition given by the contract and the supplier is re-
sponsible for delivering the postcondition given by the contract. Note that the
supplier does not have any obligations whatsoever when the precondition is
not established13.

A class implementation, as a whole, has to maintain its object invariants14.

11One major problem of object invariant is the call-back, which is a situation when a
method calls a different object that calls back the initial object.

12We should note that similar extensions are possible for other languages. For example
Spark Ada is a subset of Ada with annotations.

13Such a situation is simply a bug.
14A specification language may enable to specify which of the object invariants are visible

for other parts of code. Therefore only the visible invariants are part of the contract.

29

Chapter 5

Predicate Abstraction

Another technique, based rather on algebraic methods, for proving properties
of programs is abstract interpretation [7]. Abstract interpretation has been
widely used for optimizing programs. In this chapter we will show how abstract
interpretation can be used for verifying programs’ correctness.

First we will give a brief introduction to abstract interpretation then we
will define predicate abstraction and mention some of its modifications and
extensions.

5.1 Motivation for Abstracting Programs

The main idea of abstract interpretation is to group program’s states according
to some properties. The idea is illustrated on the following example.

Example 5.1.1 Consider the program:

1: a: NaturalNumber;
2: if odd(a) then
3: a← a+ 1
4: end if
5: if odd(a) then
6: ERROR
7: end if

How do we show that ERROR is never reached? One could reason as
follows.

1. Initially value of a is either odd or even – we don’t know.

2. If value of a was odd then 1 is added to it therefore making the value of
a even. If value of a was even then nothing happens and value of a stays
even.

30

3. At the end, value of a must be even and the expression odd(a) is evaluated
to false.

Apparently, all we needed to know about the value of a is whether it is odd
or even. To formalize the idea we construct an abstract state space. We will
refer to the original state space as the concrete state space. Each member of
the abstract space, an abstract state, represents some subset of the concrete
state space.

The concrete space of the program from the above example is:

{0, 1, 2, . . .}

Then, consider an abstract state space SA ≡def {Odd,Even}. Where:

• the abstract state Odd represents the set {1, 3, 5, . . .}

• the abstract state Even represents the set {0, 2, 4, . . .}

Now we can construct an abstracted versions of the operations. For the
operation “+1” we can define its abstracted version +1 as follows:

Odd +1 =def Even

Even +1 =def Odd

Such a definition is reasonable because every odd number plus 1 is even
and every even number plus 1 is odd. Such an abstract state space wouldn’t be
sufficient to model all possible programs. For example, it wouldn’t be possible
to construct abstracted version of the operation “division by 2”1. In order to
be able to do that, we require the abstract state space to form a (complete)
lattice. The above introduced state space can be completed into the lattice:

Figure 5.1.2
>

/ \
Even Odd

\ /

⊥
1Knowing only that a number is odd/even is not sufficient to infer whether that number

divided by 2 is odd/even.

31

Where

• the abstract state > represents the set {0, 1, 2, . . .}

• the abstract state ⊥ represents the empty set

Then the operation “/2” can be abstracted as follows2:

Odd /2 =def >

Even /2 =def >
> /2 =def >
⊥ /2 =def ⊥

Then an abstract version of the program can be constructed. Intuitively,
the abstract program computes the same way as the original program but
on the abstract state space. The abstracted program can be reasoned about
more easily because the abstract state space is substantially smaller than the
concrete state space. Usually lattices of abstract states of finite height are
used.

For more details on abstract interpretation see [7, 6].

5.2 Transition System

Instead for some programming language we will define the abstraction on a
transition system.

Definition 5.2.1 A transition system is a triple (S, I, R). Where

• S is the set of states,

• R ⊆ S × S is the transition relation,

• I ⊆ S is the set of initial states.

We say that if for any two states x and y, R(x, y) holds, that y is a suc-
cessor of x. Let M be a natural number 3, then an execution trace is a
sequence of states x0, x1, . . . , xM such that

• R(xi, xi+1) holds for every 0 ≤ i < M and

2Obviously such an abstraction is too coarse.
3The notion of trace can be extended to traces of infinite length.

32

• x0 ∈ I.

Often we use just the term trace for execution trace.
We use the notation R∗ for the reflexive and transitive closure of the rela-

tion R. We say that a state x is k-reachable if there exists a a sequence of
states x0, x1, . . . , xk of length k such that x0 ∈ I and xk ≡ x.

We say that a state x is reachable if there exists a natural number k such
that x is k-reachable.

We say that a transition system is deterministic if for any states x, y, z
(R(x, y) ∧ R(x, z)) ⇒ (y = z). A system is non-deterministic if it is not
deterministic.

As in the previous chapter, we will use predicates to represent sets of states.
The following definition defines some common terms used in the context of
predicate abstraction.

Definition 5.2.2 A predicate P is called the safety property if we want to
show that P holds in all reachable states. We say that a state x violates the
safety property P if ¬P (x) holds. The states that violate the property P are
called error states. A counter-example trace is such a trace x0, x1, . . . , xM
that ¬P (xM) holds.

5.3 Transition Systems and Programs

The concept of a transition system is more general than the concept of a pro-
gram defined by source code. Any program can be translated into a transition
system. Here, we will briefly show how this is done.

Consider a program that contains a finite number of variables:

x1 : D1, x2 : D2, . . . xn : Dn

Where Di is a domain for xi. The domains can be infinite in general. Then
we introduce one special variable pc for the program counter that has a finite
domain Dpc. Then the state space is:

D1 ×D2 × . . .×Dn ×Dpc

The construction of the transition relation will be illustrated on the example
5.1.1 from the previous section.

