Abstraction-Based Algorithm for 2QBF

Mikoláš Janota¹ Joao Marques-Silva^{1,2}

 1 INESC-ID/IST, Lisbon, Portugal 2 CASL/CSI, University College Dublin, Ireland

Definition

Given: $\exists X \forall Y.\phi$, where ϕ is a propositional formula **Question:** Is there value vector ν such that $\forall Y.\phi[X/\nu]$?

Definition

Given: $\exists X \forall Y.\phi$, where ϕ is a propositional formula **Question:** Is there value vector ν such that $\forall Y.\phi[X/\nu]$?

Note that ϕ is an arbitrary Boolean forumula, and hence, $\forall X \exists Y.\phi$ is solved by negating: $\neg \forall X \exists Y.\phi = \exists X \forall Y.\neg \phi$

Definition

Given: $\exists X \forall Y.\phi$, where ϕ is a propositional formula **Question:** Is there value vector ν such that $\forall Y.\phi[X/\nu]$?

Note that ϕ is an arbitrary Boolean forumula, and hence, $\forall X \exists Y.\phi$ is solved by negating: $\neg \forall X \exists Y.\phi = \exists X \forall Y.\neg \phi$

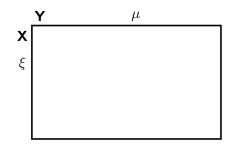
Example

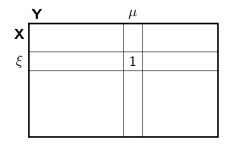
$$\exists x_1, x_2 \ \forall y_1, y_2. \ (x_1 \lor x_2) \Rightarrow (y_1 \land y_2)$$

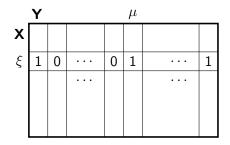
solution: $x_1 = 0, x_2 = 0$

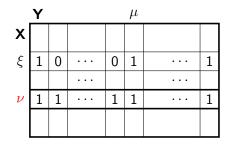
Motivation

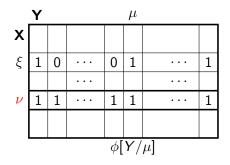
- Σ_2^P , Π_2^P complete
- interesting problems in this class, e.g. propositional circumscription [Janota et al., 2010],
 AI [Remshagen and Truemper, 2005],
 LTS diameter [Mneimneh and Sakallah, 2003],
 MUS-membership [Janota and Marques-Silva, 2011]
- separate track at QBF Eval











Expanding into SAT

$$\exists X \forall Y. \ \phi \ \longrightarrow \ \mathsf{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu]\right)$$

Expanding into SAT

$$\exists X \forall Y. \ \phi \ \longrightarrow \ \mathsf{SAT} \left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \right)$$

Example

$$\exists x_1, x_2 \; orall y_1, y_2. \; (x_1 \lor x_2) \Rightarrow (y_1 \land y_2) \ (x_1 \lor x_2) \Rightarrow (0 \land 0) \ \land \quad (x_1 \lor x_2) \Rightarrow (0 \land 1) \ \land \quad (x_1 \lor x_2) \Rightarrow (1 \land 0) \ \land \quad (x_1 \lor x_2) \Rightarrow (1 \land 1)$$

Expanding into SAT

$$\exists X \forall Y. \ \phi \ \longrightarrow \ \mathsf{SAT} \left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \right)$$

Example

$$\exists x_1, x_2 \ \forall y_1, y_2. \ (x_1 \lor x_2) \Rightarrow (y_1 \land y_2)$$
$$(x_1 \lor x_2) \Rightarrow (\mathbf{0} \land \mathbf{0})$$
$$\land \quad (x_1 \lor x_2) \Rightarrow (\mathbf{0} \land 1)$$
$$\land \quad (x_1 \lor x_2) \Rightarrow (\mathbf{1} \land 0)$$
$$\land \quad (x_1 \lor x_2) \Rightarrow (\mathbf{1} \land 1)$$

Abstraction

• Consider only some set of valuations $W \subseteq \mathcal{B}^{|Y|}$

$$\bigwedge_{\mu\in W} \phi[Y/\mu]$$

Abstraction

• Consider only some set of valuations $W \subseteq \mathcal{B}^{|Y|}$

$$\bigwedge_{\mu \in W} \phi[Y/\mu]$$

• Any solution to the problem is a solution to the abstraction

$$\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \quad \Rightarrow \quad \bigwedge_{\mu \in W} \phi[Y/\mu]$$

Abstraction

• Consider only some set of valuations $W \subseteq \mathcal{B}^{|Y|}$

$$\bigwedge_{\mu \in W} \phi[Y/\mu]$$

• Any solution to the problem is a solution to the abstraction

$$\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \quad \Rightarrow \quad \bigwedge_{\mu \in W} \phi[Y/\mu]$$

• But not the other way around, a solution to an abstraction is not necessarily a solution to the original problem.

