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Abstract

The problem of propositional satisfiability (SAT) has
found a number of applications in both theoreti-
cal and practical computer science. In many appli-
cations, however, knowing a formula’s satisfiability
alone is insufficient. Often, some other properties of
the formula need to be computed. This article fo-
cuses on one such property: the backbone of a for-
mula, which is the set of literals that are true in all
the formula’s models. Backbones find theoretical ap-
plications in characterization of SAT problems and
they also find practical applications in product con-
figuration or fault localization. This article overviews
existing algorithms for backbone computation and in-
troduces two novel ones. Further, an extensive evalu-
ation of the algorithms is presented. This evaluation
demonstrates that one of the novel algorithms signif-
icantly outperforms the existing ones.

1 Introduction

A backbone of a propositional formula φ is formed
by literals that are true in all models of φ [27, 3, 17].
Alternatively, one can view a backbone as the set of
necessary assignments: if a literal l is in the backbone
of φ, any assignment satisfying φ must set l to true.

∗This paper is based on, but significantly extends, papers
presented at ECAI 2010 and RCRA 12 on the same subject [22,
23]. This is a preprint of a paper accepted to RCRA 2012 AI-
Com special issue.

The term backbone was coined in research on
the phase transitions in Boolean Satisfiability (SAT),
where the size of a backbone was related with search
complexity. In addition, backbones have also been
studied in random 3-SAT [7] and in optimization
problems [6, 31, 18, 34], including Maximum Satis-
fiability (MaxSAT) [35, 26]. Finally, backbones have
been the subject of recent interest, in the analysis of
backdoors [10] and in probabilistic message-passing
algorithms [12].

Backbones appear in a number of practical ap-
plications of SAT. One concrete example is SAT-
based interactive product configuration [2], where the
identification of a backbone was utilized in the re-
cent past [19, 16, 14, 15]. Identification of a back-
bone during the configuration process prevents the
user from choosing values that cannot be extended
to a model (or configuration). Another recent ap-
plication of backbones is post-silicon fault localiza-
tion in integrated circuits [37, 36]. Manolios and
Papavasileiou show that backbones enable improving
the solving of pseudo-Boolean constraints via compi-
lation to SAT [21]. Lonsing and Biere use backbones
to preprocess quantified Boolean formulas [20].

It is worth mentioning that throughout the litera-
ture, the concept of backbone appears under various
terms. For instance, inadmissible and necessary vari-
ables [16], bound literals [15], fixed assignments [37],
units [21], or frozen variables [1]. Also, we should
note that the concept of a backbone is closely related
to the concept of failed literals. A literal l is failed in
a formula φ in conjunctive normal form if unit prop-
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agation derives falsity for the formula φ ∧ l [9]. If a
literal l is a failed literal, then the complementary lit-
eral l̄ is part of the backbone of φ (but not the other
way around).

Besides uses in practical applications, backbones
provide relevant information exploitable in other
problems related to propositional theories. Such
problems can be decision problems but also enumer-
ation or optimization problems. Concrete examples
include model enumeration, minimal model compu-
tation and prime implicant computation, among oth-
ers.

This article provides the following main contribu-
tions. 1) The article overviews recent algorithms for
backbone computation [22, 37]. 2) The article pro-
vides a unifying algorithm for backbone computa-
tion, and shows that some of the recent algorithms
for backbone computation are special cases of this
unifying algorithm. 3) It develops a novel algorithm
based on unsatisfiable cores, which outperforms the
existing ones. 4) The article develops a novel tech-
nique for backbone filtering from implicants, named
rotatable literals. 5) The article describes a compre-
hensive experimental evaluation of the best backbone
computation algorithms. This experimental evalua-
tion is carried out on an extensive set of problem
instances from practical applications and past SAT
competitions. The experimental results support early
data [22] that large instances, coming from practical
applications, can have large backbones, in many cases
close to 90% of the variables. In addition, the experi-
mental results confirm that a careful implementation
of some of the proposed algorithms enables us com-
puting the backbone of large problem instances.

The article is organized as follows. Section 2 intro-
duces notation and definitions used throughout the
article. Section 3 studies several properties of back-
bones essential for the development of the algorithms.
Section 4 describes several algorithms for computing
backbones where two of these algorithms are novel.
Relations between the presented algorithms are dis-
cussed. Section 5 proposes techniques for filtering
literals from a backbone estimate given a model of
the formula in question. Section 6 outlines possible
heuristics and portfolio uses of the presented algo-
rithms. Section 7 analyzes experimental results on

large practical instances of SAT, taken from repre-
sentative practical applications and from recent SAT
competitions1. Finally, Section 8 concludes the arti-
cle.

2 Preliminaries

Throughout the paper we assume a universe of
Boolean variables X. A literal is a Boolean variable
or its negation. A clause is a disjunction of zero or
more literals. A formula in conjunctive normal form
(CNF) is a conjunction of clauses. In this article all
formulas are in CNF and therefore whenever we say
formula, we automatically assume a formula in CNF.
Whenever convenient, a clause is seen as a set of lit-
erals and a formula as a set of clauses.

For a literal l, we write l̄ to denote its comple-
ment, i.e. x̄ = ¬x, ¬x = x. For a literal l, we
write var(l) to denote the variable in the literal, i.e.
var(x) = x, var(x̄) = x. Analogously, for a clause
ω, var(ω) = {var(l) | l ∈ ω} and for a formula φ,
var(φ) =

⋃
ω∈φ var(ω).

The following definitions are adopted from [24]. An
assignment ν is a mapping from X to {0, u, 1}, ν :
X → {0, u, 1}. The constant u has the meaning of
an unspecified value, and we define 0 < u < 1 and
1−u = u. The assignment ν is a complete assignment
if ν(x) ∈ {0, 1} for all x ∈ X; otherwise, ν is a partial
assignment. Given a literal l, ν(l) = ν(x) if l =
x, and ν(l) = 1 − ν(x) if l = x̄. An assignment ν
is also applicable to a clause and a formula. The
values are defined as ν(ω) = maxl∈ω ν(l) and ν(φ) =
minω∈φ ν(ω).

A formula φ is satisfiable iff there exists an assign-
ment ν such that ν(φ) = 1. A formula is unsatisfiable
iff it is not satisfiable.