33

Example 5.3.1

• The state space is formed by pairs < pc, a > where pc ∈ {1 . . . 7} and
a ∈ {0, 1, 2, . . .}

• Initial states are represented by the predicate pc = 2

• The transitions relation R(< pc, a >,< pc′, a′ >) holds iff any of the
following predicates hold:

pc = 2 ∧ odd(a) ∧ pc′ = 3 ∧ a′ = a

pc = 2 ∧ ¬odd(a) ∧ pc′ = 5 ∧ a′ = a

pc = 3 ∧ pc′ = 5 ∧ a′ = a + 1

pc = 5 ∧ odd(a) ∧ a′ = a ∧ pc′ = 6

pc = 5 ∧ ¬odd(a) ∧ a′ = a ∧ pc′ = 7

• The safety property is ¬(pc = 6). In other words, the predicate pc = 6
represents the set of error states.

5.4 Predicate Transformers

Similarly as in the Hoare-like approach we can define predicate transformers.

Definition 5.4.1 For a transition relation R on a set of states S and for a
set M ⊆ S represented by predicate P .

• post[R](P) = ∃q′(R(q′, q) ∧ P (q′))

• p̃re[R](P) = ∀q′(R(q, q′)⇒ P (q′)

The predicate post[R](P) represents the set of successors of states repre-
sented by P . The predicate p̃re[R](P) is the weakest precondition for P. Note
that the universal quantifier in the definition of p̃re is necessary because the
transition system need not to be deterministic.

34

5.5 Abstraction of a Transition System

For a transition system we want to build an abstract transition system. We will
use the adjective “concrete” to refer to the system that is being abstracted.
The following definition introduces a pair of functions that establishes the
correspondence between an abstract and a concrete state space.

Definition 5.5.1 Consider two distinct sets of states S and SA. Let PS
denote the set of predicates on S. Two functions α : PS → SA and γ : SA →
PS form a Galois connection if

• α ◦ γ is the identity

• for any P ∈ PS representing some subset of S

|= P ⇒ γ(α(φ))

The function α is called the abstraction function and it associates any
predicate on concrete states with an abstract state. The function γ is called
the concretization function or meaning function; it associates any abstract state
with a predicate that represents the corresponding set of concrete states4. The
function α loses information but in a safe way; when a set of concrete states
is abstracted and concretized again, the original set is contained in the result.
Note that the function γ doesn’t lose information.

The following definition defines when a transitions system is an abstraction
of another transition system.

Definition 5.5.2 Consider a transition system T = (S, I, R). Then a system
TA = (SA, IA, RA) is a conservative abstraction of T iff

• For any s ∈ I there exists sa ∈ IA such that γ(sa)(s)

• For any abstract state, sa1, and concrete states s1 and s2,

s1 ∈ γ(sa1) ∧R(s1, s2)⇒ (∃sa2 ∈ SA)(RA(sa1, s
a
2) ∧ γ(sa2)(s2))

The first part of the above definition expresses that the set of initial states
of the abstract system covers all the concrete initial states. The second part of
the definition expresses that the abstract transition relation covers the concrete
transition relation. Altogether this means that every execution trace of the
concrete system is represented by at least one execution trace of the abstract
system.

The second part of the definition is illustrated by the following diagram.

4For an abstract state sa, γ(sa) returns a predicate P that represents some set M ⊆ S.
Therefore, for any concrete state s ∈ S, γ(sa)(s) iff s ∈M .

35

Figure 5.5.3
sa1v →RA sa2

↓ γ ↓ γ
P1 P2

↑∈ ↑∈
s1 →R s2

In the following, we will be discussing only conservative abstractions thus
we will use the word abstraction to denote conservative abstraction.

Definition 5.5.4 An abstract execution is a sequence of abstract states
sa0, s

a
1, . . . , s

a
M , such that sa0 ∈ IA and RA(sai , s

a
i+1) holds for 0 ≤ i < M . An

abstract counter-example trace is an abstract execution sa0, s
a
1, . . . , s

a
M such

that there exists a concrete state s ∈ S, such that γ(saM)(s) ∧ ¬P (s).

Definition 5.5.5 We say that a concrete counter-example trace s0, s1, . . . , sM ,
corresponds to the abstract counter-example trace sa0, s

a
1, . . . , s

a
M , if these con-

ditions are satisfied:

• si ∈ γ(sai) for i = 0 . . .M

• s0 ∈ I and ¬P (sM)

• R(si, si+1) holds for 0 ≤ i < M

Conservative abstraction guarantees that all concrete traces are covered
by the abstraction traces. Conversely this is not true in general. Thus there
might be an abstraction trace with no concrete trace corresponding to it. To
distinguish these two cases we introduce the following definition.

Definition 5.5.6 An abstract trace is called real trace if there exists a con-
crete trace corresponding to it. Conversely, if there is no concrete trace corre-
sponding to the abstract trace then the abstract trace is called spurious trace.

36

5.6 Predicate Abstraction

Here we are going to present a special case of abstract interpretation called
predicate abstraction. Predicate abstraction was first presented by Graf and
Säıdi in 1997 [37].

The predicate abstraction is induced by a finite set of predicates P ≡
{p1, . . . , pn} on a concrete set of states S.

First we note that the set of predicates P induces an equivalence relation
on the set of concrete states.

Definition 5.6.1 Let P ≡ {p1, . . . , pn} be a set of predicates on a set of states
S. Then we define relation 'P as follows. For any two states x, y ∈ S, x 'P y
iff

pi(x)⇔ pi(y) for all i = 1 . . . n

Roughly speaking, two states are equivalent w.r.t. 'P if and only if they
satisfy the same subset of predicates of P. Note that the equivalence relation
'P defines a partitioning of the state space S, i.e. each member of the state
space belongs exactly to one equivalence class of the relation 'P .

Intuitively, equivalence classes of the 'P define the best “resolution” which
the set of predicates P enables.

Definition 5.6.2 Let P ≡ {p1, . . . , pn} be a set of predicates on a set of states
S. Let B ≡ {B1, . . . Bn} be a set of boolean variables. Then the abstract
state space SA induced by the set P is the set of normalized 5 boolean ex-
pressions on the variables B1, . . . , Bn. An abstract state will be denoted by
exprA(B1, . . . , Bn).

