
Reasoning about Feature Models
in Higher-Order Logic

Mikoláš Janota Joseph Kiniry

Systems Research Group,
University College Dublin, Ireland

SPLC ’07

IST-15905

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Feature Oriented Domain Analysis

Feature Models

capture variability and commonality of a product line

features represent the building blocks

securityProfile

permissionSet(String)passwordPolicy

[0..*]

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Why Formalize?

Disambiguation

informal explanation of the meaning might be ambiguous

for example, absolute vs. relative meaning of mandatory

Reasoning at the Meta Level

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Why Formalize?

Disambiguation

informal explanation of the meaning might be ambiguous

for example, absolute vs. relative meaning of mandatory

Reasoning about Feature Models

Feature 
Modeling

Semantics

Tool 1 Tool n

Feedback for the User

Formalization

Translation Translation

ReasoningReasoning

Architecture 
Modeling

Feature and 
Component Relations

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Why Formalize?

Disambiguation

informal explanation of the meaning might be ambiguous

for example, absolute vs. relative meaning of mandatory

Reasoning at the Meta Level

Feature Diagram 
Meta-modeling

Semantics

Tool 1 Tool n

Feedback

Formalization

Translation Translation

ReasoningReasoning

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Mechanization of the Formalization

PVS

proof assistant widely used in computer science

typed higher-order logic language

Pros and Cons

� reason about feature-models that have infinite number of
configurations (e.g., feature cloning, attributes)

� express and reason about constraints expressible in HOL

� high level of trustworthiness of the formalization
as proofs are checked by a computer

� requires expertise in using a HOL proof-assistant

� some tasks might be tedious

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Concepts

Feature Models as Oracles

the set of selected features and values of their attributes
constitute a configuration

a configuration either does or does not conform to the model

Configuration

Feature Model

Query

Conforms Does not 
conform

AnswerAnswer

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Features and Configurations

Features and Attributes

name : String
size : Integer

Feature
Feature→ P(AttributeIdentifier)
AttributeIdentifier→ Type

Feature Configurations

value assignment function assigns values to attributes

A ≡ Feature→ (AttributeIdentifier→ AttributeValues)

selection function determines the selected features

select ≡ Feature→ Boolean

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Features and Configurations

Features and Attributes

name : String
size : Integer

Feature
Feature→ P(AttributeIdentifier)
AttributeIdentifier→ Type

Feature Configurations

name : String
memoryRequirement : Memory

Feature
name : String

Feature
name : String

Feature

value assignment function assigns values to attributes

A ≡ Feature→ (AttributeIdentifier→ AttributeValues)

selection function determines the selected features

select ≡ Feature→ Boolean

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Features and Configurations

Features and Attributes

name : String
size : Integer

Feature
Feature→ P(AttributeIdentifier)
AttributeIdentifier→ Type

Feature Configurations

name = "crash-detection"
memoryRequirement = 100MB

Feature
name = "air-bag"

Feature
name = "cruise-control"

Feature

value assignment function assigns values to attributes

A ≡ Feature→ (AttributeIdentifier→ AttributeValues)

selection function determines the selected features

select ≡ Feature→ Boolean

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Features and Configurations

Features and Attributes

name : String
size : Integer

Feature
Feature→ P(AttributeIdentifier)
AttributeIdentifier→ Type

Feature Configurations

name = "crash-detection"
memoryRequirement = 100MB

Feature
name = "air-bag"

Feature
name = "cruise-control"

Feature

value assignment function assigns values to attributes

A ≡ Feature→ (AttributeIdentifier→ AttributeValues)

selection function determines the selected features

select ≡ Feature→ Boolean

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Feature Models as Restriction Functions

Feature Models as Restriction Functions

a restriction function determines whether the given feature
selection and attributes’ values conform to the model

restr ≡ select× A→ Boolean

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Feature Models as Restriction Functions

Feature Models as Restriction Functions

a restriction function determines whether the given feature
selection and attributes’ values conform to the model

restr ≡ select× A→ Boolean

Examples of Restriction Functions

f1 requires f2:

r1(s : select, a : A) ≡ s(f1)⇒ s(f2)

f2 requires f3 with a specific version:

r2(s : select, a : A) ≡ s(f2)⇒ (s(f3) ∧ a(f3)(version) = 7)

restriction functions can be combined:

r3(s : select, a : A) ≡ r1(s, a) ∧ r2(s, a)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Feature Models as Restriction Functions

Feature Models as Restriction Functions

a restriction function determines whether the given feature
selection and attributes’ values conform to the model

restr ≡ select× A→ Boolean

More Examples in PVS Notation

a restriction function that corresponds to a requires relation:

require(requiree, required: FEATURE) : RESTRICTION =

LAMBDA (select: SELECT, da: DOMAIN_ASSIGNMENT):