2.1 Models and Implicants

An assignment ν satisfies a formula φ iff the formula
evaluates to 1 under the assignment, i.e. ν(φ) = 1.
Analogously, we say that an assignment ν satisfies a
literal/clause. We say that ν satisfies a set of literals
L iff it satisfies all literals l ∈ L. An assignment ν is

1http://www.satcompetition.org/.
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a model of a formula φ iff it satisfies φ and it specifies
a value for each variable in φ, i.e. ν(x) ∈ {0, 1} for all
x ∈ var(φ).

Definition 1 (implicant). An implicant ν of a for-
mula φ is a set of literals such that it does not con-
tain two complementary literals and any assignment
µ that satisfies ν satisfies φ.

An implicant ν of φ is a prime implicant iff there
is no other implicant ν′ of φ such that ν′ ( ν.

Observe that any implicant ν of φ has a nonempty
intersection with each of the clauses in φ. Conse-
quently, any set of non-contradictory literals ν′ s.t.
ν ⊆ ν′ is also an implicant of φ.

2.2 Backbones

A widely used definition of a backbone is given in [17]
(see [6] for an alternative definition):

Definition 2 (backbone literal). Let φ be a satisfi-
able formula. A literal l is a backbone literal of φ iff
µ(l) = 1 for any model µ of φ.

Definition 3 (backbone). For a satisfiable formula
φ, its backbone is the set of all of its backbone literals.

Example 1. For the formula φ = {x̄ ∨ ȳ, x, z ∨ w},
the literals x and ȳ form the backbone of φ.

Note that any satisfiable formula φ has a unique
backbone and that any literal that is a backbone lit-
eral of φ must be part of that backbone. Hence,
the expressions “ l is a backbone literal of φ” and
“ l is in the backbone of φ” will be used interchange-
ably. Often, when φ is clear from the context, it is
omitted.

In addition, the computation of the backbone of a
formula is referred to as the backbone problem.

Remark 1. This paper focuses on backbones of sat-
isfiable formulas as in for instance [17]. It is pos-
sible, however, to define backbones for unsatisfiable
instances [27] or optimization instances [18].

3 Properties of Backbones

Directly following the definition of a backbone, a pos-
sible solution for computing the backbone of a for-
mula consists in intersecting all of its models. The
following simple propositions tell us that it is suffi-
cient to focus only on implicants of the formula. First
we observe that any backbone literal must appear in
an arbitrary implicant.

Proposition 1 (backbone literals and implicants).
Let φ be a satisfiable formula, l a literal, and ν an
implicant of φ. If l is a backbone literal of φ, then
l ∈ ν. Conversely, if l /∈ ν then l is not a backbone
literal.

Proof. Assume that l /∈ ν. Construct an assignments
µ that assigns true to all literals in ν and µ(l) = 0.
Additionally, put µ to an arbitrary value for variables
var(φ) r (var(ν) ∪ var(l)). Since ν is an implicant φ,
any assignment that satisfies ν satisfies φ. Hence, µ
is a model of φ that shows that l is not a backbone
literal.

Consequently, if we consider a set of implicants
that covers all the models of the formula, it is suf-
ficient to intersect only those to get the backbone.

Proposition 2 (backbone and implicant cover). Let
φ be a satisfiable formula and l a literal. Consider a
set of implicants I such that any model of φ satisfies
at least one of the implicants in I. The literal l is
a backbone literal of φ iff l occurs in all implicants
in I.

Proof. If the literal l is in the backbone, then it must
occur in all implicants of φ due to Proposition 1.

For contradiction, assume that l is not a backbone
literal. Therefore there is a model µ of φ such that
µ(l) = 0. Due to the condition on I, this assignment
µ satisfies some implicant ν ∈ I. However, this is a
contradiction because l ∈ ν.

Proposition 2 gives us a recipe for how to compute
a backbone through implicants: look for new impli-
cants until they cover the given formula and compute
an intersection of those implicants.
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Another approach to computing the backbone is in-
spired by the complexity classification of the problem.
Deciding whether a literal is in the backbone or not is
co-NP-complete [15, Claim 2]. The functional prob-
lem of computing the backbone is NP-equivalent [17],

Proposition 3. Let φ be a satisfiable formula and
x ∈ var(φ). Consider the modified formulas φP =
φ∪{x} and φN = φ∪{x̄}. Then one of the following
holds:

1. φP is satisfiable and φN is unsatisfiable. Hence
the literal x is a backbone literal of φ.

2. φN is satisfiable and φP is unsatisfiable. Hence
the literal x̄ is a backbone literal of φ.

3. Both φN and φP are satisfiable. Hence neither
the literal x̄ nor x is a backbone literal of φ.

Proposition 3 shows that deciding whether a literal
is a backbone literal or not is in co-NP. The following
proposition shows that it is also co-NP-hard.

Proposition 4. [15, Claim 2]. Let φ be a formula
and l a literal. Deciding whether l is a backbone literal
of φ is co-NP-hard.

Proof. Let ψ be a CNF. Let x be some variable that
does not appear in ψ. Construct the following CNF
ψ′ = {ω ∨ x | ω ∈ ψ}. The formula ψ′ is satisfiable
because setting x to true satisfies all clauses of ψ′.
Observe that an assignment τ to variables var(ψ) is
a model of ψ iff τ ∪ {x̄} is a model of ψ′ ∧ x̄.

We show that x is a backbone literal of ψ′ if and
only if ψ is unsatisfiable. If x is a backbone literal,
there is no assignment satisfying ψ′ setting x to false,
and hence ψ has no models. If x is not a backbone
literal, there is a model τ of ψ′ with x̄ ∈ τ . Conse-
quently, τ r {x̄} is a model of ψ. Hence determining
whether x is a backbone literal decides whether ψ is
unsatisfiable, which is co-NP-complete.

Propositions 3 and 4 show that determining
whether a literal is a backbone literal is co-NP-
complete. This suggests algorithms that compute the
backbone of a formula with a sequence of SAT tests
that grows with |var(φ)|, as suggested for example
in [16, 14, 10]. The idea is followed and extended in
the upcoming section.

