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CNF and Unsatisfiability

{ x ∨ y , ¬x ,¬y , z }

MUS

An UNSAT set of clauses that becomes SAT by removing any
clause is called minimally unsatisfiable set (MUS)

MUS-Membership

IN: a clause ω and a CNF φ

Q: Is there an MUS ψ ⊆ φ such that ω ∈ ψ?
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Motivation

Restoring Consistency

Removing a clause that is not part of any MUS, will certainly not
restore consistency.

Product Configuration

When configuring a product, some sets of its features result in an
inconsistent configuration. Clearly, it is useful for the user(s) to
know if a feature is relevant for the inconsistency.
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How Hard Is It?

y2,

y1,

x2,

x1,

y2 → ¬z ,

y1 → ¬z ,

x2 → z ,

x1 → z ,{

ω }

MUS-Membership is ΣP
2 -complete [Kul07]
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Approaches to the Problem

MUS-membership

MSS-membership

Circ-Infer, O(n)
[JGMS10]

QBF2,∃, O(n)
[JMS11]

QBF3,∃, O(n) QBF2,∃, O(n2)
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Quantifying over Subsets

Relaxation

φ∗ = {c ∨ rc | c ∈ φ}

Relaxing Clauses Example

φ = {x ∨ y ,¬x ,¬y}
φ∗ = {r1 ∨ x ∨ y , r2 ∨ ¬x , r3 ∨ ¬y}

r1 = 0 r1 ∨ x ∨ y
r2 = 0 r2 ∨ ¬x
r3 = 1 r3 ∨ ¬y
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Modeling Elements

Membership

∃R. ¬rω

Unsat

∃R.∀X . ¬φ∗(R,X )

Subset

R = {r1, . . . , rn}, R ′ = {r ′1, . . . , r ′n}

R < R ′ ≡
∧
ri∈R

ri ⇒ r ′i ∧
∨
ri∈R
¬ri ∧ r ′i
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Näıve Approaches

Schema

exists ψ ⊆ φ s.t. ω ∈ ψ and ψ is unsatisfiable and forall ψ′ ( ψ
is satisfiable

3-level quantification

∃R. ¬rω ∧ (∀X .¬φ∗(R,X )) ∧ (∀R ′.(R < R ′)⇒ ∃X ′.φ∗(R ′,X ′))

2-level quantification, O(n2)

∃R. ¬rω∧(∀X .¬φ∗(R,X ))∧∧
rωi
∈R (¬rωi ⇒ ∃Xωi .φ∗[rωi/1](R,Xωi ))

2-level quantification, O(n2), prefix form

∃RXω1 . . . ∃Xωn∀X . ¬rω ∧ ¬φ∗(R,X ) ∧∧
rωi
∈R (¬rωi ⇒ φ∗[rωi/1](R,Xωi ))
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From MUS-Membership to MSS-Membership

MSS

A set of clauses ψ ⊆ φ is a Maximally Satisfiable Subset (MSS) iff
ψ is satisfiable and any set ψ′ ⊆ φ such that ψ ( ψ′ is
unsatisfiable.

MSS-membership

IN: A CNF formula φ and a clause ω ∈ φ.

Q: Is there an MSS ψ of φ such that ω /∈ ψ?
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MUS-Membership ↔ MSS-membership

A clause ω belongs to some MUS iff there is some MSS that does
not contain ω.

MSS-membership to QBF

∃R∃X∀R ′∀X ′. rω ∧ φ∗(R,X ) ∧ (R ′ < R ⇒ ¬φ∗(R ′,X ′))
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Minimal Models

A model of a formula is V-minimal iff flipping any subset of
1-values of variables from V to 0, yields a non-model.
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Entailment in Circumscription

CircInfer

IN: τ and ψ be propositional formulas

Q: Does ψ hold in all minimal models of τ .

τ |=min ψ

CircInfer, complexity

Deciding τ |=min ψ is in ΠP
2 -complete [EG93]
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MSSes and Minimal Models

φ = {x ,¬x , z}
r1 . . . x
r2 . . . ¬x
r3 . . . z
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{¬x , z}, [1,0,0]{x , z}, [0,1,0]
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From MSS-Membership to CircInfer

MSSes ↔ Min. Models

MSSes correspond to R-minimal models of φ∗(R,X ).

MUS-Membership ↔ MSS-Membership ↔
CircInfer

A clause ω belongs to some MUS of φ iff there exists a R-minimal
model M of φ∗ such that M |= rω, equivalently:

φ∗ 2circ
R ¬rω
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cmMUS look4MUS MSS enum. 2lev. lin.

Nemesis (223) 223 223 31 29

DC (84) 46 13 49 36

dining phil. (22) 17 17 4 8

dimacs (87) 87 82 51 51

ezfact (41) 20 11 11 10

total (457) 393 346 146 134

2lev. qv. 3lev. lin. (QuBE) 3lev. lin. (sSolve)

Nemesis (223) 9 13 0

DC (84) 0 4 0

dining phil. (22) 2 1 0

dimacs (87) 18 25 4

ezfact (41) 0 0 0

total (457) 29 43 4
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Results
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Summary

MUS-membership

MSS-membership

Circ-Infer, O(n)
[JGMS10]

QBF2,∃, O(n)
[JMS11]

QBF3,∃, O(n) QBF2,∃, O(n2)
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Mikoláš Janota, Radu Grigore, and Joao Marques-Silva.
Counterexample guided abstraction refinement algorithm for
propositional circumscription.
In JELIA ‘10, 2010.
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