
Solving QBF with
Counterexample Guided Refinement

Mikoláš Janota1, William Klieber3, Joao Marques-Silva1,2, and Edmund Clarke3?

1 IST/INESC-ID, Lisbon, Portugal
2 University College Dublin, Ireland

3 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We propose two novel approaches for using Counterexample-
Guided Abstraction Refinement (CEGAR) in Quantified Boolean For-
mula (QBF) solvers. The first approach develops a recursive algorithm
whose search is driven by CEGAR (rather than by DPLL). The sec-
ond approach employs CEGAR as an additional learning technique in
an existing DPLL-based QBF solver. Experimental evaluation of the im-
plemented prototypes shows that the CEGAR-driven solver outperforms
existing solvers on a number of families in the QBF-LIB and that the
DPLL solver benefits from the additional type of learning. Thus this ar-
ticle opens two promising avenues in QBF: CEGAR-driven solvers as an
alternative to existing approaches and a novel type of learning in DPLL.

1 Introduction

Quantified Boolean formulas (QBFs) [8] naturally extend the SAT problem by
enabling expressing PSPACE-complete problems, which can be found in a num-
ber of areas [13]. While nonrandom SAT solving has been dominated by the
DPLL procedure, it has proven to be far from a silver bullet for QBF solving. In-
deed, a number of solving techniques have been proposed for QBF [12,3,4,19,15],
complemented by a variety of preprocessing techniques [7,14,21,5].

This paper extends the family of QBF solving techniques by employing the
counterexample guided abstraction refinement (CEGAR) paradigm [10]. This is
done in two different ways. The first approach develops a novel algorithm, named
RAReQS, that gradually expands the given formula into a propositional one. In
contrast to the existing expansion-based solvers [1,4,19], the use of CEGAR in
RAReQS enables terminating before the formula is fully expanded and thus sub-
stantially mitigates the problems with memory blowup inherent to expansion-
based solvers. The second approach employs CEGAR as an additional learning
technique in an existing DPLL-based QBF solver. At the price of higher mem-
ory consumption, this learning technique enables more aggressive pruning of
the search space than the existing techniques [28]. The experimental evaluation
carried out demonstrates that CEGAR-based techniques are useful for a large
number of families in the QBF-LIB [25].

? This work is partially supported by FCT grants ATTEST (CMU-PT/ELE/0009/-
2009) and POLARIS (PTDC/EIA-CCO/123051/2010), by SFI grant BEACON
(09/IN.1/I2618), and by Semiconductor Research Corporation contract 2005TJ1366.

2 Preliminaries

Quantified Boolean formulas (QBF) are assumed, unless noted otherwise, to be
in prenex form Q1z1. . .Qnzn.φ where Qi ∈ {∀,∃}, zi are distinct variables, and
φ is a propositional formula using only the variables zi and the constants 0
(false), 1 (true). The sequence of quantifiers in a QBF is called the prefix and
the propositional formula the matrix. The prefix is divided into quantifier blocks,
each of which is a subsequence ∀x1 . . . ∀xn or resp. ∃x1 . . . ∃xn, which we denote
by ∀X or resp. ∃X, where X = {x1, ..., xn}.
Notation. We write Q̄ for “∀” (if Q is “∃”) or “∃” (if Q is “∀”).

Whenever convenient, parts of a prefix are denoted as P with possible sub-
scripts, e.g. P1∀XP2. φ denotes a QBF with the matrix φ and a prefix that
contains ∀X. If the quantifier of a block Y occurs within the scope of the quan-
tifier of another block X, we say that variables in X are upstream of variables
in Y and that variables in Y are downstream of variables in X.

Variable assignments are represented as sets of literals. In particular, an
assignment τ to the set of variables X contains exactly one of x, ¬x for each
x ∈ X, with the meaning that if x ∈ τ , the variable x has the value 1 in τ and
if ¬x ∈ τ , it has the value 0.

Notation. We write BY for the set of assignments to the variables Y .