Now, when we have defined the abstract state space, we need to define
the correspondence between the abstract state space and the concrete state
space. Following the approach of abstract interpretation we will define a Galois
connection.

Definition 5.6.3 Let P ≡ {p1, . . . , pn} be a set of predicates on a set of states
S. Let SA be the abstract state space induced by P.

We will use PS to denote the class of predicates on S. exprA[B/p] will
denote a predicate which is the expression exprA with each occurrence of Bi

replaced by pi. Then the functions α : PS → SA, γ : SA → PS are defined as
follows. For a boolean expression exprA on the variables B1, . . . , Bn:

5In general the set of boolean expressions on B1, . . . , Bn is infinite because of redundancies
(e.g. B1 ∨ B1 ∨ B1). The redundancies can be avoided by considering only normal forms of
the expressions (e.g. DNF).

37

• γ(exprA) = exprA[B/p]

• α(φ) =
∧{exprA(B1, . . . , Bn)|φ⇒ exprA[B/p]}

The above definition is based on the idea that each boolean variable Bi

corresponds to the predicate pi.

Example 5.6.4 Consider the set of natural numbers as the concrete state
space. Let P ≡ {p1, p2}, where p1 ≡ (n > 10) and p2 ≡ (n < 5). Then the
equivalence classes of 'P are:

{5, . . . , 10}
{0, . . . , 4}
{10, 11, . . .}
{}

These equivalence classes are represented by these abstract states respec-
tively:

¬B1 ∧ ¬B2

¬B1 ∧ B2

B1 ∧ ¬B2

B1 ∧ B2

Note that the functions γ and α from the definition 5.6.3 form a Galois
connection. Moreover, each equivalence class of the equivalence relation 'P is
represented by one abstract state6. Therefore for every concrete state s ∈ S
there exists an abstract state sa ∈ SA such that γ(sa)(s) (recall that the
equivalence classes of 'P form a partitioning of the concrete state space S).

Now we have everything that is needed to define predicate abstraction of
a transition system.

Definition 5.6.5 Let P ≡ {p1, . . . , pn} be a set of predicates on a set of states
S. Let T ≡ (S, I, R) be a transition system. Then the predicate abstraction
of the system T , TA ≡ (SA, IA, RA) is defined as follows:

• SA is the abstract state space induced by P
• IA =def α(PI), where PI is a predicate that represents I

• RA(sa1, s
a
2)⇔ sa2 = α(post[R](γ(sa1))

Informally, the definition 5.6.5 defines the best (with respect to the set P)
conservative abstraction of the concrete transition system.

6Each equivalence class of the relation 'P is represented by a boolean expression of the
form C1 ∧ C2 ∧ . . . ∧ Cn, where Ci ≡ Bi or Ci ≡ ¬Bi. Such expressions are called complete
monomials.

38

5.7 Counter-example Refinement

In the previous sections we have defined how the predicate abstraction can be
build. The key issue is how to find a good set of predicates that is used to
build the abstraction.

This section introduces a semi-algorithm that successively refines the ab-
straction. In this semi-algorithm, the abstraction is refined each time a spuri-
ous trace is found. Therefore it is called counter-example refinement [11]. The
abstraction was defined so that it over-approximates the original system. That
means that if the abstract transition system does not contain any abstract
counter-example trace then the concrete transition system does not contain
any counter-example trace, i.e. the concrete transition system is safe. On the
other hand, the abstract transition system may contain a spurious counter-
example trace (see definition 5.5.6), i.e. an abstract trace such that there is no
corresponding counter-example in the concrete transition system.

Definition 5.7.1 A counter example refinement loop is a semi-
algorithm7. The input is a transition system. The result is one of the following:

a) The loop terminates and returns that the input system is safe.

b) The loop terminates and returns a concrete counter-example trace. Such
a trace shows that the input system is not safe.

c) The loop does not terminate.

The loop consists of four phases.

1. (“abstraction”) An abstraction induced by a finite set of predicates P is
built.

2. (“verification”) An abstract counter-example trace is sought in the ab-
stracted system. If no such trace is found return safe. If an abstract
counter-example trace C is found goto phase 3.

3. (“real vs. spurious test”) The abstract counter-example trace C, found in
the phase 2, is tested whether it is a real trace or a spurious trace. If C is
a real trace, return the concrete counter-example trace that corresponds
to the real trace C. If C is a spurious trace then goto phase 4.

4. (“refinement”) Extend the set P with new predicates such that the new
abstract transition system will not contain the spurious trace C.
goto phase 1.

7The loop is not guaranteed to terminate thus it wouldn’t be precise to call an algorithm.

39

The fourth phase (refinement) guarantees that the refined system will not
contain the same spurious trace that has just been found. Nevertheless, the
refinement does not guarantee that there are no other spurious traces. That
is why the counter-example loop is just a semi-algorithm; it is not guaranteed
to terminate8.

The refinement is done by adding new predicates to the set P. A straight-
forward approach is to add the predicates manually; that has been successfully
applied for protocol verification (e.g. [10, 12, 37]). New predicates can also be
computed automatically from the proof of the fact that the counter-example
is spurious.

5.8 Syntactic Forms of Predicates

The fully automatic tools mostly rely on such a set of possible predicates that
the language is decidable (e.g. [24]). Interesting extension was suggested in
[22] where fresh Skolem constants are used to supply predicates with universal
quantification. Such predicates are crucial for reasoning about arrays or other
complex structures. On the other hand, such predicates are hard to discover
automatically.

5.9 Efficiency

The abstract state space induced by a finite set of predicates is finite. Unfortu-
nately, the size of the abstract space is exponential to the number of predicates;
therefore it can get too large during the refinement process. Another source of
efficiency problems are time requirements during the building of the abstract
relation. In both abstract state space building and abstract relation building,
calls to the prover form the most expensive part.

A common approach is to decompose the concrete transition relation into
a finite set of transitions of the form

gi(x) −→ x← assi(x)

where gi(x) is a boolean expression (a guard), x is a finite tuple of variables
that form the concrete state.