4 Computing Backbones

This section presents a number of algorithms for
backbone computation. The presentation begins
with an implicant enumeration algorithm (based on
Proposition 2) and it continues with an algorithm
that tests one literal at a time (based on Proposi-
tion 3) [22]. Further, the section discusses an algo-
rithm based on negating a backbone estimate [37]. A
novel algorithm is introduced, which uses the notion
of subsets of a backbone estimate (chunks) and it is
shown that two of the previous algorithms are a spe-
cial case of this novel one. The last part of the section
focuses on the second novel algorithm, which uses un-
satisfiable cores (“reasons for unsatisfiability”).

For the purpose of algorithm presentation we as-
sume that a SAT solver is represented by a function
SAT(φ), which returns a pair (outc, ν). The first
component outc has either the value true or false,
corresponding to satisfiability or unsatisfiability of φ,
respectively. If φ is satisfiable, i.e. outc = true, the
second component ν is an implicant of φ. We mod-
ify this representation slightly when describing the
core-based algorithms in Section 4.4.

Remark 2. In practice SAT solvers return assign-
ments to all variables in the given formula rather
than implicants. Clearly, any such assignment cor-
responds to an implicant that contains a literal for
each variable. We choose to model the return value
of a SAT solver as an implicant since it simplifies
the presentation and moreover, makes the algorithms
more general. Section 5 discusses how implicants can
be reduced for the purpose of efficiency.

4.1 Implicant Enumeration

An algorithm for computing the backbone of a propo-
sitional formula based on implicant enumeration is
shown in Algorithm 1. The algorithm enumerates
implicants one by one and updates the backbone es-
timate in each iteration. In order to avoid finding
the same implicant again, the algorithm adds to the
formula a blocking clause [29, 25]. A blocking clause
for an implicate ν is defined as the clause

∨
l∈ν l̄, as

shown in line 7. Adding the blocking clauses to the
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Algorithm 1: Enumeration-based backbone computation

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 νR ← {x | x ∈ var(φ)} ∪ {x̄ | x ∈ var(φ)} // Initial backbone upper bound

2 while νR 6= ∅ do
3 (outc, ν)← SAT(φ) // SAT solver call

4 if outc = false then
5 return νR // Terminate if no more implicants

6 νR ← νR ∩ ν // Update backbone estimate

// Block implicant

7 ωB ←
∨
l∈ν l̄

8 φ← φ ∪ ωB
9 assert(νR = ∅) // Backbone estimate became empty before enumeration finished

10 return νR

formula is both a necessary and a sufficient condition
for the implicant ν not to be found again.

In order to mitigate the size of blocking clauses, the
implicant returned by the SAT solver can be heuris-
tically reduced by standard techniques, e.g. variable
lifting [29]. We return to this topic in more detail in
Section 5.

It is interesting to observe that Algorithm 1 main-
tains a superset of the backbone, i.e. it maintains an
upper bound of the backbone (in terms of the subset
ordering).

4.2 Iterative SAT Testing

Enumerating implicants has its clear limitations since
the number of implicants is in the worst-case expo-
nential in the number of variables (cf. [4]). An alter-
native to enumerating implicants is to focus at each
literal separately and test whether it is a backbone
literal or not.

Proposition 3 shows that a literal is in the back-
bone iff SAT(φ ∪ {l̄}) is unsatisfiable. This observa-
tion allows us devising Algorithm 2. Observe that if
a literal is decided to be a backbone literal, then it
is correct to add it to the formula as a unit clause,
as shown in lines 8 and 11. This addition is not re-
quired for the correctness of the algorithm, but it is

expected to simplify the remaining SAT tests. The
worst case number of SAT tests for Algorithm 2 is
2× |var(φ)|.

Recall that a SAT solver not only tells us whether
the given formula is satisfiable or not, but it also
gives us an implicant of a satisfiable formula. Recall
also that any backbone literal must be in any impli-
cant (Proposition 1). This gives us an opportunity to
improve Algorithm 2. Once we obtain an implicant
from a SAT call, we do not have to test anymore any
of those literals that do not appear in the implicant.

This observation suggests a different organization,
corresponding to Algorithm 3. The algorithm main-
tains a set of literals Λ of those literals that still need
to be tested. The set is initialized by an implicant φ
obtained by a SAT call. Hence, when the loop starts,
the set Λ contains at most |var(φ)| literals. In each
iteration of the loop, the algorithm picks a literal l to
test and subsequently tests if l is in the backbone by
the call SAT(φ∪{ l̄ }). If l is in the backbone, φ∪{ l̄ }
is unsatisfiable and l is stowed in νR. If l is not in the
backbone, φ ∪ { l̄ } is satisfied by some implicant ν,
which is used to remove from Λ those literals that do
not appear in it. Observe that the tested literal l is
removed from Λ in line 12. This is because ν satisfies
φ ∪ { l̄ } and therefore l /∈ ν.

Algorithm 3 guarantees that the loop iterates at
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Algorithm 2: Iterative algorithm (two tests per variable)

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 νR ← ∅ // Initial backbone lower bound

2 foreach x ∈ var(φ) do
3 (outc1, ν)← SAT(φ ∪ {x})
4 (outc0, ν)← SAT(φ ∪ {x̄})
5 assert ( outc1 = true or outc0 = true ) // φ must be satisfiable

6 if outc1 = false then
7 νR ← νR ∪ {x̄} // x̄ is backbone

8 φ← φ ∪ {x̄}
9 if outc0 = false then

10 νR ← νR ∪ {x} // x is backbone

11 φ← φ ∪ {x}

12 return νR

most |var(φ)| times. Hence, the algorithm performs
at most |var(φ)|+ 1 SAT tests in total.

In contrast to the enumeration-based approach, Al-
gorithm 2 refines a subset of the backbone. In each
iteration of the algorithm, the set νR represents a
lower bound of the backbone. Algorithm 3 integrates
the two bounds, lower and upper, together. Even
though Algorithm 3 does not have an explicit repre-
sentation of the upper bound, it maintains its explicit
representation in the form Λ ∪ νR. When the algo-
rithm terminates, Λ becomes empty and νR consists
of all the backbone literals.

4.3 Integrating the Complemented
Backbone Estimate

An algorithm that complements the algorithms de-
scribed in the previous sections was recently proposed
in [37]. Although in practice this algorithm is less ef-
ficient than the algorithms described in the previous
section, namely Algorithm 3, it is guaranteed to re-
quire fewer SAT solver calls. Indeed, the algorithm
described in [37] is also based on iterative SAT test-
ing but only a single SAT solver call is required to
prove that the current backbone estimate is indeed
the backbone. This section studies this algorithm

and proposes optimizations targeting improved effi-
ciency.