For a Boolean formula φ and an assignment τ we write φ[τ] for the substitu-
tion of τ in φ. In practice a substitution also performs basic simplifications, e.g.
(¬x∨ y)[{¬x}] = (¬0∨ y) = 1. We extend the notion of substitution to QBF so
that it first removes the quantifiers of substituted variables and then substitutes
all occurrences with their assigned values. E.g., if τ is an assignment to a block
X, then (P1QXP2. φ) [τ] results in P1P2. φ[τ].

A Boolean formula in conjunctive normal form (CNF) is a conjunction of
clauses, where a clause is a disjunction of literals, and a literal is either a variable
or its complement. Whenever convenient, a CNF formula is treated as a set of
clauses. For a literal l, var(l) denotes the variable in l, i.e. var(¬x) = var(x) = x.

The pseudocode throughout the paper uses the function SAT(φ) to represent
a call to a SAT solver on a propositional formula φ. The function returns a
satisfying assignment for φ, if such exists, and returns NULL otherwise.

2.1 Game-Centric View

A QBF can be seen as a a game between the universal player and the existential
player. During the game, the existential player assigns values to the existentially
quantified variables and the universal player assigns values to the universally
quantified ones. A player can assign a value to a variable only if all variables
upstream of it already have a value. The existential player wins if the formula
evaluates to 1 and the universal player wins if it evaluates to 0.

We note that the order in which values are given to variables in the same
block is unimportant. Hence, by a move we mean an assignment to variables in
a certain block. A concept useful throughout the paper are the winning moves.

Definition 1 (winning move). Consider a (nonprenex) closed QBF QX.Φ
and an assignment τ to X. Then τ is called a winning move for QX.Φ if Q=∃
and Φ[τ] is true or Q=∀ and Φ[τ] is false.

Notation. We write M(QX.Φ) to denote the set of winning moves for QX.Φ.

Observation 1 Let Φ be a QBF.

A closed QBF ∃X.Φ is true iff there exists a winning move for ∃X.Φ.

A closed QBF ∀Y. Φ is true iff there does not exist a winning move for ∀Y. Φ.

3 Recursive CEGAR-based Algorithm

Previous work on QBF shows how CEGAR can be used to solve formulas with
2 levels of quantifiers [17]. Here we generalize this approach to an arbitrary
number of quantifiers by recursion. The recursion follows the prefix of the given
formula starting with the most upstream variables progressing towards more
downstream variables. It tries to find a winning move (Definition 1) for variables
in a certain block by making recursive calls to obtain winning moves for the
downstream variables. The base case of the recursion, i.e., a QBF with one
quantifier, is handled by a SAT solver.

The algorithm is presented as a recursive function returning a winning move
for the given formula, if such move exists. Following the CEGAR paradigm, the
function builds an abstraction which provides candidates for the winning move.
This abstraction is gradually refined as the algorithm progresses. Refinement is
realized by strengthening the abstraction, which means reducing the set of win-
ning moves; strengthening is achieved by applying conjunction and disjunction.

Observation 2 Let Φ1, . . . , Φn be QBFs with free variables in X.

M (∀X. (Φ1 ∨ · · · ∨ Φn)) ⊆M (∀X. Φi), i ∈ 1..n.

M (∃X. (Φ1 ∧ · · · ∧ Φn)) ⊆M (∃X. Φi), i ∈ 1..n.

M(∀X∃Y. Φ) =M(∀X.
∨
µ∈BY Φ[µ])

M(∃X∀QY. Φ) =M(∃X.
∧
µ∈BY Φ[µ])

The second half of the above observation gives us a recipe how to eliminate
quantifiers by expanding them into the corresponding propositional operator.
One could thus eliminate quantifiers one by one and eventually call a SAT solver
if only one quantifier is left. The clear disadvantage of this approach is that the
formula grows rapidly and therefore performing the expansion is often unfeasible.
This is where CEGAR comes in; the algorithm expands quantifiers carefully,
based on counterexamples that show that the current expansion is too weak. In
this spirit, we define abstraction as a partial expansion of the given formula.

