
Reachability Analysis for Annotated Code

Mikoláš Janota1 Radu Grigore1 Micha l Moskal2

1Systems Research Group,
University College Dublin, Ireland

2Institute of Computer Science
University of Wroc law, Poland

SAVCBS ’07

IST-15905

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Why Annotated Code?

Static Checking Example

//@ ensures \result >= a;

//@ ensures \result >= b;

int max(int a, int b) {
if (b > a)

return b;
else

Bug

return b;

}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Why Annotated Code?

Static Checking Example

//@ ensures \result >= a;

//@ ensures \result >= b;

int max(int a, int b) {
if (b > a)

return b;
else

Bug return b;

}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Is It Possible that Some Things Are not Checked?

Code-Spec Inconsistency

/*@ requires x > 10;

@ ensures \result == 1;*/

int withPre(int x) {
if (x < 10) {
// not checked

return 2;
}
return 1;

}

Inconsistent Spec

/*@ requires i >= 10;

@ ensures \result == i;

@ ensures \result < 10;*/

int libraryFunc (int i);

int useLibraryFunc() {
int r = libraryFunc (11);
return 1/0; //not checked

}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Is It Possible that Some Things Are not Checked?

Code-Spec Inconsistency

/*@ requires x > 10;

@ ensures \result == 1;*/

int withPre(int x) {
if (x < 10) {
// not checked

return 2;
}
return 1;

}

Inconsistent Spec

/*@ requires i >= 10;

@ ensures \result == i;

@ ensures \result < 10;*/

int libraryFunc (int i);

int useLibraryFunc() {
int r = libraryFunc (11);
return 1/0; //not checked

}

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

ESC/Java2 Architecture

AST

GC

desugared GC

DSA

RA queries

unreachable code

JML-annotated Java code

VC

bugs

Java parsing

GC generation

loop desugaring

passivization

reachability
analysis

proving

VC generation

proving

invariant
generation

1

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Input Language

Dynamic Single Assignment (DSA)

cmd := assume f | assert f | cmd 8 cmd | cmd ; cmd

where f is a first-order logic predicate on the program variables

Inconsistent Spec

/*@ requires i >= 10;

@ ensures \result == i;

@ ensures \result < 10;*/

int libraryFunc (int i);

int useLibraryFunc() {
int r = libraryFunc (11);
return 1/0; // not checked

}

useLibraryFunc as DSA

C1: assert 11 ≥ 10;
C2: assume r1 = 11 ∧ r1 < 10;
C3: assert 0 6= 0;
C4: assume RES = 1/0

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Reachability Propagation in Control Flow Graph

Code is unreachable if all paths leading to it block:

unreachable

reachable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Computing Unreachable Code

Construct a control flow graph from DSA

directed acyclic (DAG)

nodes are labeled with commands:

L : Nodes→ {assume f , assert f }

Compute preconditions and postconditions for nodes

post(n) ≡ SP(pre(n),L(n)) = pre(n) ∧ f

pre(n) ≡
{

true if n is an entry node∨
p∈parents(n) post(p) otherwise

Call the Theorem Prover

for each node n,
ask the theorem prover if pre(n) is unsatisfiable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Computing Unreachable Code

Construct a control flow graph from DSA

directed acyclic (DAG)

nodes are labeled with commands:

L : Nodes→ {assume f , assert f }

Compute preconditions and postconditions for nodes

post(n) ≡ SP(pre(n),L(n)) = pre(n) ∧ f

pre(n) ≡
{

true if n is an entry node∨
p∈parents(n) post(p) otherwise

Call the Theorem Prover

for each node n,
ask the theorem prover if pre(n) is unsatisfiable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Computing Unreachable Code

Construct a control flow graph from DSA

directed acyclic (DAG)

nodes are labeled with commands:

L : Nodes→ {assume f , assert f }

Compute preconditions and postconditions for nodes

post(n) ≡ SP(pre(n),L(n)) = pre(n) ∧ f

pre(n) ≡
{

true if n is an entry node∨
p∈parents(n) post(p) otherwise

Call the Theorem Prover

for each node n,
ask the theorem prover if pre(n) is unsatisfiable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Observations

1 reachability information can
be propagated

2 most nodes are reachable

3 most nodes dominate some
other node

Example of Propagation

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Observations

1 reachability information can
be propagated

2 most nodes are reachable

3 most nodes dominate some
other node

unreachable

reachable

unknown

Example of Propagation

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Observations

1 reachability information can
be propagated

2 most nodes are reachable

3 most nodes dominate some
other node

unreachable

reachable

unknown

Example of Propagation

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Observations

1 reachability information can
be propagated

2 most nodes are reachable

3 most nodes dominate some
other node

unreachable

reachable

unknown

Example of Propagation

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Can We Do Better?

Observations

1 reachability information can
be propagated

2 most nodes are reachable

3 most nodes dominate some
other node

unreachable

reachable

unknown

Example of Propagation

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Algorithm — Greedy Heuristic

1 Compute:

i. T — the immediate dominator tree of the nodes not known to
be unreachable.

ii. r — the root of T .

2 Choose an unlabeled node x in T with a maximal number of
unlabeled dominators (greedy choice).

i. Query the prover on x .
ii. Label x reachable/unreachable accordingly and propagate.
iii. If x is reachable then go to step 1.

3 By using binary search find the unreachable node on the path
from r to x that is closest to r (the ‘broken link’ in chains).
Label and propagate accordingly.

4 Repeat from step 1 while there are unlabeled nodes.

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Case Study

Where

ESC/Java2’s front-end (javafe)

1890 methods

running time 9 hours where reachability analysis took 34.8%

The Most Interesting Problems

uncovered 5 inconsistencies in the JDK specifications

including a problem in treating of the informal comment
ensures \result <=> (* is upper-case *)

deficiencies of the checker (e.g., in loop unrolling)

catching an undeclared exception

most common: an error hiding subsequent code

in some cases we don’t know why the code is unreachable

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Conclusions and Future Work

unreachable code is a problem in practice, nevertheless,

finding the exact source of unreachability is difficult, thus,

in our future work we want to explore how we can provide
more helpful feedback to the user

The implementation is in the ESC/Java2’s cvs head and can be
enabled by the switch -era.

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Example with a Loop

Infinite Loop

int j = 0;
int sum = 0;
//@ loop_invariant i == 0;

for (int i = 0; i < 10; j++)
sum += i;

//@ assert false;

DSA Control Flow Graph

assume sum = 0

assert i = 0 assume i = 0

assume i < 10 assume !(i < 10)

sum' = sum + i assert false

assert i = 0

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

Loop Unrolling

Loop Unrolled Twice

if C then B;
if C then B;
if C then assume false;

Janota, Grigore, and Moskal Reachability Analysis for Annotated Code