Algorithm 4 shows the algorithm developed in [37].
In each iteration of the loop, a complement of the
backbone estimate is conjoined to the formula and
tested for satisfiability (line 4). If the formula is
satisfiable, then the computed implicant includes at
least one literal in the complement of the backbone
estimate. Hence, the backbone estimate is refined
(line 7). The process is repeated until the backbone
estimate represents the actual backbone, in which
case the formula is unsatisfiable.

Proposition 5. Let |BB| denote the backbone size.
Then, the number of SAT tests in Algorithm 4 is at
most (|var(φ)|−max(|BB|, 1) + 1) + 1 ≤ |var(φ)|+ 1.

Proposition 6. There is exactly one unsatisfiable
SAT test for Algorithm 4. The number of satisfiable
SAT tests is at most |var(φ)| − |BB| ≤ |var(φ)|.

As observed in [37], Algorithm 4 mostly performs
poorly when compared with the algorithms described
in previous sections. This is a consequence of negat-
ing the whole backbone estimate, which tends to re-
sult in difficult instances of SAT.

A solution to the problem of negating the whole
backbone estimate is to iteratively analyze its sub-
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Algorithm 3: Iterative algorithm (one test per variable)

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 (outc, ν)← SAT(φ)
2 Λ← ν // SAT tests planned

3 νR ← ∅ // Initial backbone lower bound

4 while Λ 6= ∅ do
5 l← pick a literal from Λ // Pick a literal to test

6 (outc, ν)← SAT(φ ∪ { l̄ }) // Test if l is a backbone

7 if outc = false then
// Backbone identified

8 νR ← νR ∪ { l } // Add l to the backbone estimate

9 Λ = Λ r { l } // l does not need to be tested anymore

10 φ← φ ∪ { l }
11 else
12 Λ← Λ ∩ ν // Literal filtering

13 return νR

sets. This process consists of splitting the backbone
estimate into chunks of some size K as presented in
Algorithm 5. The algorithm has the same structure
as Algorithm 4 but instead of adding a clause of the
size of the whole backbone estimate, a clause of sizeK
is added. The intuition behind this clause is “show
that at least one of the literals in the chunk is not a
backbone literal.”

Interestingly, the use of chunks covers both Al-
gorithm 4, when a single chunk is used, and Algo-
rithm 3, when chunks of size 1 are used.

Proposition 7. Algorithm 4 corresponds to Algo-
rithm 5 with chunk size |var(φ)|. Algorithm 3 corre-
sponds to Algorithm 5 with chunk size 1.

4.4 Core-based Algorithm

In the previous algorithms we compute the backbone
using the following pattern. First, we find some im-
plicant ν, which gives us an initial estimate of the
backbone. All the literals that do not appear in ν are
not in the backbone. The literals that do appear in ν
might be in the backbone. To prove or disprove that

certain literal l ∈ ν is in the backbone, we try to flip
it. More precisely, we try to find a different implicant
that contains the complementary literal.

The key question is how to look for this other im-
plicant. In Algorithm 5 we look for an implicant that
flips at least one of the literals in ν. In this section, we
take a different approach that tries to flip all literals
in ν at the same time. If we are lucky and we manage
to do that, we show that there are no backbone lit-
erals and the algorithm terminates after 2 SAT calls.
This is illustrated by the following example.

Example 2. Let φ = {x ∨ y, x̄ ∨ ȳ} and ν = {x, ȳ}.
The set ν is an implicant of φ; flipping all its literals
yields ν′ = {x̄, y} Since ν′ is also an implicant of φ,
the backbone of φ is empty.

In general, however, it is not possible to flip all the
literals at the same time. Consequently, the proposed
algorithm gradually reduces the set of literals that it
tries to flip. In order to decide which literals should
no longer be flipped, the algorithm assumes that the
SAT solver is capable of giving us a core—a set of
clauses responsible for unsatisfiability.
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Algorithm 4: Iterative algorithm with complement of backbone estimate

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 (outc, ν)← SAT(φ)
2 νR ← ν // Initial backbone estimate

3 while νR 6= ∅ do
4 (outc, ν)← SAT(φ ∪ {

∨
l∈νR l̄ })

5 if outc = false then
6 return νR // Terminate if unsatisfiable

7 νR ← νR ∩ ν // Refine backbone estimate

8 return νR

Definition 4 (core). For an unsatisfiable formula φ,
a formula ψ ⊆ φ is called a core iff ψ is unsatisfiable.

Remark 3. Observe that the definition of a core
does not guarantee any type of minimality. Indeed,
if a formula φ is unsatisfiable, the whole φ is al-
ready a core. In practice, however, state-of-the-art
SAT solvers return cores significantly smaller than
the given formula. Nevertheless, any correct algo-
rithm must account for cases where the returned core
contains superfluous clauses, i.e. clauses whose re-
moval yields another core.

Consider some set of non-contradictory literals L
that form a superset of the backbone. To determine
if they can be flipped, we call a SAT solver on the
formula φ ∪

⋃
l∈L{ l̄ }. If the call is unsatisfiable, i.e.

the literals cannot be flipped, the corresponding core
gives us some subset of literals that cannot be flipped.

There is one special case worth noting. If the core
contains a negation of a single literal from L, then
this literal is a backbone literal.

Proposition 8. Let φ be a satisfiable formula and L
be a set of literals such that φ∧

∧
k∈L k̄ is unsatisfiable.

A literal l ∈ L is in the backbone of φ iff there is a
core ψ of φ ∧

∧
k∈L k̄ for which ψ ⊆ φ ∧ l̄.

There is another special case that we need to take
into account and that is when the core contains all
literals to be flipped. In such case the core-based

algorithm cannot be used and it reverts to one of the
algorithms described earlier.

Since the upcoming algorithm requires the SAT
solver to return a core, we extend the function
SAT(φ) to return a triple (outc, ν, C), where outc and
ν have the same meaning as before, and C is a core
of φ if outc = false.