Definition 2 (ω-abstraction). Let ω be a subset of BY .

The ω-abstraction of a closed QBF ∀X∃Y. Φ is the formula ∀X.
∨
µ∈ω Φ[µ].

The ω-abstraction of a closed QBF ∃X∀Y. Φ is the formula ∃X.
∧
µ∈ω Φ[µ].

Algorithm 1: Basic recursive CEGAR algorithm for QBF

1 Function Solve (QX.Φ)
input : QX. Φ is a closed QBF in prenex form with no adjacent

blocks with the same quantifier
output : a winning move for QX.Φ if there is one, NULL otherwise

2 begin
3 if Φ has no quantifiers then
4 return (Q = ∃) ? SAT(φ) : SAT(¬φ)
5 end
6 ω ← ∅
7 while true do
8 α← (Q = ∃) ?

∧
µ∈ω Φ[µ] :

∨
µ∈ω Φ[µ] // build abstraction

9 τ ′ ← Solve(Prenex(QX. α)) // find a candidate solution

10 if τ ′ = NULL then return NULL // no winning move

11 τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X} // filter a move for X
12 µ← Solve(Φ[τ]) // find a counterexample

13 if µ = NULL then return τ
14 ω ← ω ∪ {µ} // refine

15 end

16 end

Observe that any winning move for QXQ̄Y. Φ is also a winning move for
its ω-abstraction (for arbitrary ω). The reverse, however, does not hold. Hence,
following the CEGAR paradigm, we first find a winning move for the abstraction
and then verify that it is also a winning move for the given formula. Verifying
that a given assignment is a winning move entails solving another QBF.

Observation 3 An assignment τ is a winning move for a closed QXQ̄Y. Φ iff
Q̄Y. Φ[τ] has no winning move.

If a winning move for the abstraction is verified to be a winning move for
the given formula, the move is returned. However, if this is not the case, the
abstraction is strengthened. Observation 3 tells us that if an assignment τ is
not a winning move for QXQ̄Y. Φ, then there is a winning move µ for the
opposing quantifier Q̄ for the QBF Q̄Y. Φ[τ]. We say that this move µ is a
counterexample to τ because it serves as a witness demonstrating that τ is not a
winning move for QXQ̄Y. Φ. In accordance with the concept of counterexample
guided abstraction refinement, if a counterexample µ is found, the current ω-
abstraction is strengthened by adding µ to ω.

When we put these things together, we obtain Algorithm 1. The algorithm is
given a closed QBF QX.Φ. and returns a winning move for QX.Φ, if such exists,
and returns NULL otherwise. It is required that QX.Φ is in prenex form where
no two adjacent blocks have the same quantifiers (the blocks are maximal).
The algorithm starts with ω = ∅; this represents an abstraction that can be

won by any candidate. In each iteration of the CEGAR loop it first solves the
abstraction (line 9) and then verifies whether the move winning the abstraction
is also a winning move for the given problem (line 12). These operations are
realized as recursive calls. If there is no winning move for the abstraction, then
there is no winning move for the given problem and the function terminates. If
there is no counterexample to the move winning the abstraction, then this move
is also a winning move for the given problem and the function terminates. If
there is a counterexample to the move winning the abstraction, the abstraction
must be refined (line 14).

The precondition of the function that the input formula must be in prenex
form with no adjacent blocks with the same quantifier poses some technical
difficulty. When constructed directly according to its definition (Definition 2),
the abstraction does not necessarily satisfy this condition.

Consider the case for Q = ∃ (Q = ∀ is analogous). The abstraction is of the
form ∃X.

∧
µ∈ω Φ[µ]. Prenexing the abstraction generates fresh variables for each

of the conjuncts Φ[µ], interleaves them into a single prefix, and merges adjacent
blocks that start with the same quantifier. Since each Φ[µ] starts with the exis-
tential quantifier (the substitution of µ eliminated the universal variables at the
top), after prenexing, the abstraction’s prefix starts with ∃XX1 . . . Xk where Xi

are the fresh variables for the conjuncts Φ[µ]. For this reason if a winning move
for the abstraction is computed, only the assignments to the variables X are
considered (line 11).

