# Abstraction-Based Algorithm for 2QBF 

Mikoláš Janota ${ }^{1}$ Joao Marques-Silva ${ }^{1,2}$<br>${ }^{1}$ INESC-ID/IST, Lisbon, Portugal<br>${ }^{2}$ CASL/CSI, University College Dublin, Ireland

## Definition

Given: $\exists X \forall Y . \phi$, where $\phi$ is a propositional formula Question: Is there value vector $\nu$ such that $\forall Y . \phi[X / \nu]$ ?

## Definition

Given: $\exists X \forall Y . \phi$, where $\phi$ is a propositional formula Question: Is there value vector $\nu$ such that $\forall Y . \phi[X / \nu]$ ?

Note that $\phi$ is an arbitrary Boolean forumula, and hence, $\forall X \exists Y$. $\phi$ is solved by negating: $\neg \forall X \exists Y . \phi=\exists X \forall Y . \neg \phi$

## Definition

Given: $\exists X \forall Y . \phi$, where $\phi$ is a propositional formula Question: Is there value vector $\nu$ such that $\forall Y . \phi[X / \nu]$ ?

Note that $\phi$ is an arbitrary Boolean forumula, and hence, $\forall X \exists Y$. $\phi$ is solved by negating: $\neg \forall X \exists Y . \phi=\exists X \forall Y . \neg \phi$

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \vee x_{2}\right) \Rightarrow\left(y_{1} \wedge y_{2}\right)
$$

solution: $x_{1}=0, x_{2}=0$

## Motivation

- $\Sigma_{2}^{P}, \Pi_{2}^{P}$ complete
- interesting problems in this class, e.g. propositional circumscription [Janota et al., 2010], AI [Remshagen and Truemper, 2005], LTS diameter [Mneimneh and Sakallah, 2003], MUS-membership [Janota and Marques-Silva, 2011]
- separate track at QBF Eval


## Looking at Valuations



## Expanding into SAT

$$
\exists X \forall Y . \phi \longrightarrow \mathrm{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu]\right)
$$

## Expanding into SAT

$$
\exists X \forall Y . \phi \longrightarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu]\right)
$$

Example

$$
\begin{gathered}
\exists x_{1}, x_{2} \forall y_{1}, y_{2} \cdot\left(x_{1} \vee x_{2}\right) \Rightarrow\left(y_{1} \wedge y_{2}\right) \\
\left(x_{1} \vee x_{2}\right) \Rightarrow(0 \wedge 0) \\
\wedge \quad\left(x_{1} \vee x_{2}\right) \Rightarrow(0 \wedge 1) \\
\wedge \quad\left(x_{1} \vee x_{2}\right) \Rightarrow(1 \wedge 0) \\
\wedge \quad\left(x_{1} \vee x_{2}\right) \Rightarrow(1 \wedge 1)
\end{gathered}
$$

## Expanding into SAT

$$
\exists X \forall Y . \phi \longrightarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu]\right)
$$

Example

$$
\begin{gathered}
\exists x_{1}, x_{2} \forall y_{1}, y_{2} \cdot\left(x_{1} \vee x_{2}\right) \Rightarrow\left(y_{1} \wedge y_{2}\right) \\
\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \Rightarrow(0 \wedge \mathbf{0}) \\
\wedge \quad\left(x_{1} \vee x_{2}\right) \Rightarrow(0 \wedge 1) \\
\wedge \quad\left(x_{1} \vee x_{2}\right) \Rightarrow(1 \wedge 0) \\
\wedge \quad\left(x_{1} \vee x_{2}\right) \Rightarrow(1 \wedge 1)
\end{gathered}
$$

## Abstraction

- Consider only some set of valuations $W \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in W} \phi[Y / \mu]
$$

## Abstraction

- Consider only some set of valuations $W \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in W} \phi[Y / \mu]
$$

- Any solution to the problem is a solution to the abstraction

$$
\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu] \Rightarrow \bigwedge_{\mu \in W} \phi[Y / \mu]
$$

## Abstraction

- Consider only some set of valuations $W \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in W} \phi[Y / \mu]
$$

- Any solution to the problem is a solution to the abstraction

$$
\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu] \Rightarrow \bigwedge_{\mu \in W} \phi[Y / \mu]
$$

- But not the other way around, a solution to an abstraction is not necessarily a solution to the original problem.


## CEGAR Loop

input : $\exists X \forall Y . \phi$
output: (true, $\nu$ ) if there exists $\nu$ s.t. $\forall Y \phi[X / \nu]$, (false, -) otherwise
$W \leftarrow \emptyset$
while true do

```
(outc
// find a candidate
if outc
return (false,-) // no candidate found
end
if \nu}\mathrm{ is a solution // solution check
then
return (true, }\nu
else
Grow W // refinement
end
```


## CEGAR Loop

input : $\exists X \forall Y . \phi$
output: (true, $\nu$ ) if there exists $\nu$ s.t. $\forall Y \phi[X / \nu]$, (false, - ) otherwise
$W \leftarrow \emptyset$
while true do

```
(outc
if outc
return (false,-) // no candidate found
end
if }\nu\mathrm{ is a solution // solution check
then
return (true, }\nu\mathrm{ )
else
Grow W
                                    // refinement
end
```


## Testing for Solution

A value $\nu$ is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \nu] \text { iff UNSAT }(\neg \phi[X / \nu])
$$