Algorithm 6 shows a pseudocode for the above pre-
sented ideas. The algorithm maintains its computa-
tion state in three variables. The variable Λ contains
those literals that still might be in the backbone (but
we are not sure). The variable νR contains literals
that have been shown to be in the backbone. Finally,
the variable ωN contains the negation of some of the
literals in Λ.

Initially ωN contains the negation of all the liter-
als in Λ. As the inner loop progresses, ωN is grad-
ually reduced based on the cores obtained from the
SAT solver (line 17). Note that the algorithm utilizes
Proposition 8 in order to identify backbone literals
(lines 13–16).

The inner loop terminates either when some liter-
als from Λ were flipped (the SAT call returns true),
or the cores exhaust the set Λ, i.e. ωN is empty. If
ωN is empty, Algorithm 6 reverts to some other al-
gorithm to test whether the remaining literals are in
the backbone or not (line 19). Algorithm 3 (“one test
per variable”) is particularly suitable for this task be-
cause it is easy to instruct it to test only a set of
literals.
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Algorithm 5: Chunking algorithm

Input : Satisfiable formula φ, with variables X; K ∈ N+ chunk size
Output: Backbone of φ, νR

1 (outc, ν)← SAT(φ)
2 νR ← ∅ // Initial backbone lower bound

3 Λ← ν // Initial literals to test

4 while Λ 6= ∅ do
5 k ← min(K, |Λ|)
6 Γ← pick k literals from Λ
7 (outc, ν)← SAT(φ ∪ {

∨
l∈Γ l̄ })

8 if outc = false then
// All literals in chunk are backbones

9 νR ← νR ∪ Γ // Add Γ to lower bound.

10 Λ← Λ r Γ // Literals in Γ do not need to be tested anymore.

11 φ← φ ∪ {{ l } | l ∈ Γ}
12 else
13 Λ← Λ ∩ ν

14 return νR

Example 3. Let φ = {x ∨ y, u ∨ v, w} and ν =
{x, y, ū, v, w}. Invoking SAT on φ∧ x̄∧ ȳ ∧ u∧ v̄ ∧ w̄
gives a core {w, w̄}. The core lets us infer that w
is a backbone literal by Proposition 8. Invoking SAT
on φ ∧ x̄ ∧ ȳ ∧ u ∧ v̄ gives a core {x ∨ y, x̄, ȳ} hence
we remove the requirement x̄ ∧ ȳ. Invoking SAT on
φ∧u∧ v̄ yields an implicant flipping the value of both
u and v thus showing they are not backbone literals.

The next iteration of the outer loop invokes SAT on
φ ∧ x̄ ∧ ȳ yielding again the core {x ∨ y, x̄, ȳ}, which
contains all the remaining literals to be flipped and
we revert to one of the other algorithms.

Algorithm 6 suffers from the fact that it tries to
flip too many literals at the same time and therefore
it might take too long before it finds a satisfying as-
signment. In response to this issue, again we apply
the idea of chunking. The chunking version of the al-
gorithm in each iteration picks a chunk of the literals
that still might be in the backbone and tries to flip
those at the same time. This is repeated until there
are no literals that might be in the backbone.

Algorithm 7 presents a chunking version of Algo-

rithm 6. The structure of the algorithm is similar
to the one of Algorithm 6 with the exception that in
each iteration of the outer loop it tries to flip only
some chunk of literals Γ. Note that the inner loop
operates on the complement of Γ stored in the vari-
able ωN . Using unsatisfiable cores, the set ωN is be-
ing reduced until some subset of the literals in Γ is
flipped. The special case is again when ωN becomes
empty and then we revert to another algorithm to
test literals in Γ. Unit cores are treated just as in
Algorithm 6.

Observe that the algorithm coincides with the it-
erative algorithm (Algorithm 3) when K = 1 just as
the chunking algorithm (Algorithm 5).

Here we should make an important remark about
the core computation. In general, computing a core
might bring in some computational inefficiency. In
this concrete case, however, there is no practical ef-
ficiency penalty. This is because we are computing
a core of the formula φ ∧

∧
l∈L l for some set of lit-

erals L and moreover we are only interested in the
intersection of the core with the literals from L. SAT
solvers based on the interface of minisat2.2 enable
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Algorithm 6: Core-based Algorithm

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 (outc, ν, C)← SAT(φ)
2 νR ← ∅ // Initial backbone lower bound

3 Λ← ν // Initial literals to test

4 while Λ 6= ∅ do
5 ωN ←

{
l̄ | l ∈ Λ

}
6 while true do
7 (outc, ν, C)← SAT(φ ∪ { { l } | l ∈ ωN})
8 if outc = true then
9 Λ← Λ ∩ ν

10 break // Move onto a different set of literals to flip

11 else
12 assert(C ∩ ωN 6= ∅) // φ must be satisfiable

13 if C ∩ ωN = { l } then
// The core contains a single literal from ωN

14 νR ← νR ∪ { l̄ }
15 Λ← Λ r { l̄ }
16 φ← φ ∪ { l̄ }
17 ωN ← {p | p ∈ ωN ∧ {p} /∈ C} // Remove from ωN literals that appear in the core

18 if ωN = ∅ then
19 test literals in Λ by another algorithm
20 return νR

21 return νR

computing precisely that by enabling passing the lit-
erals L as assumptions. Those assumptions that are
part of the core are then returned in the final conflict
clause [8].

5 Backbone Filtering

With the exception of Algorithm 2, all the algorithms
utilize implicants to prune the backbone estimate. In-
deed, according to Proposition 1, if ν is an implicant
then any literal l /∈ ν is not in the backbone. Con-
sequently, the less literals an implicant contains, the
more literals are filtered out from the backbone esti-
mate. However, modern SAT solvers compute com-

plete assignments, i.e. implicants that contain a lit-
eral for each variable [24]. Thus, for the purpose of
backbone filtering it might be useful to see if some of
these literals are not redundant.

Example 4. Let φ = {x∨y, x∨ z̄} and ν = {x, y, z̄}.
The set ν is an implicant of φ but so is the singleton
set {x }.

