On Deciding MUS Membership with QBF

Mikoláš Janota¹ Joao Marques-Silva^{1,2}

 $^1\,\rm INESC-ID/IST,\ Lisbon,\ Portugal <math display="inline">^2\,\rm CASL/CSI,\ University\ College\ Dublin,\ Ireland$

$$\{x \lor y, \neg y, \neg x, z\}$$

$$\{x \lor y, \neg y, \neg x, z\}$$

$$\{x \lor y, \neg y, \neg x, z\}$$

MUS

An UNSAT set of clauses that becomes SAT by removing any clause is called **m**inimally **unsatisfiable set (MUS)**

$$\{x \lor y, \neg y, \neg x, z\}$$

MUS

An UNSAT set of clauses that becomes SAT by removing any clause is called **m**inimally **unsatisfiable set (MUS)**

MUS-MEMBERSHIP

IN: a clause ω and a CNF ϕ

Q: Is there an MUS $\psi \subseteq \phi$ such that $\omega \in \psi$?

Motivation

Restoring Consistency

Removing a clause that is not part of any MUS, will certainly not restore consistency.

Motivation

Restoring Consistency

Removing a clause that is **not** part of any MUS, will certainly not restore consistency.

Product Configuration

When configuring a product, some sets of its features result in an inconsistent configuration. Clearly, it is useful for the user(s) to know if a feature is relevant for the inconsistency.

{ <i>x</i> ₁ ,		$x_1 ightarrow z$,
<i>x</i> ₂ ,		$x_2 \rightarrow z$,
<i>y</i> ₁ ,		$y_1 ightarrow \neg z$,
<i>y</i> 2,		$y_2 \rightarrow \neg z$,
ω	}	

 $\left\{\begin{array}{lll} x_1, & x_1 \rightarrow z, \\ x_2, & x_2 \rightarrow z, \\ y_1, & y_1 \rightarrow \neg z, \\ y_2, & y_2 \rightarrow \neg z, \\ \omega & \right\}$

MUS-MEMBERSHIP is Σ_2^P -complete [Kul07]

(INESC-ID & UCD)

Approaches to the Problem

Relaxation

$$\phi^* = \{ c \lor r_c \mid c \in \phi \}$$

Relaxation

$$\phi^* = \{ \mathbf{c} \lor \mathbf{r_c} \mid \mathbf{c} \in \phi \}$$

Relaxing Clauses Example

•
$$\phi = \{x \lor y, \neg x, \neg y\}$$

• $\phi^* = \{r_1 \lor x \lor y, r_2 \lor \neg x, r_3 \lor \neg y\}$

Relaxation

$$\phi^* = \{ c \lor r_c \mid c \in \phi \}$$

Relaxing Clauses Example

$$\phi = \{x \lor y, \neg x, \neg y\}$$

$$\phi^* = \{r_1 \lor x \lor y, r_2 \lor \neg x, r_3 \lor \neg y\}$$

$$r_1 = 0 | r_1 \lor x \lor y$$

$$r_2 = 0 | r_2 \lor \neg x$$

$$r_3 = 1 | r_3 \lor \neg y$$

Relaxation

$$\phi^* = \{ c \lor r_c \mid c \in \phi \}$$

Relaxing Clauses Example

$$\phi = \{x \lor y, \neg x, \neg y\}$$

$$\phi^* = \{r_1 \lor x \lor y, r_2 \lor \neg x, r_3 \lor \neg y\}$$

$$r_1 = 0 | r_1 \lor x \lor y$$

$$r_2 = 0 | r_2 \lor \neg x$$

$$r_3 = 1 | r_3 \lor \neg y$$

Modeling Elements

Membership

 $\exists R. \neg r_{\omega}$

Modeling Elements

Membership

 $\exists R. \neg r_{\omega}$

Unsat

 $\exists R.\forall X. \neg \phi^*(R, X)$

Modeling Elements

Membership

 $\exists R. \neg r_{\omega}$

Unsat

 $\exists R. \forall X. \neg \phi^*(R, X)$

Subset

$$R = \{r_1, \dots, r_n\}, \ R' = \{r'_1, \dots, r'_n\}$$
$$R < R' \equiv \bigwedge_{r_i \in R} r_i \Rightarrow r'_i \land \bigvee_{r_i \in R} \neg r_i \land r'_i$$