Example 5.9.1 Consider the transition system from the example 5.3.1, the
transition relation can be rewritten into the following set of guarded assign-
ments:

8This is inevitable because the problem is undecidable in general.

40

1. pc = 2 ∧ odd(a) −→ (pc← 3, a← a)

2. pc = 2 ∧ ¬odd(a) −→ (pc← 5, a← a)

3. pc = 3 −→ (pc← 5, a← a+ 1)

4. pc = 5 ∧ odd(a) −→ (a← a, pc← 6)

5. pc = 5 ∧ ¬odd(a) −→ (a← a, pc← 7)

Usually, some over-approximation of the abstract relation is computed.

Example 5.9.2 In the original paper on predicate abstraction [37] only
particular elements of the abstract lattice were considered, monomials9 on
B1, . . . , Bn. Then the abstraction function was defined as follows:

α′(P) =def
∧
{Bi|P ⇒ pi}

The concrete transition relation was assumed to be a finite set of guarded as-
signments. Therefore the abstract transition relation was computed separately
for each guarded assignment.

• if exprA[B/p]⇒ ¬gi then τAi =def false

• otherwise:

τAi (exprA) =def
n∧

j=1





Bj if post[τi](expr
A[B/p])⇒ pj

¬Bj if post[τi](expr
A[B/p])⇒ ¬pj

true oterwise

Notice that in the computation of the abstract transition relation, in the
example 5.9.2, dependency between predicates from P is neglected. This is a
common over-approximation technique which is called the cartesian abstraction
(see e.g. [2]).

9A monomial on B1, . . . , Bn is a conjunction of Bi’s and ¬Bi’s where each Bi appears at
most once. Furthermore, we consider false and true as monomials.

41

Chapter 6

A Review of Existing Systems
for Verification

6.1 Java Modeling Language (JML)

JML is a language for annotating Java programs. It follows the scheme of
design by contract. The language has been designed to be as close to the
standard Java code as possible. For example, operators as ==, &&, etc. are
common for both JML and Java.

Example 6.1.1 An example of a Java source annotated with JML:

/*@ requires true;

@ ensures (\return == a || \return == b) && \return >= a

@ && \return >= b;

@*/

int max(int a, int b)

{

if (a > b)

return a;

else

return b;

}

Since “/* ... */” is a Java comment, a standard Java parser will simply skip
the first four lines. On the contrary, for a JML parser the “@” sign signifies
that the commentary is actually a JML annotation. The keyword “requires”
expresses precondition and “ensures” postcondition1 of the function. Note the

1As we have mentioned earlier, changes of values of parameters made inside the function
are not visible to the caller, therefore the formal parameters in the ensures part implicitly
refer to the initial values of parameters.

42

keyword “\result” which is used to denote the result of a function.
On top of the Hoare-style annotations special syntax is added to describe

OOP specific properties (e.g. object invariants, inheritance). The frame prob-
lem is addressed by the “assignable” pragma that enables specifying variables
(visible to the caller) that can be changed in a method.

Example 6.1.2 In the “assignable” pragma a special keyword “\nothing”
can be used to express that nothing can be changed inside the method. The
following is a specification of a function that returns a maximal element of a
given integer array.

/*@ assignable \nothing;

@ requires a != null && a.length > 0;

@ ensures (\forall int i1; i1 >= 0 && i1 < a.length;

@ a[i1] <= \result);

@ ensures (\exists int i1; i1 >= 0 && i1 < a.length;

@ ai[i1] == \result);

@*/

int max(int[] a)

....

There is a wide tool support for JML [4]. Just to name a few. JML
Compiler translates annotations into Java code (and therefore the annota-
tions are tested during the run-time). JMLUnit generates tests that test
whether annotations are not broken. We will mention some other tools in
the following sections. For more information on JML see the JML web-site
[http://www.cs.iastate.edu/ leavens/JML/].

6.2 PVS (SRI)

PVS is a powerful proof assistant, developed by SRI widely used by NASA. Its
primary purpose is to to reason about specifications. It is freely available for
research purposes and therefore it has been used in many other applications.
For example the tool JACK2 can generate proof obligations in PVS language
from Java programs annotated by JML.

The PVS specification language is based on higher-order logic. The lan-
guage is illustrated by the following example.

Example 6.2.1 An example from a tutorial on PVS [9]. The example con-
sists of a theory describing a phone book. It also contains two conjectures.
Conjectures are used to express properties that the author believes should hold.

2See http://www-sop.inria.fr/everest/soft/Jack/core.html

43

One of the conjectures in this example is not valid which exposes deficiency in
the specification.

phone_1: THEORY

BEGIN

N: TYPE % names

P: TYPE % phone numbers

B: TYPE = [N -> P] % phone books

% a constant of type phone number denoting the "empty" phone number

n0: P

% a constant of type phone book denoting the empty phone book

emptybook: B

% an axiom that expresses the fact that everyone

% in the emptybook has the empty phone number

emtyax: AXIOM FORALL (nm: N) : emptybook(nm) = n0

% axiom for a look-up by name function

FindPhone: [B, N -> P]

FindAx: AXIOM FORALL (bk: B), (nm: N) : FindPhone(bk, nm) = bk(nm)

% declaring type of a function AddPhone as a function from

% phone book, name and a phone number to a phone book

AddPhone: [B, N, P -> B]

% axiom for function that assign phone number to a name

Addax: AXIOM FORALL (bk: B), (nm: N), (pn: P):

AddPhone(bk, nm, pn) = bk WITH [(nm) := pn]

% a conjecture that we belive should hold

% (and it can be proven that it does hold)

FindAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

FindPhone(AddPhone(bk, nm, pn), nm) = pn

% an axiom that describes a delete by name function

DelPhone: [B, N -> B]

Delax: AXIOM FORALL (bk: B), (nm: N):

DelPhone(bk, nm) = bk WITH [(nm) := n0]

% a conjecture that turns out to be false

DelAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):

bk(nm) = n0 => DelPhone(AddPhone(bk, nm, pn), nm) = bk

END phone_1

44

Note that the phone book in the above example is represented as a function
from names to phone numbers. Advantage of such a representation is that the
representation does not put any demands on the implementation of the phone
book (structures like hash map, array, linked list, etc. can be used). The
PVS language is typed; all functions must be total and partial functions are
supplemented by restriction on the domain type.

