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Feature Oriented Domain Analysis

Feature Models

capture variability and commonality of a product line

features represent the building blocks

securityProfile

permissionSet(String)passwordPolicy
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Why Formalize?

Disambiguation

informal explanation of the meaning might be ambiguous

for example, absolute vs. relative meaning of mandatory

Reasoning at the Meta Level
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Mechanization of the Formalization

PVS

proof assistant widely used in computer science

typed higher-order logic language

Pros and Cons

� reason about feature-models that have infinite number of
configurations (e.g., feature cloning, attributes)

� express and reason about constraints expressible in HOL

� high level of trustworthiness of the formalization
as proofs are checked by a computer

� requires expertise in using a HOL proof-assistant

� some tasks might be tedious
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Concepts

Feature Models as Oracles

the set of selected features and values of their attributes
constitute a configuration

a configuration either does or does not conform to the model

Configuration

Feature Model

Query

Conforms Does not 
conform

AnswerAnswer
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Features and Configurations

Features and Attributes

name : String
size : Integer

Feature
Feature→ P(AttributeIdentifier)
AttributeIdentifier→ Type

Feature Configurations

value assignment function assigns values to attributes

A ≡ Feature→ (AttributeIdentifier→ AttributeValues)

selection function determines the selected features

select ≡ Feature→ Boolean
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Feature Models as Restriction Functions

Feature Models as Restriction Functions

a restriction function determines whether the given feature
selection and attributes’ values conform to the model

restr ≡ select× A→ Boolean
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Feature Models as Restriction Functions

Feature Models as Restriction Functions

a restriction function determines whether the given feature
selection and attributes’ values conform to the model

restr ≡ select× A→ Boolean

Examples of Restriction Functions

f1 requires f2:

r1(s : select, a : A) ≡ s(f1)⇒ s(f2)

f2 requires f3 with a specific version:

r2(s : select, a : A) ≡ s(f2)⇒ (s(f3) ∧ a(f3)(version) = 7)

restriction functions can be combined:

r3(s : select, a : A) ≡ r1(s, a) ∧ r2(s, a)
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Feature Models as Restriction Functions

Feature Models as Restriction Functions

a restriction function determines whether the given feature
selection and attributes’ values conform to the model

restr ≡ select× A→ Boolean

More Examples in PVS Notation

a restriction function that corresponds to a requires relation:

require(requiree, required: FEATURE) : RESTRICTION =

LAMBDA (select: SELECT, da: DOMAIN_ASSIGNMENT):

(select(requiree) IMPLIES select(required))

combine two given restriction functions:

intersect(r1, r2: RESTRICTION) : RESTRICTION =

LAMBDA (select: SELECT, da: DOMAIN_ASSIGNMENT):

r1(select, da) AND r2(select, da)
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Meta-Level Property Example

Specialization of a Feature Model via Restriction Functions

specialization?(restr1, restr2 : restr) ≡
∀s : select; a : A • restr1(s, a)⇒ restr2(s, a)

Higher-Order Functions on Restriction Functions

assignment to an attribute value:

assign-value(r : restr) ≡
λs : select, a : A • r(s, a) ∧ (a(f1)(version) = 3)

Reasoning

the function assign-value returns a specialization:

∀r • specialized?(assign-value(r), r)
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From Feature Diagrams to Restriction Functions

Schematically

mathematical object, type TREE

securityProfile

permissionSet(String)passwordPolicy

Formalization

restriction function

Semantics Formalization

[0..*]

Feature Diagram

A Function From Diagram to Restriction Function

getRestriction : TREE→ (select× A→ Boolean)
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Baking Restriction Functions

Modeling Gradual Specialization of Restriction Function

obtain a restriction function, e.g., from a feature diagram

r0 ≡ getRestriction(tree)

compose the functions defining each specialization:

r1 ≡ spec1(r0)
r2 ≡ spec2(r1)

. . .
rn ≡ specn(rn−1)

Bringing Specializations Together

rn = specn(. . . (spec1(getRestriction(tree))) . . . )
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Summary

Feature Models as Oracles

the oracle is an important characteristic of the feature model

enables unified mathematical approach

meta-model level, e.g., what is specialization
model level, e.g., record constraints in mathematical notation

oracles are compositional
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