# CURRENT TRENDS IN QBF SOLVING

### Mikoláš Janota

BNP 2016, Phoenix AZ

Microsoft Research, Cambridge, UK

### SAT AND QBF

- $\cdot$  SAT for a Boolean formula, determine if it is satisfiable
- Example:  $(x \lor y) \land (x \lor \neg y)$

 $x \triangleq 1, y \triangleq 0$ 

- QBF for a *Quantified* Boolean formula, determine if it is true
- Example:  $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives  $(\forall = \land, \exists = \lor)$

Example:

- (1)  $\forall x \exists y. (x \leftrightarrow y)$
- (2)  $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$
- $(3) \ ((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1))$
- (4) 1 (True)

#### **RELATION TO COMPLEXITY THEORY**



• Deciding QBF is PSPACE complete

- In this talk we consider prenex form: Quantifier-prefix. Matrix Example  $\forall y_1y_2 \exists x_1x_2$ .  $(\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player games between  $\forall$  and  $\exists$ .
- $\forall$  wins a game if the matrix becomes false.
- $\cdot \exists$  wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for  $\forall$ .
- A QBF is true iff there exists a winning strategy for ∃.
  Example

## $\forall u \exists e. (u \leftrightarrow e)$

 $\exists$ -player wins by playing  $e \triangleq u$ .

Janota

- "Funamental problem": PSPACE, 2-player games (fin. space)
- Direct applications
  - model checking (subproblems)
  - (circuit) synthesis
  - non-monotonic reasoning
  - conformant planning
  - . . .
- In other reasoners?
  - SMT (e.g. Quantified bit vectors)
  - optimization with quantification ("MaxQBF")
  - . . .

Given a CNF  $\phi$ , construct the following QBF.

$$\exists S \forall X. \neg \left( \bigwedge_{C \in \phi} \left( \neg s_{C} \lor C \right) \right) \land |S| \leq k$$

Where

- $S = \{s_C \mid C \in \phi\}$  are fresh variables
- + X are the original variables of  $\phi$
- $k \in \mathbb{N}$

[Ignatiev et al., 2015]

CDCL SAT solving can be lifted to QBF [Zhang and Malik, 2002]. Example ∃-propagation:

 $\forall x_1 \exists x_2 \ldots \forall x_k \exists x_{k+1} \ldots (x_1 \lor x_2 \lor x_k \lor x_{k+1}) \land \phi$ 

- If  $x_1 = x_{k+1} = 0$ , then  $\exists$  must play  $x_2 = 1$ .
- As otherwise  $\forall$  would win by setting  $x_k = 0$ .

Example ∀-propagation:

 $\exists x_1 \ldots \forall x_k \ldots (x_k \lor C_1) \land (x_k \lor C_2) \land (x_1 \lor C_3)$ 

• If  $x_1 = 1$ , then  $\forall$  must play  $x_k = 0$ .

Unification for the 2 players: [Zhang, 2006] [Klieber, 2014] [Goultiaeva et al., 2013]

Janota

Current Trends in QBF solving

*Q-resolution*=Q-resolution rule + ∀-reduction [Büning et al., 1995]

$$\forall \mathsf{u} \exists \mathsf{e}. \, (\mathsf{u} \lor \neg \mathsf{e}) \land (\mathsf{u} \lor \mathsf{e})$$



$$\exists \mathcal{E} \forall \mathcal{U}. \ \phi = \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

Can be solved by SAT  $\left( \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu] \right)$ . Impractical! Expand gradually instead: [Janota et al., 2012]

- Pick  $au_0$  arbitrary assignment to  ${\cal E}$
- SAT $(\neg \phi[\tau_0]) = \mu_0$  assignment to  $\mathcal{U}$
- $SAT(\phi[\mu_0]) = \tau_1$  assignment to  $\mathcal{E}$
- SAT( $\neg \phi[\tau_1]$ ) =  $\mu_2$  assignment to  $\mathcal{U}$
- SAT $(\phi[\mu_0] \land \phi[\mu_1]) = \tau_2$  assignment to  $\mathcal{E}$

#### **OVERVIEW OF QBF SOLVERS**



### RESULTS, QBF-GALLERY '14, APPLICATION TRACK



#### Current Trends in QBF solving

- CDCL is characterized by Q-resolution [Büning et al., 1995]
- Expansion is characterized by ∀Exp+Res [Janota and Marques-Silva, 2015]
- These calculi are incomparable [Beyersdorff et al., 2015].

# CALCULI ZOO [BEYERSDORFF ET AL., 2015]



- There are two distinct approaches to solving: expansion and conflict-driven learning
- The approaches correspond to different proof systems, which are incomparable.
- Challenge: There are calculi with no corresponding solvers.
- Challenge: There are formula with easy strategies but that are hard to solve. How to look for strategies?
   [Bjørner et al., 2015]
- Challenge: How to make QBF more attractive, more theories? [Bjørner and Janota, 2015]

Beyersdorff, O., Chew, L., and Janota, M. (2015).
 Proof complexity of resolution-based QBF calculi.
 In STACS.

- Bjørner, N. and Janota, M. (2015).
  Playing with quantified satisfaction.
  In LPAR.
- Bjørner, N., Janota, M., and Klieber, W. (2015).
  On conflicts and strategies in QBF.
  In LPAR.
- Büning, H. K., Karpinski, M., and Flögel, A. (1995).
  Resolution for quantified Boolean formulas.
  Inf. Comput., 117(1).
- Goultiaeva, A., Seidl, M., and Biere, A. (2013).
  Bridging the gap between dual propagation and CNF-based QBF solving.

In DATE, pages 811–814.

- Ignatiev, A., Janota, M., and Marques-Silva, J. (2015).
  Quantified maximum satisfiability.
  Constraints, pages 1–26.
- Janota, M., Klieber, W., Marques-Silva, J., and Clarke, E. M. (2012).

Solving QBF with counterexample guided refinement. In *SAT*, pages 114–128.

- Janota, M. and Marques-Silva, J. (2015). **Expansion-based QBF solving versus Q-resolution.** Theoretical Computer Science, 577(0):25–42.
- Klieber, W. (2014).
  Formal Verification Using Quantified Boolean Formulas (QBF).
   PhD thesis Carnegia Mollon University.

PhD thesis, Carnegie Mellon University.

Janota

# Zhang, L. (2006). Solving QBF by combining conjunctive and disjunctive normal forms.

In AAAI.

Zhang, L. and Malik, S. (2002).
 Conflict driven learning in a quantified Boolean satisfiability solver.

In ICCAD.