Example 6.2.2 The example 6.2.1 can be extended with a subtype of the type
phone number (denoted as P).

ValidNumber: TYPE = {pn: P | pn /= n0}

The type V alidNumber is formed by those phone numbers that are not equal to
the empty number n0. Then, this type can be used as a domain of a function:

ReverseLookup : [ValidNumber -> N]

The tool is interactive and the user guides the proof by a set of commands.
The user can extend the standard set of commands by so-called strategies.
Briefly, a strategy describes some typical sequence of commands.

A proof is a tree of sequents and the proof is done when all sequents are
proven.

Example 6.2.3 An example of a sequent. The formula above the division line
(the antecedent) states that we assume that X = f(x). The formula bellow the
division line (the consequent) is what we want to prove from the antecedent:

{-1} X = f(X)

|-------

{1} f(f(f(X))) = X

Mostly, core of the proofs are decision procedures. The above example
can be proven by the command “(assert)”, which is a command that select
the appropriate decision procedure(s) and simplifies and/or proves the current
sequent.

6.3 ESCJava

ESCJava [14] is a project started at the Compaq Systems Research Center3

and is continuing as ESCJava/2 at KindSoftware4.

3See http://research.compaq.com/SRC/esc/.
4See http://www.kindsoftware.com/products/opensource/ESCJava2/.

45

The aim of this project is to automatically, at compile time, confront
Java programs with JML annotations. In order to maintain full automaticity
the tool is neither sound nor complete. That is, the tool may report an error
where there isn’t one and it might not find an error where there is one.

Reasoning about loops can be done in two different ways. Either the loop
is unrolled n times (where n is a parameter of the tool) or the loop can be
treated according to the while rule (see definition 4.3.6). When the while rule
is used, loops have to be annotated by loop invariants.

The underlaying prover is Simplify [15]. Integers are modeled as generic
integers, which is one of the sources of unsoundness.

6.4 BLAST (Berkley)

BLAST is a tool based on the predicate abstraction with counter-example
refinement. The input is an ANSI-C program where the safety property is
that the label “ERROR” is not reachable.

The efficiency issues are targeted by a technique called lazy abstraction
[24]. In lazy abstraction the phases of the counter-example refinement loop
are integrated and the abstraction is build “on demand”. The tool is fully au-
tomatic5. The abstract transition relation is over-approximated with cartesian
abstraction. The Simplify prover is used to build the transition abstraction.
Again, integers are modeled as generic integers and the tool is not sound.

6.5 SATABS (Carneggie Mellon)

SATABS is another tool based on the predicate abstraction with counter-
example refinement. Again, the input is an ANSI-C program. The tool is
trying to prove/disprove that assertion hold, null pointers are not dereffer-
enced and array bounds are not exceeded. A boolean program6 is build which
is then model checked. To build the abstracted relation, instead of proving, a
SAT solver is used [5]. Integers are modeled as bitvectors7.

5Nevertheless, users can add predicates if needed.
6Informally, a boolean program is such a program where variables are only of type

boolean. Moreover, recursion is not allowed. Therefore a boolean program is always fi-
nite and can be model checked.

7It can be chosen between 32-bit or 16-bit representation of integer.

46

6.6 UNO (Bell Labs)

UNO is a small and fast tool that is meant to intercept the most common
types of errors in ANSI-C programs. These are:

1. uninitialized variables,

2. nil-pointer dereferencing and

3. out-of-bound array indexing

The tool is capable of intercepting errors of static nature.

Example 6.6.1 On the following program UNO report out-of-boud array ac-
cess:

main ()

{

int i;

int a[10];

for (i = 0; i < 12; i++)

{

a[i] = 5;

}

Nevertheless, many errors remain undetected.

Example 6.6.2 After slight modification of the program from the example
6.6.1, UNO fails to report the error:

main ()

{

int i;

int a[10];

int n = 100;

for (i = 0; i < n; i++)

{

a[i] = 5;

}

}

47

6.7 Comparing Examples

In this section we will compare ESCJava/2, SATABS and BLAST on a small
set of examples. All three tools are fully automatic, nevertheless they cannot
be compared in a completely straight-forward manner.

The examples are presented here in pseudo-code. Each example was mod-
ified for each tool. The ”ERROR” in pseudo-code for BLAST was translated
as “ERROR: goto ERROR”, for SATABS as “assert(0)” and for ESCJAVA/2
as “//@ assert(false)”.

Fot the test containing a loop, ESCJava/2 was run with the “loopSafe”
parameter and the loop invariant was provided.

The examples were all tested on 686 Intel(R) Pentium(R) 4 CPU 2.60GHz
GenuineIntel GNU/Linux.

6.7.1 Test 1

a: integer;
if odd(a) then
a← a + 1

end if
if odd(a) then

ERROR
end if

• This example was classified as erroneous by the BLAST tool, i.e. it re-
turned a false positive.

• The SATABS tool classified this program as safe (ERROR is not reach-
able even in the case of integer overflow).

• ESCJava/2 didn’t produce any warnings.

6.7.2 Test 2

res, a, b, c: integer;
if a > b then

if a > c then
res← a;

else
res← c;

end if
else

48

if b > c then
res← b;

else
res← c;

end if
end if
if ¬(res ≥ a ∧ res ≥ b ∧ res ≥ c) then

ERROR
end if
if ¬(res = a ∧ res = b ∧ res = c) then

ERROR
end if

• The BLAST system verified the program in 0.4 seconds. The following
set of predicates was discovered:

{a = res, a ≤ c, a ≤ res, a ≤ b, b = res, c = res, b ≤ c, b ≤ res}

• The SATABS system verified the program in 3867 seconds, i.e. more than
1 hour.