Schema

exists $\psi \subseteq \phi$ s.t. $\omega \in \psi$ and ψ is unsatisfiable and forall $\psi' \subsetneq \psi$ is satisfiable

Schema

exists $\psi \subseteq \phi$ s.t. $\omega \in \psi$ and ψ is unsatisfiable and forall $\psi' \subsetneq \psi$ is satisfiable

3-level quantification

 $\exists R. \neg r_{\omega} \land (\forall X. \neg \phi^*(R, X)) \land (\forall R'. (R < R') \Rightarrow \exists X'. \phi^*(R', X'))$

Schema

exists $\psi \subseteq \phi$ s.t. $\omega \in \psi$ and ψ is unsatisfiable and forall $\psi' \subsetneq \psi$ is satisfiable

3-level quantification

 $\exists R. \neg r_{\omega} \land (\forall X. \neg \phi^*(R, X)) \land (\forall R'. (R < R') \Rightarrow \exists X'. \phi^*(R', X'))$

2-level quantification, $O(n^2)$

 $\exists R. \neg r_{\omega} \land (\forall X. \neg \phi^*(R, X)) \land \land r_{\omega_i \in R} (\neg r_{\omega_i} \Rightarrow \exists X^{\omega_i} . \phi^*[r_{\omega_i}/1](R, X^{\omega_i}))$

Schema

exists $\psi \subseteq \phi$ s.t. $\omega \in \psi$ and ψ is unsatisfiable and forall $\psi' \subsetneq \psi$ is satisfiable

3-level quantification

 $\exists R. \neg r_{\omega} \land (\forall X. \neg \phi^*(R, X)) \land (\forall R'. (R < R') \Rightarrow \exists X'. \phi^*(R', X'))$

2-level quantification, $O(n^2)$

$$\exists R. \neg r_{\omega} \land (\forall X. \neg \phi^*(R, X)) \land \land r_{\omega_i \in R} (\neg r_{\omega_i} \Rightarrow \exists X^{\omega_i} . \phi^*[r_{\omega_i}/1](R, X^{\omega_i}))$$

2-level quantification, $O(n^2)$, prefix form $\exists RX^{\omega_1} \dots \exists X^{\omega_n} \forall X. \neg r_{\omega} \land \neg \phi^*(R, X) \land \land \land r_{\omega_i \in R} (\neg r_{\omega_i} \Rightarrow \phi^*[r_{\omega_i}/1](R, X^{\omega_i}))$

(INESC-ID & UCD)

Approaches to the Problem

From $\operatorname{MUS-Membership}$ to $\operatorname{MSS-Membership}$

MSS

A set of clauses $\psi \subseteq \phi$ is a Maximally Satisfiable Subset (MSS) iff ψ is satisfiable and any set $\psi' \subseteq \phi$ such that $\psi \subsetneq \psi'$ is unsatisfiable.

From $\operatorname{MUS-Membership}$ to $\operatorname{MSS-Membership}$

MSS

A set of clauses $\psi \subseteq \phi$ is a Maximally Satisfiable Subset (MSS) iff ψ is satisfiable and any set $\psi' \subseteq \phi$ such that $\psi \subsetneq \psi'$ is unsatisfiable.

$\operatorname{MSS-MEMBERSHIP}$

- IN: A CNF formula ϕ and a clause $\omega \in \phi$.
- Q: Is there an MSS ψ of ϕ such that $\omega \notin \psi$?

$\mathrm{MUS}\text{-}\mathrm{Membership}\leftrightarrow\mathrm{MSS}\text{-}\mathrm{membership}$

A clause ω belongs to some MUS iff there is some MSS that does not contain $\omega.$

$\mathrm{MUS}\text{-}\mathrm{Membership}\leftrightarrow\mathrm{MSS}\text{-}\mathrm{membership}$

A clause ω belongs to some MUS iff there is some MSS that does not contain ω .