(select(requiree) IMPLIES select(required))

combine two given restriction functions:

intersect(r1, r2: RESTRICTION) : RESTRICTION =

LAMBDA (select: SELECT, da: DOMAIN_ASSIGNMENT):

r1(select, da) AND r2(select, da)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Feature Models as Restriction Functions

Feature Models as Restriction Functions

a restriction function determines whether the given feature
selection and attributes’ values conform to the model

restr ≡ select× A→ Boolean

More Examples in PVS Notation

a restriction function that corresponds to a requires relation:

require(requiree, required: FEATURE) : RESTRICTION =

LAMBDA (select: SELECT, da: DOMAIN_ASSIGNMENT):

(select(requiree) IMPLIES select(required))

combine two given restriction functions:

intersect(r1, r2: RESTRICTION) : RESTRICTION =

LAMBDA (select: SELECT, da: DOMAIN_ASSIGNMENT):

r1(select, da) AND r2(select, da)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Meta-Level Property Example

Specialization of a Feature Model via Restriction Functions

specialization?(restr1, restr2 : restr) ≡
∀s : select; a : A • restr1(s, a)⇒ restr2(s, a)

Higher-Order Functions on Restriction Functions

assignment to an attribute value:

assign-value(r : restr) ≡
λs : select, a : A • r(s, a) ∧ (a(f1)(version) = 3)

Reasoning

the function assign-value returns a specialization:

∀r • specialized?(assign-value(r), r)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Meta-Level Property Example

Specialization of a Feature Model via Restriction Functions

specialization?(restr1, restr2 : restr) ≡
∀s : select; a : A • restr1(s, a)⇒ restr2(s, a)

Higher-Order Functions on Restriction Functions

assignment to an attribute value:

assign-value(r : restr) ≡
λs : select, a : A • r(s, a) ∧ (a(f1)(version) = 3)

Reasoning

the function assign-value returns a specialization:

∀r • specialized?(assign-value(r), r)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Meta-Level Property Example

Specialization of a Feature Model via Restriction Functions

specialization?(restr1, restr2 : restr) ≡
∀s : select; a : A • restr1(s, a)⇒ restr2(s, a)

Higher-Order Functions on Restriction Functions

assignment to an attribute value:

assign-value(r : restr) ≡
λs : select, a : A • r(s, a) ∧ (a(f1)(version) = 3)

Reasoning

the function assign-value returns a specialization:

∀r • specialized?(assign-value(r), r)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



From Feature Diagrams to Restriction Functions

Schematically

mathematical object, type TREE

securityProfile

permissionSet(String)passwordPolicy

Formalization

restriction function

Semantics Formalization

[0..*]

Feature Diagram

A Function From Diagram to Restriction Function

getRestriction : TREE→ (select× A→ Boolean)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



From Feature Diagrams to Restriction Functions

Schematically

mathematical object, type TREE

securityProfile

permissionSet(String)passwordPolicy

Formalization

restriction function

Semantics Formalization

[0..*]

Feature Diagram

A Function From Diagram to Restriction Function

getRestriction : TREE→ (select× A→ Boolean)

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Baking Restriction Functions

Modeling Gradual Specialization of Restriction Function

obtain a restriction function, e.g., from a feature diagram

r0 ≡ getRestriction(tree)

compose the functions defining each specialization:

r1 ≡ spec1(r0)
r2 ≡ spec2(r1)

. . .
rn ≡ specn(rn−1)

Bringing Specializations Together

rn = specn(. . . (spec1(getRestriction(tree))) . . . )

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Baking Restriction Functions

Modeling Gradual Specialization of Restriction Function

obtain a restriction function, e.g., from a feature diagram

r0 ≡ getRestriction(tree)

compose the functions defining each specialization:

r1 ≡ spec1(r0)
r2 ≡ spec2(r1)

. . .
rn ≡ specn(rn−1)

Bringing Specializations Together

rn = specn(. . . (spec1(getRestriction(tree))) . . . )

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Baking Restriction Functions

Modeling Gradual Specialization of Restriction Function

obtain a restriction function, e.g., from a feature diagram

r0 ≡ getRestriction(tree)

compose the functions defining each specialization:

r1 ≡ spec1(r0)
r2 ≡ spec2(r1)

. . .
rn ≡ specn(rn−1)

Bringing Specializations Together

rn = specn(. . . (spec1(getRestriction(tree))) . . . )

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic



Summary

Feature Models as Oracles

the oracle is an important characteristic of the feature model

enables unified mathematical approach

meta-model level, e.g., what is specialization
model level, e.g., record constraints in mathematical notation

oracles are compositional

Janota and Kiniry Reasoning about Feature Models in Higher-Order Logic