{b ≥ a, c ≥ a, c ≥ b, res ≥ a, res ≥ b, res ≥ c,

a = b, a = c, res = a, res = b, res = c}

• ESCJava/2 didn’t produce any warnings.

6.7.3 Test 3

1: i, N: integer;
2: i← 0;
3: if N ≥ 0 then
4: while i 6= N do
5: if i > N then
6: ERROR
7: else
8: i← i+ 1
9: end if

10: end while
11: end if

• The BLAST tool classified this program as safe. The set of the discovered
predicates was:

{0 ≤ n, i = 0, i = n, n = 0, i ≤ 1, i ≤ n, n ≤ i− 1}

49

• The SATABS tool classified this program as safe. It discovered the fol-
lowing list of predicates:

{i = n, n ≥ 0, n ≥ i}

6.7.4 Test 3.1

When i > N in line 4 in the program from test 3 is changed to
i ≥ N :

1: i, N: integer;
2: i← 0;
3: if N ≥ 0 then
4: while i 6= N do
5: if i ≥ N then
6: ERROR
7: else
8: i← i+ 1
9: end if

10: end while
11: end if

• BLAST fails to verify the program. It reports that it wasn’t able to find
new predicates.

• SATABS verifies the program and returns the following set of predicates:

{i = n, 0 ≥ n, i ≥ n, n ≥ 0}

ESCJava/2 reports no errors in both tests 3 and 3.1 if the loop is provided
with the loop invariant i ≤ N .

6.7.5 Test 4

The last test demonstrates problems with integer overflow. The following
program is not safe when the integer’s domain is bounded (which is the case
for ANSI-C and Java).

1: j, i: integer;
2: j ← i+ 1;
3: if j < i then
4: ERROR
5: end if

Both BLAST and ESCJava/2 do classify this example as safe; only SA-
TABS detect the error and returns a counter-example.

50

6.7.6 Summary of Tests

The table 6.7.6 summarizes the test results.

Tool/Test Test 1 Test 2 Test 3 Test 3.1 Test 4
BLAST False positive Safe Safe No result Safe*
SATABS Safe Safe Safe Safe Unsafe
ESCJava/2 Safe Safe Safe (li) Safe (li) Safe*

Table 6.1: Summary of tests

“li” denotes that a loop invariant was provided.

“Safe*” denotes that the result is not sound, i.e. that the tool has classified the program as

safe even though it wasn’t.

The tests has shown that predicate abstraction with counter-example
refinement is capable of discovering non-trivial predicates. Nevertheless time
requirements are rather high. Using a SAT solver has shown to be more
accurate. Nevertheless, as test 2 has shown, the time requirements are very
difficult to predict and can be very high.

The test 3.1 is an interesting one. To verify the loop, the predicate i > N
(or ¬(i ≤ N)) is needed. Note that i ≤ N is a loop invariant for the loop. This
predicate was present directly in the source code in the test 3. By replacing
i > N with i ≥ N we have “stolen” the clue for the refinement algorithm.
Note that i < N (or ¬(i ≥ N)) is not a loop invariant of the loop, even
though it holds at each entry into the loop (but not when the loop terminates).
Obviously, the predicate i > N can be supplemented by the combination
i ≥ N ∧ ¬(i = N) (both predicates are present in the source code). Most
likely, this combination is lost by the over-approximation that BLAST uses.

51

Chapter 7

Benefits and Drawbacks of the
Techniques

7.1 Benefits of Annotated Code

If we use the framework thoroughly we are guaranteed that the program be-
haves as it was specified by the annotations.

If we follow design by contract we gain these main advantages:

• It is clear whom to blame for bugs. It is either the client who failed to
establish the preconditions required by the supplier or the supplier has
failed to deliver what was specified by the contract.

• Efficiency. For the same reasons as mentioned above, duplicated code
can be avoided1. This effect can be strengthened by automated theo-
rem proving that provides us with a guarantee, if it succeeds, that the
duplicated checks are unnecessary.

• Documentation of the source code. The precondition, postcondition pair
serves as a documentation of the (sub)program2. If this is done well,
then in most cases the user (client) of the code doesn’t have to fully
understand the inner details of the code. Which is extremely useful in
code reuse and team work.

1In some sense opposite approach is defensive programming where the code is robust as
possible.

2Potentially, also object invariants and other constructs.

52

7.2 Problems with Annotations

One of the main problem of design by contract is underspecification. That is,
when the contract does not entirely capture capabilities of the supplier. The
problem is illustrated by the following example.

Example 7.2.1 Example of an underspecified function.

//@ ensures \result == a || \result == b;

int max(int a, int b)

{

if (a > b)

return a;

else

return b;

}

//@ ensures (\result == a || \result == b || \result == c) &&

//@ (\result >= a || \result >= b || \result >= c);

int max3(int a, int b, int c)

{

int d = max(a, b);

return max(d, c);

}

In the example 7.2.1 the specification of the function max is correct, i.e.
the implementation obeys the contract. Nevertheless, the specification of max
is not sufficient to prove correctness of the function max3. Obviously, the
problem of underspecification sets high demands on the level of expressiveness
of the contract language. Moreover, some properties are very hard to specify.

The original idea was that the programmer provides the annotation before
actually writing the code and that program development would be driven by
the annotations. After 30 years we must note that this hasn’t become part of
the general routine. There exists a bunch of opinions why this is so. Here are
some of the major ones:

• Not everyone who writes software is familiar with mathematical logic.

• Writing annotations is tedious, usually the logic text is of the same size
as the code.

• Writing annotations and reasoning is difficult. Again, additional skills
are required. Especially, providing loop invariants can be difficult.

53

• Writing specifications is difficult in principle.

The problems connected to the loop invariant deserve a special care. Often,
it is seen as one of the major obstacles to program annotation. As we have
noted above, postconditions and preconditions serve also as documentation of
a (sub)program. The loop invariant does not have this additional value, i.e.
it is relevant only to the body of the procedure. The argument, that the loop
invariant can serve as a “guide” to writing loops, is somewhat disputable. The
problem is illustrated by the following example.