## Testing for Solution

A value $\nu$ is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \nu] \text { iff UNSAT }(\neg \phi[X / \nu])
$$

If $\operatorname{SAT}(\neg \phi[X / \nu])$ by some $\mu$, then $\mu$ is a counterexample to $\nu$

## Testing for Solution

A value $\nu$ is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \nu] \text { iff UNSAT }(\neg \phi[X / \nu])
$$

If $\operatorname{SAT}(\neg \phi[X / \nu])$ by some $\mu$, then $\mu$ is a counterexample to $\nu$
Example
$\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \vee x_{2}\right) \Rightarrow\left(y_{1} \wedge y_{2}\right)$

- candidate: $x_{1}=1, x_{2}=0$
- counterexamples: $y_{1}=0, y_{2}=0$

$$
\begin{aligned}
& y_{1}=0, y_{2}=1 \\
& y_{1}=1, y_{2}=0
\end{aligned}
$$

## Refinement



## Refinement



## Refinement



## The Algorithm

input : $\exists X \forall Y . \phi$
output: (true, $\nu$ ) if there exists $\nu$ s.t. $\forall Y \phi[X / \nu]$, (false, -) otherwise
$\omega \leftarrow 1$
while true do
 end

## Properties of Refinement



## Properties of Refinement



## Properties of Refinement



## Consequences of Refinement

- No candidate for counterexample appears more than once, therefore the upper bound on the number of iterations is:

$$
\min \left(2^{|X|}, 2^{|Y|}\right)
$$

## Consequences of Refinement

- No candidate for counterexample appears more than once, therefore the upper bound on the number of iterations is:

$$
\min \left(2^{|X|}, 2^{|Y|}\right)
$$

- Heuristic: look for such counterexamples that are also counterexamples to many other candidates, look for $\mu$ s.t.

$$
\neg \phi[X / \nu] \wedge \max \left(\left|\left\{\nu^{\prime} \mid \neg \phi\left[X / \nu^{\prime}, Y / \mu\right]\right\}\right|\right)
$$

## Why the Choice of Counterexamples Matters?

- Consider an invalid QBF and nightmare vs. jackpot scenarios.



## Why the Choice of Counterexamples Matters?

- Consider an invalid QBF and nightmare vs. jackpot scenarios.



## Why the Choice of Counterexamples Matters?

- Consider an invalid QBF and nightmare vs. jackpot scenarios.



## Why the Choice of Counterexamples Matters?

- Consider an invalid QBF and nightmare vs. jackpot scenarios.



## Results

|  | struqs | QuBE7.1 | qbf2circ | AReQS | AReQS-H |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2qbf 10 pre (114) | 30 | 93 | 37 | $\mathbf{1 0 1}$ | $\mathbf{1 0 1}$ |
| circ pre (117) | 6 | 113 | 117 | $\mathbf{1 1 7}$ | $\mathbf{1 1 7}$ |
| icore pre (140) | 30 | 23 | 33 | $\mathbf{6 2}$ | $\mathbf{6 2}$ |
| robots pre $(999)$ | 516 | 921 | 647 | 974 | $\mathbf{9 7 5}$ |
| noprepro $(232)$ | 15 | 47 | 18 | 51 | $\mathbf{5 5}$ |
| total (1602) | 597 | 1197 | 852 | 1305 | $\mathbf{1 3 1 0}$ |

## Results QuBE/AReQS-H



## Results AReQS/AReQS-H



## Results AReQS/AReQS-H Iterations

number of iterations of the CEGAR loop


## Conclusions

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.


## Conclusions

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)


## Conclusions

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y$. $\phi$ no valuation of $X$ or $Y$ repeats.


## Conclusions

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y$. $\phi$ no valuation of $X$ or $Y$ repeats.
- If $\neg \phi[X / n u, Y / m u]$, we never try $\nu^{\prime}$ s.t. $\neg \phi\left[X / n u^{\prime}, Y / m u\right]$,


## Conclusions

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y$. $\phi$ no valuation of $X$ or $Y$ repeats.
- If $\neg \phi[X / n u, Y / m u]$, we never try $\nu^{\prime}$ s.t. $\neg \phi\left[X / n u^{\prime}, Y / m u\right]$,
- It is to be expected that the algorithm will work well for formulas where counterexamples takes out many candidates.


## Conclusions

- We designed an algorithm for solving 2QBF, which is using SAT solver as an oracle.
- The QBF is gradually extended to a SAT formula (exponential size)
- For a formula $\exists X \forall Y$. $\phi$ no valuation of $X$ or $Y$ repeats.
- If $\neg \phi[X / n u, Y / m u]$, we never try $\nu^{\prime}$ s.t. $\neg \phi\left[X / n u^{\prime}, Y / m u\right]$,
- It is to be expected that the algorithm will work well for formulas where counterexamples takes out many candidates.
- A QCNF implementation of the algorithm consistently outperforms current solvers.

R Janota, M., Grigore, R., and Marques-Silva, J. (2010).
Counterexample guided abstraction refinement algorithm for propositional circumscription.
In JELIA ‘10.
E Janota, M. and Marques-Silva, J. (2011).
On deciding MUS membership with qbf.
In CP '11, to appear.
© Mneimneh, M. N. and Sakallah, K. A. (2003).
Computing vertex eccentricity in exponentially large graphs:
QBF formulation and solution.
In SAT '03.
Remshagen, A. and Truemper, K. (2005).
An effective algorithm for the futile questioning problem.
JAR '05.