Different techniques can be used for removing liter-
als from computed implicants. One example is vari-
able lifting [29]. Lifting consists of analyzing each
variable and discarding the variable if it is not used
for satisfying any clause. Another technique is (ap-
proximate) set covering [29]. The goal is to com-
pute an implicant ν′ ⊆ ν such that for any impli-
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Algorithm 7: Core-based Algorithm with Chunking

Input : Satisfiable formula φ; K ∈ N+ chunk size
Output: Backbone of φ, νR

1 (outc, ν, C)← SAT(ϕ)
2 νR ← ∅ // Initial backbone lower bound

3 Λ← ν // Initial literals to test

4 while Λ 6= ∅ do
5 k ← min(K, |Λ|)
6 Γ← pick k literals from Λ

7 ωN ←
{
l̄ | l ∈ Γ

}
8 while true do
9 (outc, ν, C)← SAT(ϕ ∪ { { l } | l ∈ ωN})

10 if outc = true then
11 Λ← Λ ∩ ν
12 break // Done with the chunk

13 else
14 if C ∩ ωN = { l } then

// The core contains a single literal from ωN.

15 νR ← νR ∪ { l̄ }
16 Λ← Λ r { l̄ }
17 φ← φ ∪ { l̄ }
18 ωN ← {p | p ∈ ωN ∧ {p} /∈ C} // Remove from ωN literals that appear in the core.

19 if ωN = ∅ then
20 test literals in Γ by another algorithm
21 Λ = Λ r Γ
22 break // Done with the chunk

23 return νR

cant ν′′ ⊆ ν it holds that |ν′| ≤ |ν′′|. This problem
translates directly to the set cover problem because
ν′ has to be a minimal set of literals such that it
has a nonempty intersection with each clause of φ.
Since the set cover problem is NP-hard, approximate
solutions are often used. One example is a greedy
approximation algorithm for the set cover problem
(e.g. [5]).

In the following we refer to these techniques (lift-
ing, set cover) as implicant reduction, i.e. we say that
an implicant ν was reduced to an implicant ν′ and
thus filtering out the literals ν r ν′ from the back-
bone estimate.

Here we develop another technique for filtering
non-backbone literals, which we call rotatable liter-
als. We show that this technique is strictly stronger
than implicant reduction.

Consider an implicant where flipping (rotating) the
value of some variable x yields another implicant.
This gives us two different implicants that show that
neither x nor x̄ is a backbone literal.

Definition 5 (rotatable literal). Let ν be an impli-
cant of φ and l be a literal s.t. l ∈ ν. Let ν′ be defined
as ν′ = ν r {l} ∪ {l̄}. The literal l is rotatable in ν
iff ν′ is an implicant of φ.

11



Example 5. Let φ = {x ∨ y, z ∨ w} and ν =
{x, y, z, w̄}. The literals x, y, and w̄ are rotatable in
ν but z is not since flipping it unsatisfies the clause
z ∨ w. All of the four literals are rotatable in the
implicant {x, y, z, w}.

The intuition behind rotatable literals is that one
can rotate (flip) the literal and obtain another impli-
cant. Effectively, however, this is equivalent to the
fact that removing the literal yields another impli-
cant.

Proposition 9. Let ν be an implicant of φ and l a
literal such that l ∈ ν. The literal l is rotatable in φ
iff ν r { l } is an implicant of φ.

Proof. If l is rotatable, extending ν r {l} with either
l or l̄ yields and implicant and therefore νr {l} is an
implicant as well.

If νr {l} is an implicant, construct ν′ from ν as in
Definition 5, i.e. ν′ = νr { l }∪{ l̄ }. Since νr { l } is
an implicant of φ and ν r { l } ⊆ ν′, the set ν′ is also
an implicant of φ.

Proposition 10. If literal l is rotatable in an impli-
cant ν of φ, then neither of the literals l and l̄ is a
backbone literal.

Proof. Immediate consequence of Proposition 1.

It is possible to compute the set of rotatable liter-
als by directly relying on their definition. One goes
through the list of all literals in the given implicant
and for each literal tests whether flipping it yields an-
other implicant or not. The complexity of this proce-
dure is O(|var(φ)|×|φ|). Fortunately, it is possible to
compute rotatable literals in a single traversal of the
formula. For such we utilize the following definition.

Definition 6 (unit literal). A literal l is unit in a
clause ω for a set of literals ν iff ω ∩ ν = {l}.

A literal l is unit in a formula φ for a set of literals ν
iff there is a clause ω ∈ φ in which l is unit for ν.

Proposition 11. A literal l is rotatable in an impli-
cant ν of φ iff neither l nor l̄ is unit in φ for ν.

Proof. For contradiction assume that l is rotatable
and there is a clause ω where l is unit for ν. Since l

is rotatable, ν′ = ν r {l} ∪ {l̄} must be an implicant.
However, this is a contradiction since ω∩ν′ = ∅, thus,
ν′ it is not an implicant.

To show that l is rotatable, we demonstrate that
ν′ = ν r {l} ∪ {l̄} is an implicant. We do so by
considering the following three cases. 1) Consider a
clause ω that contains the literal l. Since l is not unit
in ω, there is another literal k ∈ ω ∩ ν and there-
fore also k ∈ ω ∩ ν′. 2) Analogously, a clause ω ∈ φ
containing l̄ is satisfied by ν′. 3) A clause not con-
taining either of l and l̄ is satisfied by ν′ because
ν′ ∩ ω = ν ∩ ω.

Proposition 9 relates rotatable literals and impli-
cants. In particular, it says that if removing a lit-
eral from an implicant yields another implicant, then
the literal is rotatable. An immediate consequence is
that filtering the backbone estimate by literal rota-
tion is at least as powerful as filtering by implicant
reduction. Since if a literal can be filtered by impli-
cant reduction, it can also be identified as rotatable
(and filtered). The following proposition shows that
identifying rotatable literals gives us a more powerful
technique than implicant reduction.

Proposition 12. There are instances where impli-
cant reduction does not filter a literal, which is filtered
by the technique of rotatable literals.

Proof. Let φ = {x∨y} and ν = {x, y}. Both x and y
are rotatable but any implicant reduction filters out
at most one of the two literals.

Remark 4. The example in the proof of Proposi-
tion 12 shows another interesting property of rotat-
able literals. The implicant {x, y} of {x ∨ y} can be
reduced into two different implicants {x } and { y };
each filtering out a different backbone literal. In gen-
eral, an implicant can be reduced in exponentially
many ways. Proposition 9 shows that filtering by ro-
tatable literals filters out all literals obtained from all
those possible reductions.
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6 Other Heuristics and Portfo-
lios

Besides the algorithms outlined above, and which are
evaluated in Section 7, a number of additional heuris-
tics and techniques can be envisioned on top of these
algorithms.