Example 1. Consider the QBF ∃vw.Φ, where Φ = ∀u∃xy. (v ∨w ∨ x)∧ (v̄ ∨ y)∧
(w̄ ∨ y) ∧ (u ∨ x̄) ∧ (ū ∨ ȳ), and the candidates {v, w} and {v̄, w̄}, and cor-
responding counterexamples {u} and {ū}. Refinement yields the abstraction
∃vw. Φ[{u}] ∧ Φ[{ū}], with the prenex form ∃vwxyx′y′. (v ∨ w ∨ x) ∧ (v̄ ∨ y) ∧
(w̄ ∨ y)∧ (ȳ)∧ (v ∨w ∨ x′)∧ (v̄ ∨ y′)∧ (w̄ ∨ y′)∧ (x̄′) with no winning move and
the algorithm terminates with the return value NULL.

3.1 Improving Recursive CEGAR-based Algorithm

Algorithm 1 clearly suffers from high memory consumption since in each itera-
tion of the loop the abstraction is increased by the size of the input formula and
the number of its variables is doubled (in the worst case). Recursive calls fur-
ther amplify this unfavorable behavior. For the input formula ∃X. Φ, perform-
ing n1 iterations with the counterexamples µ1

1, . . . , µ
1
n1

yields the abstraction
Ω = ∃X. φ[µ1

1] ∧ · · · ∧ φ[µ1
n1

]. The algorithm subsequently invokes the recursive
call Solve(Ω) on line 9. If within this recursive call the loop iterates n2 times, its
abstraction is of the form ∃X. Ω[µ2

1]∨· · ·∨Ω[µ2
n2

] with the size O(n1×n2×|φ|).
In general, if the algorithm iterates ni times at a recursion level i, the abstraction
at level k is of the size O(n1 × . . .× nk × |φ|).

To cope with this inefficiency, we exploit the form of the formulas that the
algorithm handles. In the case of the existential quantifier, the abstraction is a
conjunct, and it is a disjunct in the case of the universal quantifier. For the sake of
uniformity, we bridge these two forms by introducing the notion of a multi-game
where a player tries to find a move that wins multiple formulas simultaneously.

Definition 3 (multi-game). A multi-game is denoted by QX.{Φ1, . . . , Φn}
where each Φi is a prenex QBF starting with Q̄ or has no quantifiers. The free
variables of each Φi must be in X and all Φi have the same number of quantifier
blocks. We refer to the formulas Φi as subgames and QX as the top-level prefix.

A winning move for a multi-game is an assignment to the variables X such
that it is a winning move for each of the formulas QX. Φi.

Observe that the set of winning moves of a multi-game QX.{Φ1, . . . , Φn}
is the same as the set of winning moves of the QBF ∀X.(Φ1 ∨ · · · ∨ Φn) for
Q = ∀ and it is the same as ∃X.(Φ1 ∧ · · · ∧ Φn) for Q = ∃. And, any QBF
QX. Φ corresponds to a multi-game with a single subgame QX.{Φ}

To solve multi-games we use Algorithm 2. The algorithm is given a multi-
game to solve and the abstraction is again a multi-game. To determine whether
the candidate τ is a winning move, it tests whether it is a winning move for the
subgames in turn. If it finds a subgame Φi s.t. Φi[τ] is won by the opponent Q̄
by a move µ, then Φi[µ] is used to strengthen the abstraction.

Since an abstraction is a multi-game, it seems natural to add Φi[µ] to the set
of its subgames. This, however, cannot be done right away because the formula
is not in the right form. In particular, all the subgames must start with the
opposite quantifier as the top-level prefix. Hence, if Φi is of the form Q̄Y QX1. Ψi
and µ ∈ BY , then Φi[µ] = QX1. Ψi[µ]. To bring the formula into the right form,
we introduce fresh variables for the variables X1 and move them into the top-
level prefix. More precisely, the function Refine(α,Φl, µl) is defined as follows
(observe that the subgames remain in prenex form).