CEGAR Loop

```
\begin{array}{l} \text{input} : \exists X \forall Y.\phi \\ \text{output:} (\text{true}, \nu) \text{ if there exists } \nu \text{ s.t. } \forall Y \phi[X/\nu], \\ (false, -) \text{ otherwise} \\ \\ W \leftarrow \emptyset \\ \text{while true do} \\ \\ | (\text{outc}_1, \nu) \leftarrow \text{SAT}(\bigwedge_{\mu \in W} \phi[Y/\mu]) // \text{ find a candidate} \\ \\ \text{ if outc}_1 = \text{false then} \\ \\ | \text{ return (false, -)} // \text{ no candidate found} \end{array}
```

end

```
if \nu is a solution
```

then

```
return (true, \nu)
```

else

```
Grow W
```

end

(INESC-ID & UCD)

// solution check

// refinement

CEGAR Loop

```
input : \exists X \forall Y.\phi
output: (true, \nu) if there exists \nu s.t. \forall Y \phi[X/\nu],
(false, -) otherwise
W \leftarrow \emptyset
```

while true do

```
(\operatorname{outc}_1, \nu) \leftarrow \operatorname{SAT}(\bigwedge_{\mu \in W} \phi[Y/\mu])
                                         // find a candidate
if outc_1 = false then
    return (false,-)
                                            // no candidate found
end
if \nu is a solution
                                                  // solution check
then
    return (true, \nu)
else
    Grow W
                                                        // refinement
end
(INESC-ID & UCD)
                                       CEGAR for 2QBF
```

Testing for Solution

A value ν is a solution to $\exists X \forall Y.\phi$ iff

 $\forall Y.\phi[X/\nu]$ iff UNSAT $(\neg\phi[X/\nu])$

Testing for Solution

A value ν is a solution to $\exists X \forall Y.\phi$ iff

 $\forall Y.\phi[X/\nu]$ iff UNSAT $(\neg\phi[X/\nu])$

If SAT($\neg \phi[X/\nu]$) by some μ , then μ is a counterexample to ν

Testing for Solution

A value ν is a solution to $\exists X \forall Y.\phi$ iff

$$\forall Y.\phi[X/\nu]$$
 iff UNSAT $(\neg \phi[X/\nu])$

If SAT($\neg \phi[X/\nu]$) by some μ , then μ is a counterexample to ν Example

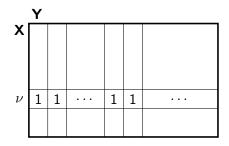
 $\exists x_1, x_2 \ \forall y_1, y_2. \ (x_1 \lor x_2) \Rightarrow (y_1 \land y_2)$

• candidate: $x_1 = 1, x_2 = 0$

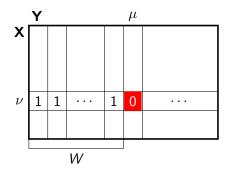
• counterexamples:
$$y_1 = 0, y_2 = 0$$

 $y_1 = 0, y_2 = 1$
 $y_1 = 1, y_2 = 0$

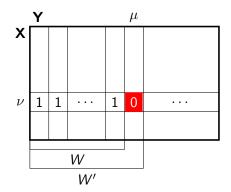
Refinement



Refinement



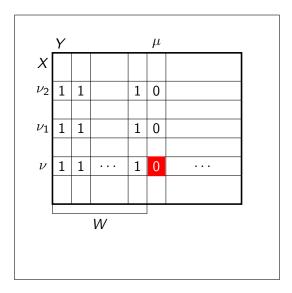
Refinement



The Algorithm

```
input : \exists X \forall Y.\phi
output: (true, \nu) if there exists \nu s.t. \forall Y \phi[X/\nu],
          (false, –) otherwise
\omega \leftarrow 1
while true do
    (outc_1, \nu) \leftarrow SAT(\omega) // find a candidate solution
    if outc_1 = false then
         return (false,-)
                                                  // no candidate found
    end
    (\operatorname{outc}_2, \mu) \leftarrow \operatorname{SAT}(\neg \phi[X/\nu]) // find a counterexample
    if outc_2 = false then
         return (true, \nu)
                                          // candidate is a solution
    end
    \omega \leftarrow \omega \wedge \phi[Y/\mu]
                                                                     // refine
end
```