 $MSS\mbox{-}{\mbox{MEMBERSHIP}}$ to QBF

 $\exists R \exists X \forall R' \forall X'. r_{\omega} \land \phi^*(R, X) \land (R' < R \Rightarrow \neg \phi^*(R', X'))$

Entailment in Circumscription

CIRCINFER

- IN: τ and ψ be propositional formulas
- Q: Does ψ hold in all minimal models of $\tau.$

$\tau \models_{\min} \psi$

Entailment in Circumscription

CIRCINFER

- IN: τ and ψ be propositional formulas
- Q: Does ψ hold in all minimal models of $\tau.$

 $\tau \models_{\min} \psi$

CIRCINFER, complexity

• Deciding $\tau \models_{\min} \psi$ is in Π_2^P -complete [EG93]

$$\phi = \{x, \neg x, z\} \qquad \begin{array}{cccc} r_1 & \dots & x\\ r_2 & \dots & \neg x\\ r_3 & \dots & z \end{array}$$

$$\phi = \{x, \neg x, z\} \qquad \begin{array}{cccc} r_1 & \dots & x \\ r_2 & \dots & \neg x \\ r_3 & \dots & z \end{array}$$

$$\phi = \{x, \neg x, z\} \qquad \begin{array}{cccc} r_1 & \dots & x \\ r_2 & \dots & \neg x \\ r_3 & \dots & z \end{array}$$

$$\phi = \{x, \neg x, z\} \qquad \begin{array}{cccc} r_1 & \dots & x\\ r_2 & \dots & \neg x\\ r_3 & \dots & z \end{array}$$

From $\operatorname{MSS-Membership}$ to $\operatorname{CircInfer}$

 $MSSes \leftrightarrow Min. Models$

MSSes correspond to *R*-minimal models of $\phi^*(R, X)$.

From $\operatorname{MSS-Membership}$ to $\operatorname{CircInfer}$

$\mathsf{MSSes} \leftrightarrow \mathsf{Min.} \; \mathsf{Models}$

MSSes correspond to *R*-minimal models of $\phi^*(R, X)$.

 $\begin{array}{l} \text{MUS-Membership} \leftrightarrow \text{MSS-Membership} \leftrightarrow \\ \text{CircInfer} \end{array}$

A clause ω belongs to some MUS of ϕ iff there exists a *R*-minimal model *M* of ϕ^* such that $M \models r_{\omega}$, equivalently:

$$\phi^* \nvDash_R^{circ} \neg r_\omega$$

	cmMUS	look4MUS	look4MUS MSS en		2lev. lin.]
Nemesis (223)	223	223	31		29]
DC (84)	46	13	49		36	1
dining phil. (22)	17	17	4		8]
dimacs (87)	87	82	51		51]
ezfact (41)	20	11	11		10]
total (457)	393	346	146		134]
	2lev. qv.	3lev. lin.	3lev. lin. (QuBE)		3lev. lin. (sSolve)	
Nemesis (223)	9	13	13		0	
DC (84)	0	4	4		0	
dining phil. (22)	2	1	1		0	
dimacs (87)	18	25	25		4	
ezfact (41)	0	0	0		0	
total (457)	29	43	43		4	

Results

(INESC-ID & UCD)

Summary

Thomas Eiter and Georg Gottlob.

Propositional circumscription and extended closed-world reasoning are $\Pi^P_2\text{-complete.}$

Theor. Comput. Sci., 114(2):231–245, 1993.

- Mikoláš Janota, Radu Grigore, and Joao Marques-Silva.
 Counterexample guided abstraction refinement algorithm for propositional circumscription.
 In JELIA '10, 2010.
- Mikoláš Janota and Joao Marques-Silva. Abstraction-based algorithm for 2QBF. In SAT, 2011.
- Oliver Kullmann.

Constraint satisfaction problems in clausal form: Autarkies and minimal unsatisfiability. ECCC, 14(055), 2007.