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sat and qbf

• SAT — for a Boolean formula, determine if it is satisfiable
• Example: (x ∨ y) ∧ (x ∨ ¬y)
x , 1, y , 0

• QBF — for a Quantified Boolean formula, determine if it is
true

• Example: ∀x∃y. (x ↔ y)
• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)
Example:
(1) ∀x∃y. (x ↔ y)
(2) ∀x. (x ↔ 0) ∨ (x ↔ 1)
(3) ((0 ↔ 0) ∨ (0 ↔ 1)) ∧ ((1 ↔ 0) ∨ (1 ↔ 1))
(4) 1 (True)
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relation to complexity theory
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• Deciding QBF is PSPACE complete
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relation to two-player games

• In this talk we consider prenex form:
Quantifier-prefix.Matrix
Example ∀y1y2∃x1x2. (¬y1 ∨ x1) ∧ (y2 ∨ ¬x2)

• A QBF represents a two-player games between ∀ and ∃.
• ∀ wins a game if the matrix becomes false.
• ∃ wins a game if the matrix becomes true.
• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.
Example

∀u∃e. (u ↔ e)

∃-player wins by playing e , u.
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why quantified boolean formulas?

• “Funamental problem”: PSPACE, 2-player games (fin.
space)

• Direct applications
• model checking (subproblems)
• (circuit) synthesis
• non-monotonic reasoning
• conformant planning
• . . .

• In other reasoners?
• SMT (e.g. Quantified bit vectors)
• optimization with quantification (“MaxQBF”)
• . . .
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example: smallest mus

Given a CNF ϕ, construct the following QBF.

∃S∀X.¬

∧
C∈ϕ

(¬sC ∨ C)

 ∧ |S| ≤ k

Where

• S = {sC | C ∈ ϕ} are fresh variables
• X are the original variables of ϕ
• k ∈ N

[Ignatiev et al., 2015]
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propagation in qcnf

CDCL SAT solving can be lifted to QBF [Zhang and Malik, 2002].

Example ∃-propagation:

∀x1∃x2 . . . ∀xk∃xk+1 . . . . (x1 ∨ x2 ∨ xk ∨ xk+1) ∧ ϕ

• If x1 = xk+1 = 0, then ∃ must play x2 = 1.
• As otherwise ∀ would win by setting xk = 0.

Example ∀-propagation:

∃x1 . . . ∀xk . . . . (xk ∨ C1) ∧ (xk ∨ C2) ∧ (x1 ∨ C3)

• If x1 = 1, then ∀ must play xk = 0.

Unification for the 2 players: [Zhang, 2006] [Klieber, 2014]
[Goultiaeva et al., 2013]
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q-resolution: proof system for dpll-based solvers

Q-resolution=Q-resolution rule+∀-reduction
[Büning et al., 1995]

∀u∃e. (u ∨ ¬e) ∧ (u ∨ e)

u ∨ eu ∨ ¬e
e

u

⊥
∀u
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solving by cegar expansion

∃E ∀U . ϕ = ∃E .
∧

µ∈2U ϕ[µ]

Can be solved by SAT
(∧

µ∈2U ϕ[µ]
)
. Impractical!

Expand gradually instead: [Janota et al., 2012]

• Pick τ0 arbitrary assignment to E
• SAT(¬ϕ[τ0]) = µ0 assignment to U
• SAT(ϕ[µ0]) = τ1 assignment to E
• SAT(¬ϕ[τ1]) = µ2 assignment to U
• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E
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overview of qbf solvers

QBF Solving

Other

DPLL-Based

QuBE

depQBF

GhostQ

CirQit
Expansion-

Based

quantor nenofex

sKizzo

Careful
Expansion

AReQS

RAReQS

Janota Current Trends in QBF solving 10 / 14



results, qbf-gallery ’14, application track
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what about theory?

• CDCL is characterized by Q-resolution [Büning et al., 1995]
• Expansion is characterized by ∀Exp+Res

[Janota and Marques-Silva, 2015]
• These calculi are incomparable [Beyersdorff et al., 2015].
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calculi zoo [Beyersdorff et al., 2015]

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc strictly stronger

incomparable

new results

expansion solving

CDCL solving
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summary and challenges

• There are two distinct approaches to solving: expansion
and conflict-driven learning

• The approaches correspond to different proof systems,
which are incomparable.

• Challenge: There are calculi with no corresponding
solvers.

• Challenge: There are formula with easy strategies but that
are hard to solve. How to look for strategies?
[Bjørner et al., 2015]

• Challenge: How to make QBF more attractive, more
theories? [Bjørner and Janota, 2015]
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