Diversification. Once a SAT solver gives us an
implicant, we can remove from the backbone upper
bound all the literals that do not appear in this im-
plicant. Since throughout the course of the run of the
algorithm many implicants are generated, it would be
beneficial for these implicants to be as diverse as pos-
sible in order to reduce the backbone estimate more
rapidly. Existing techniques for SAT solution diver-
sification could be applied to this end [28].

Heuristic parametrization. The article intro-
duces two novel chunking algorithms. Both of them
are parametrized by the size of the chunk K. Hence,
these algorithms can be fine-tuned by setting this pa-
rameter based on some properties of the given in-
stance. Moreover, K could be changed dynamically
throughout the run of the algorithm based on some
heuristics. Since larger K leads to harder SAT calls
but reduces the number of the calls, it is meaningful
to increase K for formulas that are “easy” for the
SAT solver and conversely decrease K for hard SAT
formulas. One could search inspiration in frameworks
like SATzilla [33, 32] or ParamILS [13] to heuristically
determine the formula’s hardness and determine an
appropriate strategy for the value of K.

Portfolios. A natural way how to avail of the dif-
ferent algorithms and their parametrizations is to ag-
gregate them into a portfolio. This can be done by
picking heuristically the best solver for the given in-
stance, as for example in SATzilla [33], or executing
the algorithms in parallel and terminate once the win-
ner terminates, as for instance in ManySAT [11].

Table 1: Legend for Configurations of Algorithms
element meaning
number size of chunk
u chunk size var(φ)
cb core-based algorithm
l approximate set covering reduction
r rotating variables
VBS virtual best solver

7 Results

The presented algorithms were implemented us-
ing minisat2.2 as the underlying SAT solver [8],
availing of its incremental interface in all algo-
rithms. The experiments were conducted on a com-
puter cluster where each node is a dual quad-core
Xeon E5450 3 GHz with 32 GB of memory. Each in-
stance was run with a timeout of 800 s and memory
limit of 2 GB. Each test was repeated 3 times and the
presented execution times are obtained as the median
of those (all implementations are deterministic, the
repetitions are used only to counter fluctuations in
the cluster). Results for each individual instance and
algorithm configuration can be found on the authors’
website2.

Earlier work [22, 37] carried out extensive evalu-
ations of Algorithms 1 (“implicant enumeration”), 2
(“two tests per variable”), 3 (“one test per variable”),
and 4 (“complement of backbone estimate”).

This earlier evaluation shows that Algorithm 3 con-
sistently outperforms all the others. Indeed, the enu-
meration algorithm has to do at least as many it-
erations as there are prime implicants of the given
formula and the two-tests algorithm simply does not
avail of the implicants returned by the SAT solver as
the one-test algorithm does.

Hence, the following experimental results focus on
the following facets: 1) iterative chunking algorithm
(Algorithm 5), 2) core-based chunking algorithm (Al-
gorithm 7), and 3) backbone filtering (Section 5).
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7.1 Means of Presentation

Table 1 describes the elements that identify algo-
rithms within plots and tables. Hence, for instance
500 identifies the iterative algorithm with the chunk
size 500 and cb100r the core-based algorithm with
chunk size 100 and literal rotation (Definition 5).

A number of results are shown as cactus plots,
which contain a point at the coordinate (x, y) if the
considered algorithm solves x instances within y sec-
onds. All the presented cactus plots consider only in-
stances where at least one of the algorithms required
over 30 seconds.

The cactus plots are accompanied by tables that
contain for each algorithm the number of solved in-
stances and the number of wins. For a given instance,
an algorithm wins iff its runtime is not worse than the
minimal time on that instance by more than 1 second.
Like so the sum of wins is typically larger than the
total number of considered instances. The constant
of 1 second was chosen since we consider a smaller
difference as insignificant, especially in the context of
800 second timeout.

7.2 Overall Results

Problem instances from practical application do-
mains were selected from the past SAT competitions
and races3. In total, 779 problem instances were se-
lected. The selection was guided by the goals of find-
ing instances that are easy for SAT solvers but are
also practically motivated.

Table 2 and Figure 1 provide an overview of the re-
sults for all the considered instances. The first thing
to observe is that the core-based algorithm outper-
forms the iterative one. Second, the effect of using
chunk size |var(φ)| is detrimental for both iterative
(u) and core-based algorithm (cbu).

The effect of chunk size is quite different in the
two types of algorithms. For the Iterative algorithm,
using chunks 30 and 100 enabled solving one more in-
stance than the 1-Chunk configuration but the num-
ber of wins shows that the 1-Chunk was faster on a

2http://sat.inesc-id.pt/~mikolas/backbones
3 http://www.satcompetition.org/.

Table 3: Categories according to backbone percent-
ages
percentage range number of instances

0–25% 191
25–50% 322
50–75% 123
75–100% 98

number of instances. The chunk size 500 is already
too big.

In the case of core-based algorithm chunks give
us unequivocally a gain (recall that Core-Based 1-
Chunk is equivalent to Iterative 1-Chunk). The
Core-Based 100-Chunk can solve one more instance
than the Core-Based 30-Chunk. In the case of 500-
Chunk, however, the performance drops. Interest-
ingly enough, the Core-Based 500-Chunk is still bet-
ter than any of the iterative configurations.

The results for the virtual best solver (VBS) show
that the other algorithms enabled solving 24 more in-
stances on top of those solved by Core-Based Chunk-
100. Given this results for the VBS, a parallel portfo-
lio using different backbone computation algorithms
is expected to substantially outperform the best in-
dividual configuration.

7.3 The Effect of Percentage of Back-
bone Literals

This section focuses on the effectiveness of the in-
dividual algorithms for different percentages of the
backbone literals found in the instance. The 738
solved instances were split into four categories ac-
cording to the percentage of backbone literals in the
instance. Table 3 shows the number of instances in
each category.