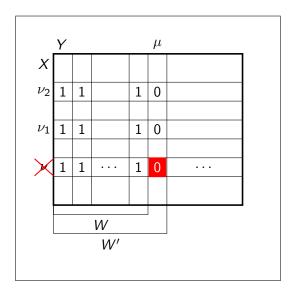
Properties of Refinement



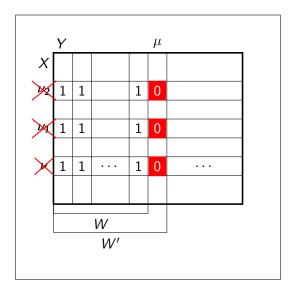
(INESC-ID & UCD)

CEGAR for 2QBF

Properties of Refinement



Properties of Refinement



Consequences of Refinement

• No candidate for counterexample appears more than once, therefore the upper bound on the number of iterations is:

 $\min(2^{|X|},2^{|Y|})$

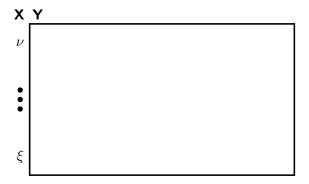
Consequences of Refinement

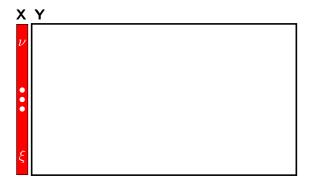
• No candidate for counterexample appears more than once, therefore the upper bound on the number of iterations is:

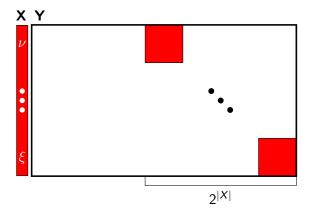
$$\min(2^{|X|}, 2^{|Y|})$$

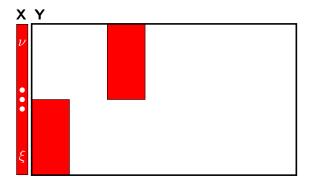
• Heuristic: look for such counterexamples that are also counterexamples to many other candidates, look for μ s.t.

$$eg \phi[X/
u] \wedge \max\left(\left|\left\{\nu' \mid \neg \phi[X/
u', Y/\mu]\right\}\right|\right)$$





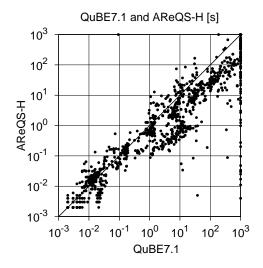




Results

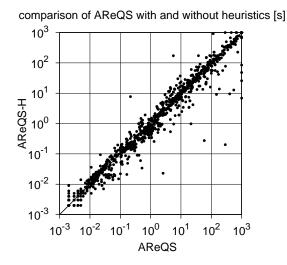
	struqs	QuBE7.1	qbf2circ	AReQS	AReQS-H
2qbf 10 pre (114)	30	93	37	101	101
circ pre (117)	6	113	117	117	117
icore pre (140)	30	23	33	62	62
robots pre (999)	516	921	647	974	975
noprepro (232)	15	47	18	51	55
total (1602)	597	1197	852	1305	1310

Results QuBE/AReQS-H

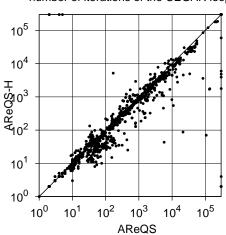


(INESC-ID & UCD)

Results AReQS/AReQS-H



Results AReQS/AReQS-H Iterations



number of iterations of the CEGAR loop

(INESC-ID & UCD)

• We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y. \phi$ no valuation of X or Y repeats.

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y$. ϕ no valuation of X or Y repeats.
- If $\neg \phi[X/nu, Y/mu]$, we never try ν' s.t. $\neg \phi[X/nu', Y/mu]$,

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y$. ϕ no valuation of X or Y repeats.
- If $\neg \phi[X/nu, Y/mu]$, we never try ν' s.t. $\neg \phi[X/nu', Y/mu]$,
- It is to be expected that the algorithm will work well for formulas where counterexamples takes out many candidates.

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y$. ϕ no valuation of X or Y repeats.
- If $\neg \phi[X/nu, Y/mu]$, we never try ν' s.t. $\neg \phi[X/nu', Y/mu]$,
- It is to be expected that the algorithm will work well for formulas where counterexamples takes out many candidates.
- A QCNF implementation of the algorithm consistently outperforms current solvers.

Janota, M., Grigore, R., and Marques-Silva, J. (2010). Counterexample guided abstraction refinement algorithm for propositional circumscription. In JELIA '10.

- Janota, M. and Marques-Silva, J. (2011). On deciding MUS membership with qbf. In *CP* '11, to appear.
- Mneimneh, M. N. and Sakallah, K. A. (2003).
 Computing vertex eccentricity in exponentially large graphs: QBF formulation and solution.
 In SAT '03.
- Remshagen, A. and Truemper, K. (2005).
 An effective algorithm for the futile questioning problem.
 JAR '05.