w vt zorrmn 5es ”"%ﬂ BWE

Py - X
\\}7 Information Society
cience foundation reand :
o Technologies

Reachability Analysis for Annotated Code

Mikolas Janota! Radu Grigore! Michat Moskal?

1Systems Research Group,
University College Dublin, Ireland

2Institute of Computer Science
University of Wroctaw, Poland

SAVCBS '07

@Mobius [t}
IST-15905

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Why Annotated Code?

Static Checking Example

//@ ensures \result >= a;
//@ ensures \result >= b;
int max(int a, int b) {
if (b>a)
return b;
else

return b;

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Why Annotated Code?

Static Checking Example

//@ ensures \result >= a;
//@ ensures \result >= b;
int max(int a, int b) {
if (b>a)
return b;
else

Bug ~ return b;

}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Is It Possible that Some Things Are not Checked?

Code-Spec Inconsistency

/*@ requires x > 10;
@ ensures \result == 1;%x/
int withPre(int x) {
if (x < 10) {
// not checked
return 2;

}

return 1;

}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Is It Possible that Some Things Are not Checked?

Code-Spec Inconsistency Inconsistent Spec

/*@ requires x > 10;
@ ensures \result == 1;%x/
int withPre(int x) {
if (x < 10) {
// not checked
return 2;

}

return 1;

}

/*@ requires i >= 10;
@ ensures \result == i;
@ ensures \result < 10;%*/

int libraryFunc (int i);

int useLibraryFunc() {
int r = libraryFunc (11);
return 1/0; //not checked

}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

ESC/Java2 Architecture

‘ JML-annotated Java code ‘

Java parsingi

\ AST \
GC generationi) .

| G)
loop desugaringl

‘ desugared GC ‘

passivization i
\ DSA \
VC generation reachabili}:y
nalysis
‘ vC ‘ ‘ RA queries ‘
pr()vingl provingl
‘ bugs ‘ ‘ unreachable code ‘

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Input Language

Dynamic Single Assignment (DSA)

cmd := assume f | assert f | cmd [cmd | cmd ; emd

where f is a first-order logic predicate on the program variables

Inconsistent Spec useLibraryFunc as DSA

/*@ requires i >= 10;
@ ensures \result == i; Cl' assert11 > 10;

@ ensures \result < 10;*/ Cy: assumerp = 11 A < 10;
int libraryFunc (int i); C3: assert(# 0;
Cy: assume RES =1/0

int useLibraryFunc() {
int r = libraryFunc (11);
return 1/0; // not checked

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Reachability Propagation in Control Flow Graph

Code is unreachable if all paths leading to it block:

I unreachable
reachable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Computing Unreachable Code

Construct a control flow graph from DSA

e directed acyclic (DAG)
@ nodes are labeled with commands:
L : Nodes — {assume f, assert f}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Computing Unreachable Code

Construct a control flow graph from DSA
e directed acyclic (DAG)
@ nodes are labeled with commands:

L : Nodes — {assume f, assert f}

v

Compute preconditions and postconditions for nodes

post(n) = SP(pre(n), £(n)) = pre(n) A f

pre(n) = {

true if nis an entry node
Vpeparents(n) pOSt(P) otherwise

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Computing Unreachable Code

Construct a control flow graph from DSA
e directed acyclic (DAG)
@ nodes are labeled with commands:
L : Nodes — {assume f, assert f}

Compute preconditions and postconditions for nodes

post(n) = SP(pre(n), £(n)) = pre(n) A f
[true if nis an entry node
pre(n) = \/peparents(n) post(p) otherwise

Call the Theorem Prover

for each node n,
ask the theorem prover if pre(n) is unsatisfiable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

© reachability information can
be propagated
@ most nodes are reachable

© most nodes dominate some
other node

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Example of Propagation
o

reachability information can
be propagated
@ most nodes are reachable
© most nodes dominate some
other node)
I unreachable
reachable
unknown

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Example of Propagation

© reachability information can
be propagated
@ most nodes are reachable

© most nodes dominate some
other node

I unreachable

reachable

unknown

v

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Example of Propagation
o

reachability information can
be propagated
@ most nodes are reachable
© most nodes dominate some
other node)
I unreachable
reachable
unknown

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Example of Propagation
o

reachability information can
be propagated
@ most nodes are reachable
© most nodes dominate some
other node
I unreachable
reachable
unknown

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Algorithm — Greedy Heuristic

© Compute:

i. T — the immediate dominator tree of the nodes not known to
be unreachable.
ii. r— the root of T.

@ Choose an unlabeled node x in T with a maximal number of
unlabeled dominators (greedy choice).
i. Query the prover on x.
ii. Label x reachable/unreachable accordingly and propagate.
iii. If x is reachable then go to step 1.
© By using binary search find the unreachable node on the path
from r to x that is closest to r (the ‘broken link" in chains).
Label and propagate accordingly.

@ Repeat from step 1 while there are unlabeled nodes.

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Case Study

e ESC/Java2’s front-end (javafe)
@ 1890 methods

@ running time 9 hours where reachability analysis took 34.8%

The Most Interesting Problems

@ uncovered 5 inconsistencies in the JDK specifications

e including a problem in treating of the informal comment
ensures \result <=> (* is upper-case *)

deficiencies of the checker (e.g., in loop unrolling)
catching an undeclared exception

most common: an error hiding subsequent code

in some cases we don't know why the code is unreachable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Conclusions and Future Work

@ unreachable code is a problem in practice, nevertheless,
o finding the exact source of unreachability is difficult, thus,

@ in our future work we want to explore how we can provide
more helpful feedback to the user

The implementation is in the ESC/Java2’s cvs head and can be
enabled by the switch —era.

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Example with a Loop

DSA Control Flow Graph

assume sum =0

Infinite Loop / \
assert i = assume i =
int j =0;
int sum = 0; / \
//@ loop_invariant i == 0; 10 10
for (int i =0:i < 10; j++) assume i < assume !(i < 10)
sum +=i;
//@ assert false; A v
y sum' = sum + i assert false
A
asserti=0

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Loop Unrolling

Loop Unrolled Twice

if C then B;
if C then B;
if C then assume false;

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