Example 7.2.2 An algorithm for natural numbers division:

N, Quotient, Remainder, Divisor: NaturalNumber;
Quotient← 0;
Remainder ← N ;
while Remainder > Divisor do
Quotient← Quotient + 1;
Remainder ← Remainder −Divisor;

end while

The idea in the programmer’s head is: “The division computes how many
times I can fit the Divisor in N . So let’s decrease N by Divisor until I can”.
The loop invariant “N = Quotient ∗Divisor + Remainder” looks more as a
consequence and is not directly derivable from the idea3.

3Nevertheless, the loop invariant can be a good guide for optimizations.

54

Chapter 8

Suggestions

8.1 Warnings for Specification Language

Compilers of programming languages provide a programmer with warnings.
Warnings mark constructs that are not necessarily wrong but are in some
sense odd (depreciated, unusual, etc.). Such a mechanism should be available
for the specification languages too.

Example 8.1.1 Out of bound array access:

//@ ensures (\forall int i1; i1 >= 0 & i1 <= a.length; a[i1] == 1);

Example 8.1.2 Null pointer dereference:

//@ requires a.length > 0;

Instead we would expect:

//@ requires a != null && a.length > 0;

Example 8.1.3 Trivially satisfiable statements

/*@ requires (\exists int v, vi; vi >= 0 && vi < a.length;

@ a[vi] == v);

@*/

Such a specification is probably not correct, the preconditions is satisfiable
whenever a.length > 0.

55

8.2 Extend Compiler Warnings

Since the verification tools already contain an automated prover, the prover
should be employed to detect suspicious constructs.

Example 8.2.1 Detection of infinite loops.
In general, for a while loop of the form

while B do S end while

we are looking for such an invariant I that

{I ∧ B} S {I ∧ B}

Example of such a loop:

i: NaturalNumber;
i← 2;
while even(i) do
i← i ∗ 2

end while

Example 8.2.2 Detection of expressions (namely boolean expressions) that
always evaluate to the same value.
For example:

...some code...

t = 1;

if ((t - 1) < 2)

....some code...

Annotations could be employed in such a reasoning:

...some code...

//@ invariant i > 0 && i < n;

while (...) do

{

....some code...

if (i = n)

//i = n evaluates to false if the loop invariant holds

....some code...

}

56

8.3 User Interface Extensions

It should be possible for a user to invoke automated loop invariant guessing
that would add the loop invariant directly into the source code. Moreover, it
should be possible to chose from different loop invariant guessing algorithms.
For example, predicate abstraction can be used for invariant guessing. Nev-
ertheless, some frequent invariants can be derived simply from the syntactic
information.

Example 8.3.1 One of the most common patterns of a loop:

//@ invariant i >= 0 & i <= 10;

for (int i = 0; i < 10; i ++)

{

... some code that does not affect i ...

}

8.4 Automation

Nowadays, there is a great amount of SW applications that are not very com-
plex. On the contrary, similar tasks are repeated over and over again.

A good amount of SW applications rely on large and powerful libraries. Be-
cause these libraries are being used by so many programmers their correctness
is extremely important. Full verification of complicated algorithms is a diffi-
cult task. Nevertheless, it can be done (see e.g. [19]). Moreover, the amount
of work needed to verify these libraries per user is very little.

Semi-automated tools, exploiting annotated and verified libraries, could be
used for program development. A similar (in a smaller scale) approach was
already used (e.g. the Amphion system1).

1See http://ti.arc.nasa.gov/ase/synpub.html or [38].

57

Chapter 9

Summary

In this Thesis we have addressed one particular set of techniques that can help
in software development – formal methods. Specifically, we have focused on the
approaches where automated theorem proving is exploited. In the first part of
the Thesis we have introduced two main techniques of program verification –
program annotation and predicate abstraction. On various examples, we have
analyzed the benefits these techniques convey and also pointed out some of
their weak points.

The two techniques introduced in the first part of the Thesis were chosen
deliberately. The applicability of these techniques has been proven by various
implementations which is reflected by the second part where we have presented
a set of tools that are based upon these techniques1. Furthermore, we have
devised a set of examples on which we studied capabilities and drawbacks of
these tools and differences between them. The Thesis was closed by various
suggestions on specification languages design and tool support.

Software development has many aspects – economical, scientific or even
sociological. For successful employment of formal methods, all of these aspects
should be taken into account. In this Thesis we have demonstrated that there
is a vast unused potential in formal methods, specifically in:

1. Automated reasoning,

2. Tool combination and

3. General user comfort

We have shown that automated reasoning plays a crucial role in software verifi-
cation. The automated theorem provers battle with a delicate balance between

1It should be noted that all the presented tools are freely available (at least for research
purposes), i.e. we have not dealt with commercial tools.

58

computational complexity and the range of proof tasks that the prover can tar-
get. We have presented two different tools (BLAST, ESCJava) that both rely
on the same theorem prover (Simplify theorem prover). Even though Simplify
is nowadays one of the best automatic theorem provers for SW verification
we have shown it suffers from serious problems. Therefore it is obvious that
there still is a great potential in adjusting automated theorem proving to SW
verification.

We have demonstrated that nowadays tools are capable of automatic han-
dling of non-trivial tasks. Each tool can help a software developer in solving
things of various nature. Each tool conveys results of different type. These
results vary in reliability and precision and how much effort is needed to be
invested by the user to obtain the result. We should note, that there is a lack
of combinations of these tools.

It should not be neglected that some techniques and approaches may be
rejected simply because developers don’t like to use them for no particular
rational reasons, i.e. the reasons might be more of a psychological nature.
Moreover, the software industry is driven, as any other industry, mainly by
economical results. From managerial point of view the application of formal
methods may seem slow and inefficient. Therefore, formal methods should be
made more easy to use and employ. Users should be allowed to chose from
tools and their combinations according to their needs; the tools should reflect
the fact that the users are generally programmers, not mathematicians.