Refine
(
QX.{Ψ1, . . . , Ψn}, Q̄Y QX1. Ψ, µ

)
:= QXX ′

1.{Ψ1, . . . , Ψn, Ψ
′[µ]}

where X ′
1 are fresh duplicates of the variables X1 and Ψ ′ is Ψ with X1 replaced

by X ′
1

Refine
(
QX.{Ψ1, . . . , Ψn}, Q̄Y. ψ, µ

)
:= QX.{Ψ1, . . . , Ψn, ψ[µ]}

where ψ is a propositional formula (where no duplicates are needed)

Similarly to Algorithm 1, after the refinement, the abstraction’s top-level
prefix contains additional variables besides the variables X. Hence, values for
these variables are filtered out if a winning move for the abstraction is found.

3.2 Properties of the Algorithms

In CEGAR loop of Algorithm 1 no candidate or counterexample repeats. In-
tuitively, this is because once a counterexample µ is found, the abstraction is
strengthened so that in the future winning moves for the abstraction cannot
be beaten by the move µ. Consequently, the loop is terminating and for a for-
mula QXQ̄Y.Φ the number of its iterations is bounded by the number of pos-
sible assignments to the variables X and Y , i.e. min(2|X|, 2|Y |). In the worst
case, in each iteration the abstraction grows by the size of Φ. For a multi-game
QX. {Φ1, . . . , Φn} in the CEGAR loop of Algorithm 2 no candidates repeat
but counterexamples may. However, for a given i ∈ 1..n, a counterexample µi
does not repeat. More precisely there are no two distinct iterations of the loop
with the corresponding candidates and counterexamples τ1, µ1, τ2, µ2, such that

Algorithm 2: Recursive CEGAR algorithm for multi-games

1 Function RAReQS (QX. {Φ1, . . . , Φn})
2 output: a winning move for QX. {Φ1, . . . , Φn} if there is one; NULL otherwise

3 begin
4 if Φi have no quantifiers then
5 return Q = ∃ ? SAT(

∧
i Φi) : SAT(¬(

∨
i Φ))

6 α← QX. {}
7 while true do
8 τ ′ ← RAReQS(α) // find a candidate solution

9 if τ ′ = NULL then return NULL
10 τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X} // filter a move for X
11 for i← 1 to n do µi ← RAReQS(Φi[τ]) // find a counterexample

12 if µi = NULL for all i ∈ {1..n} then return τ
13 let l ∈ {1..n} be s.t. µl 6= NULL
14 α← Refine(α,Φl, µl) // refine

15 end

16 end

µ1 = µ2 and µ1 is a winning move for both Φi[τ1] and Φi[τ2] for some i. This
demonstrates termination with the upper bound for the number of iterations
as min(2|X|, n× 2|Y |). In the worst case, in each iteration the abstraction grows
by the maximum of the sizes of the subgames Φ1, . . . , Φn. Soundness and com-
pleteness of the algorithms 1 and 2 are direct consequences of Observation 2.

3.3 Implementation Details

We have implemented a prototype of RAReQS in C++, supporting the QDIMACS
format, with the underlying SAT solver minisat 2.2 [11].

The implementation has several distinctive features. In Algorithm 2, an ab-
straction computed within a sub-call is forgotten once the call returns. This may
lead to repetition of work and hence the solver supports maintaining these ab-
stractions and strengthening them gradually, similarly to the way SAT solvers
provide incremental interface. This incremental approach, however, tends to lead
to unwieldy memory consumption and therefore, it is used only when the given
multigame’s subgames have 2 or fewer quantification blocks.