Figure 2 shows the cactus plots for each of the
categories and Table 4 shows the number of solved
instances and wins. Interestingly enough, the algo-
rithms behave very similarly when the percentage of
backbone is over 25%. In contrast, for the lower per-
centages the core-based algorithms are significantly
better. This can be explained by the fact that even-
tually any algorithm has to prove for each backbone
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Table 2: Overview of the results including the virtual best solver (VBS). A win is counted if the algorithm
is not worse than the best time on the instance by 1 s.

algorithm u cbu 500 100 30 1 cb500 cb30 cb100 VBS

solved 485 487 596 667 667 666 706 717 718 738

wins 168 183 200 220 232 282 317 434 431 —

Table 4: Behavior of the algorithms for different percentages of the backbone literals

(a) 0–25% backbone literals

algorithm u cbu 500 100 30 1 cb500 cb30 cb100 VBS

solved 58 60 108 124 124 119 161 171 172 191

wins 13 21 15 13 17 29 61 67 96 —

(b) 25–50% backbone literals

algorithm u cbu 500 100 30 1 cb500 cb30 cb100 VBS

solved 210 213 267 321 321 322 322 322 322 322

wins 17 25 27 44 57 88 99 205 191 —

(c) 50–75% backbone literals

algorithm u cbu 500 100 30 1 cb500 cb30 cb100 VBS

solved 119 114 122 122 123 123 123 123 123 123

wins 62 64 76 84 84 94 89 97 99 —

(d) 75–100% backbone literals

algorithm u cbu 500 100 30 1 cb500 cb30 cb100 VBS

solved 94 96 95 96 95 98 96 97 97 98

wins 72 70 79 80 76 81 81 86 82 —

literal that it is indeed in the backbone. Hence, for
large backbones the “effort” is the same. For small
backbones, however, an algorithm can gain by ex-
cluding non-backbones by being clever in the search
for implicants that reduce the backbone estimate.

It is worth noting that the core-based algorithm
dominates all categories except the last one. Both in
terms of speed and the number of solved instances.
In the category 75–100%, the configuration Iterative
1-Chunk solves one more instance than the configu-
rations Core-Based 30/100-Chunk.

7.4 The Effect of Chunk Size

In the previous sections we have seen that increasing
the chunk size in the iterative algorithm decreases its
speed. However, we expect that larger the chunk,
the less SAT calls the algorithm needs to perform.
Hence, if the overall solving time is larger, it must
mean that the SAT calls take longer.

Figure 3 shows the correlation between the number
of SAT calls and the average time of the calls. The
correlation is shown between 1 and 100 Chunk in the
case of the iterative algorithm and between 30 and
500 Chunk for the Core-Based algorithm.
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Figure 1: Cactus plot for hard instances, i.e. instances where at least one algorithm took over 30 s

Fig. 3(a) confirms our hypothesis. The Iterative
100-Chunk performs less number of SAT calls than
the 1-Chunk but their average time grows signifi-
cantly.

The behavior of the core-based algorithm, depicted
in Fig. 3(b), is again quite different from the itera-
tive algorithm. The average SAT execution times lie
in the same area for the two configurations but the
number of SAT calls tends to be smaller for the 30-
Chunk configuration. This can be explained by the
fact that the 500-Chunk configuration needs to do a
large number of unsatisfiable calls before it reaches a
satisfiable one.

7.5 The Effect of Backbone Filtering

Finally, we show the effect of backbone filtering (Sec-
tion 5) on two representative configurations, Iterative
1-Chunk and Core-Based 100-Chunk. The results are
again presented in the form of a cactus plot (Figure 4)
and a table (Table 5).

The results show that in general, backbone filter-
ing is not significantly helpful. As expected, impli-
cate reduction realized by approximate set covering
reduction significantly underperforms rotatable liter-
als. However, the rotatable literals technique yields
generally a slower algorithm than the one without
it. This can be explained by several reasons that
most likely occur in tandem. Firstly, even though
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(e) 1-Chunk

algorithm 1 1r 1l VBS

solved 666 665 521 680

wins 615 287 174 —

(f) Core-Based 100-Chunk

algorithm cb100 cb100r cb100l VBS

solved 718 714 699 730

wins 642 326 202 —

Table 5: Backbone Filtering

the complexity of backbone filtering is polynomial, it
is still expensive for large formulas and it might be
effectively slowing down the computation. Secondly,
many industrial CNF formulas contain many binary
clauses, which reduce the likelihood of rotatable lit-
erals or implicant reduction to be effective. Thirdly,
within the described algorithms, a backbone upper
bound is being refined through implicants obtained
from the SAT solver; this is computationally cheap,
because the SAT calls need to be carried out in either
way, and since many SAT calls are performed, many
different implicants are obtained and this in turn is
downplaying the effectiveness of backbone filtering.

However, as the virtual best solver shows, there are
some instances where backbone filtering is important.
Indeed, in the case of Iterative 1-Chunk, 14 more
instances were solved and in the case of Core-Based
100-Chunk, 12 more instances were solved.

8 Conclusions

This paper develops improvements to algorithms for
backbone computation. Whereas some of the algo-
rithms are based on earlier work [22, 37], others are
novel, and unify some of the most representative ear-
lier algorithms. In addition, the paper extends a
comprehensive experimental study of backbones on
instances of SAT coming from practical applications.

The experimental results suggest that the novel
Core-Based algorithm is the most efficient. However,
the unified iterative algorithm developed in this pa-
per, can provide performance gains for some problems
instances. Thus, opening a possibility for portfolio-
based solvers. In addition, the experimental results
show that the proposed algorithms enable comput-
ing the backbone for large instances of SAT, with

variables in excess of 70,000 and clauses in excess of
250,000.

This observation motivates further work on apply-
ing backbone information for solving decision and op-
timization problems related to propositional theories,
including model enumeration, minimal model compu-
tation and prime implicant computation. Moreover,
more efficient backbone computation algorithms are
expected to impact practical applications [19, 16, 14,
36, 21, 20].

Future improvements to backbone computation al-
gorithms include automatic identification of chunk
size and parallel portfolios with different chunk sizes.
Finally, the integration of additional implicant sim-
plification techniques could yield additional perfor-
mance gains.
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(a) 0–25% backbone literals
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(b) 25–50% backbone literals
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(c) 50–75% backbone literals
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(d) 75-100% backbone literals

Figure 2: Behavior of the algorithms for different percentages of the backbone literals
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Figure 3: Correlation between average SAT time and number of SAT calls
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Figure 4: Filtering
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