9.1 Future Work

The suggestion in the end of this Thesis should be enhanced2. Naturally, it
would be interesting to implement some of the suggestion – as for example
tool combinations – and perform more tests. Similar tests could also be done
for other types of tools3 .

The suggestions proposed in this Thesis should also be integrated in other
formal methods research4.

2For example, more types of warnings for specification languages should be explored and
these should be provided with severity level.

3For example the tool PREfix [30].
4For general proposals on future research see e.g. [26, 40].

59

Bibliography

[1] K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent
programs. Springer-Verlag, 1991.

[2] Tom Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and carte-
sian abstraction for model checking C programs. International Journal
on Software Tools for Technology Transfer (STTT), Special Section on
TACAS’01, 2003. To appear.

[3] Kent Beck. eXtreme Programming eXplained, Embrace Change. Addison
Wesley, 2000.

[4] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. International Journal on Software Tools for
Technology Transfer (STTT), 2004. To appear.

[5] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.
SATABS: SAT-based Predicate Abstraction for ANSI-C . In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2005),
volume 3440 of Lecture Notes in Computer Science, pages 570–574.
Springer Verlag, 2005.

[6] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applica-
tions, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1981.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

60

[8] P. Cousot and R. Cousot. Static analysis of embedded software: Prob-
lems and perspectives, invited paper. In T.A. Henzinger and C.M. Kirsch,
editors, Proc. First Int. Workshop on Embedded Software, EMSOFT
2001, volume 2211 of Lecture Notes in Computer Science, pages 97–113.
Springer, 2001.

[9] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, , and Man-
dayam Srivas. A tutorial introduction to PVS. April 1995.

[10] Satyaki Das and David L. Dill. Successive approximation of abstract tran-
sition relations. In Proceedings of the Sixteenth Annual IEEE Symposium
on Logic in Computer Science, 2001. June 2001, Boston, USA.

[11] Satyaki Das and David L. Dill. Counter-example based predicate discovery
in predicate abstraction. In Formal Methods in Computer-Aided Design.
Springer-Verlag, November 2002.

[12] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with pred-
icate abstraction. In 11th International Conference on Computer-Aided
Verification. Springer-Verlag, July 1999. Trento, Italy.

[13] E. Denney, B. Fischer, and J. Schumann. Using Automated Theorem
Provers to Certify Auto-generated Aerospace Software. In M. Rusinow-
itch and D. Basin, editors, Proceedings of the 2nd International Joint
Conference on Automated Reasoning, number 3097 in Lecture Notes in
Artificial Intelligence, pages 198–212, 2004.

[14] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Technical Report #159, Palo Alto, USA, 1998.

[15] David L. Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem
Prover for Program Checking. Technical report, Palo Alto, USA, July
2003. Available at http://research.sun.com/people/detlefs/bib.html.

[16] Edsger W. Dijkstra. The Humble Programmer. Communications of the
ACM, 15(10):859–866, October 1972.

[17] Gerald L. Dillingham. Role of FAA’s Medernization Program in Reducing
Delays and Congestion.

[18] Bruce Eckel. Thinking in Java 2. Prentice-Hall, 2000.

[19] J.-C. Filliâtre. Preuve de programmes impératifs en théorie des types.
Thèse de doctorat, Université Paris-Sud, July 1999.

61

[20] Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and N. Shankar. ICS:
integrated canonizer and solver. To be presented at CAV’2001, 2001.

[21] M. J. Fisher and M. O. Rabin. Superexponential complexity of pres-
burger’s arithmetic. SIAM-AMS Proceedings, 7:27–41, 1974.

[22] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software
verification. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 191–
202, New York, NY, USA, 2002. ACM Press.

[23] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[24] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Lazy abstraction. In Proceedings of the 29th Annual Symposium
on Principles of Programming Languages (POPL), ACM Press, 2002, pp.
58-70, 2002.

[25] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[26] Tony Hoare. The verifying compiler: A grand challenge for computing
research. Journal of the ACM, 50(1):63–69, 2003.

[27] Heinrich Hußmann. Formal Foundations for Software Engineering Meth-
ods, volume 1322 of LNCS. Springer-Verlag, 1997.

[28] ISO/IEC, editor. Programming Language C. ISO/IEC, 1999.

[29] Bell Labs. Basic Spin Manual. Available at http://cm.bell-
labs.com/cm/cs/what/spin/Man/Manual.html.

[30] C. H. Levy, Luiz Henrique de Figueiredo, Marcelo Gattass, Carlos
Jose Pereira de Lucena, and Donald D. Cowan. IUP/LED: A Portable
User Interface Development Tool. SP&E, 1996.

[31] Donald W. Loveland. Automated Theorem Proving: A Logical Basis.
North-Holland Publishing Co., Amsterdam, 1978.

[32] Bertrand Meyer. Applying ”Design by Contract”. Computer, 25(10):40–
51, 1992.

[33] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In CASSIS. Springer-Verlag, 2004.

62

[34] Nimal Nissanke. Formal Specification: Techniques and Applications.
Springer, 1999.

[35] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam,
1989.

[36] J. Paris and L. Harrington. A mathematical incompleteness in peano
arithmetic. In J. Barwise, editor, Handbook of Mathematical Logic, pages
1133–1142. North-Holland, Amsterdam, 1977.

[37] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
O. Grumberg, editor, Proc. 9th INternational Conference on Computer
Aided Verification (CAV’97), volume 1254, pages 72–83. Springer Verlag,
1997.

[38] Johann M. P. Schumann. Automated Theorem Proving in Software Engi-
neering. Springer, 2000.

[39] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound
checker. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 132–143, New
York, NY, USA, 1977. ACM Press.

[40] The British Computer Society. Grand Challenges in Computing -
Research. Edited by Tony Hoare and Robin Milner, available at
http://www.ukcrc.org.uk/.

63

