CURRENT TRENDS IN QBF SOLVING

Mikoláš Janota
BNP 2016, Phoenix AZ

Microsoft Research, Cambridge, UK

- SAT - for a Boolean formula, determine if it is satisfiable
- Example: $(x \vee y) \wedge(x \vee \neg y)$
$x \triangleq 1, y \triangleq 0$
- QBF - for a Quantified Boolean formula, determine if it is true
- Example: $\forall x \exists y$. $(x \leftrightarrow y)$
- Quantifications as shorthands for connectives ($\forall=\wedge, \exists=\vee$)

Example:
(1) $\forall x \exists y .(x \leftrightarrow y)$
(2) $\forall x \cdot(x \leftrightarrow 0) \vee(x \leftrightarrow 1)$
(3) $((0 \leftrightarrow 0) \vee(0 \leftrightarrow 1)) \wedge((1 \leftrightarrow 0) \vee(1 \leftrightarrow 1))$
(4) 1 (True)

RELATION TO COMPLEXITY THEORY

- Deciding QBF is PSPACE complete

RELATION TO TWO-PLAYER GAMES

- In this talk we consider prenex form: Quantifier-prefix.Matrix
Example $\forall y_{1} y_{2} \exists x_{1} x_{2} .\left(\neg y_{1} \vee x_{1}\right) \wedge\left(y_{2} \vee \neg x_{2}\right)$
- A QBF represents a two-player games between \forall and \exists.
- \forall wins a game if the matrix becomes false.
- \exists wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for \forall.
- A QBF is true iff there exists a winning strategy for \exists. Example

$$
\forall u \exists e .(u \leftrightarrow e)
$$

\exists-player wins by playing $e \triangleq u$.

WHY QUANTIFIED BOOLEAN FORMULAS?

- "Funamental problem": PSPACE, 2-player games (fin. space)
- Direct applications
- model checking (subproblems)
- (circuit) synthesis
- non-monotonic reasoning
- conformant planning
-...
- In other reasoners?
- SMT (e.g. Quantified bit vectors)
- optimization with quantification ("MaxQBF")
- ...

EXAMPLE: SMALLEST MUS

Given a CNF ϕ, construct the following QBF.

$$
\exists S \forall X . \neg\left(\bigwedge_{C \in \phi}\left(\neg S_{C} \vee C\right)\right) \wedge|S| \leq k
$$

Where

- $S=\left\{S_{C} \mid C \in \phi\right\}$ are fresh variables
- X are the original variables of ϕ
- $k \in \mathbb{N}$
[Ignatiev et al., 2015]

PROPAGATION IN QCNF

CDCL SAT solving can be lifted to QBF [Zhang and Malik, 2002].
Example \exists-propagation:

$$
\forall x_{1} \exists x_{2} \ldots \forall x_{k} \exists x_{k+1} \ldots\left(x_{1} \vee x_{2} \vee x_{k} \vee x_{k+1}\right) \wedge \phi
$$

- If $x_{1}=x_{k+1}=0$, then \exists must play $x_{2}=1$.
- As otherwise \forall would win by setting $x_{k}=0$.

Example \forall-propagation:

$$
\exists x_{1} \ldots \forall x_{k} \ldots\left(x_{k} \vee C_{1}\right) \wedge\left(x_{k} \vee C_{2}\right) \wedge\left(x_{1} \vee C_{3}\right)
$$

- If $x_{1}=1$, then \forall must play $x_{k}=0$.

Unification for the 2 players: [Zhang, 2006] [Klieber, 2014]
[Goultiaeva et al., 2013]

Q-RESOLUTION: PROOF SYSTEM FOR DPLL-BASED SOLVERS

Q-resolution=Q-resolution rule $+\forall$-reduction
 [Büning et al., 1995]

$$
\forall u \exists \mathrm{e} .(\mathrm{u} \vee \neg \mathrm{e}) \wedge(\mathrm{u} \vee \mathrm{e})
$$

SOLVING BY CEGAR EXPANSION

$\exists \mathcal{E} \forall \mathcal{U} . \phi=\exists \mathcal{E} . \bigwedge_{\mu \in \mathcal{2}^{\mathcal{U}}} \phi[\mu]$

Can be solved by SAT $\left(\bigwedge_{\mu \in 2^{u}} \phi[\mu]\right)$. Impractical!
Expand gradually instead: [Janota et al., 2012]

- Pick τ_{0} arbitrary assignment to \mathcal{E}
- SAT $\left(\neg \phi\left[\tau_{0}\right]\right)=\mu_{0}$ assignment to \mathcal{U}
- $\operatorname{SAT}\left(\phi\left[\mu_{0}\right]\right)=\tau_{1}$ assignment to \mathcal{E}
- $\operatorname{SAT}\left(\neg \phi\left[\tau_{1}\right]\right)=\mu_{2}$ assignment to \mathcal{U}
- $\operatorname{SAT}\left(\phi\left[\mu_{0}\right] \wedge \phi\left[\mu_{1}\right]\right)=\tau_{2}$ assignment to \mathcal{E}

OVERVIEW OF QBF SOLVERS

RESULTS, QBF-GALLERY '14, APPLICATION TRACK

- CDCL is characterized by Q-resolution [Büning et al., 1995]
- Expansion is characterized by \forall Exp + Res [Janota and Marques-Silva, 2015]
- These calculi are incomparable [Beyersdorff et al., 2015].

CALCULI zoo [BEYERSDORFF ET AL., 2015]

- There are two distinct approaches to solving: expansion and conflict-driven learning
- The approaches correspond to different proof systems, which are incomparable.
- Challenge: There are calculi with no corresponding solvers.
- Challenge: There are formula with easy strategies but that are hard to solve. How to look for strategies? [Bjфrner et al., 2015]
- Challenge: How to make QBF more attractive, more theories? [Bjørner and Janota, 2015]

Beyersdorff, O., Chew, L., and Janota, M. (2015). Proof complexity of resolution-based QBF calculi.
In STACS.
R Bjørner, N. and Janota, M. (2015).
Playing with quantified satisfaction.
In LPAR.
圊 Bjørner, N., Janota, M., and Klieber, W. (2015).
On conflicts and strategies in QBF.
In LPAR.
嗇 Büning, H. K., Karpinski, M., and Flögel, A. (1995). Resolution for quantified Boolean formulas.
Inf. Comput., 117(1).
Goultiaeva, A., Seidl, M., and Biere, A. (2013). Bridging the gap between dual propagation and CNF-based QBF solving.

In DATE, pages 811-814.
Ignatiev, A., Janota, M., and Marques-Silva, J. (2015).
Quantified maximum satisfiability.
Constraints, pages 1-26.
R- Janota, M., Klieber, W., Marques-Silva, J., and Clarke, E. M. (2012).

Solving QBF with counterexample guided refinement.
In SAT, pages 114-128.
R Janota, M. and Marques-Silva, J. (2015).
Expansion-based QBF solving versus Q-resolution.
Theoretical Computer Science, 577(0):25-42.
Elieber, W. (2014).
Formal Verification Using Quantified Boolean Formulas (QBF).
PhD thesis, Carnegie Mellon University.

圊 Zhang, L. (2006).
Solving QBF by combining conjunctive and disjunctive normal forms.
In AAAI.
Rhang, L. and Malik, S. (2002).
Conflict driven learning in a quantified Boolean satisfiability solver.
In ICCAD.