If an assignment τ is a candidate for a winning move that turns out not to
be a winning move, the refinement guarantees that τ is not a solution to the
abstraction in the future iterations of the CEGAR loop. This knowledge enables
us to make the subcall for solving the abstraction more efficient by explicitly
disabling τ as a winning move for the abstraction. We refer to this technique as
blocking and it is similar to the refinement used in certain SMT solvers [24,2].

Throughout its course, the algorithm may produce a large number of new
formulas, either by substitution or refinement. Since these formulas tend to be

Algorithm 3: DPLL Algorithm with CEGAR Learning

1. global πcur = ∅;
2. function dpll_solve(Φin) {

3. while (true) {

4. while (we don’t know who has a winning strategy under πcur) {

5. decide lit(); propagate();

7. }

8. Φin := dpll_learn(Φin);

9. if (we learned who has a winning strategy under ∅) return;

10. if (last decision literal is owned by winner) {

11. Φin := cegar learn(Φin);

12. }

13. backtrack();

14. propagate(); // Learned information will force a literal.
15. }

16. }

simpler than the given one, they can be further simplified by standard QBF
preprocessing techniques. The implementation uses unit propagation and mono-
tone (pure) literal rule [9]. These simplifications introduce the complication that
in a multi-game QX.{Φ1, . . . , Φn} the individual subgames might not necessar-
ily have the same number of quantifier levels. In such case, all games with no
quantifiers are immediately put into the abstraction before the loop starts.

4 CEGAR as a learning technique in DPLL

The previous section shows that CEGAR can give rise to a complete and sound
algorithm for QBF. In this section we show that CEGAR enables us to extend
existing DPLL solvers with an additional learning technique. To illustrate the
basic idea consider the QBF ∀X. (∃Y. φ) and a situation when the solver as-
signed values to variables in X and Y such that φ is satisfied, i.e., the existential
player won. This assignment has two disjoint parts, πcand and πcex, which are
assignments to X and Y , respectively. Conceptually, πcand corresponds the can-
didate assignment in RAReQS and πcex to its counterexample. In this case, the
CEGAR-based learning will correspond to disjoining the formula φ[πcex] onto φ,
resulting in ∀X. (∃Y. φ) ∨ φ[πcex], so that πcand is avoided in the future.

The CEGAR learning in DPLL is most naturally described in the context
of a non-prenex, non-clausal solver such as GhostQ [18]. Given an assignment
π, such a solver will tell us that either (1) the existential player has a winning
stategy under π (i.e., Φin[π] is true), (2) the universal player has a winning
stategy under π (i.e., Φin[π] is false), or (3) it is not yet known which player has
a winning strategy under π.

1. Let Xc be the quantifier block of the last decision literal.
Let Qc and Φc be such that (QcXc.Φc) is a subformula of Φin.

2. Let πc be a complete assignment for Xc created by extending the solver’s
current assignment with arbitrary values for the unassigned variables in
Xc and removing variables in blocks other than Xc. This assignment πc
corresponds to the counterexample in the recursive CEGAR approach.

3. We modify Φin by:
• substituting (∃Xc.Φc) with (∃Xc.Φc) ∨ Φc[πc], if Qc = “∃”, or
• substituting (∀Xc.Φc) with (∀Xc.Φc) ∧ Φc[πc], if Qc = “∀”.

4. All variables that are bound by a quantifier inside Φc[πc] are renamed to
preserve uniqueness of variable names.

Fig. 1. CEGAR Learning in DPLL

We modify such a solver by inserting a call to a new CEGAR-learning pro-
cedure after performing standard DPLL learning, as shown in Algorithm 3. We
write “Φin” to denote the current input formula, i.e., the input formula enhanced
with what the solver has learned up to now. Both standard DPLL learning and
CEGAR learning are performed by modifying Φin. As shown in Algorithm 3,
CEGAR learning is performed only if the last decision literal is owned by the
winner. (The case where the last decision literal is owned by the losing player
corresponds to the conflicts that take place within the underlying SAT solver
in RAReQS.) The CEGAR-learning procedure is shown in Figure 1. Step 3 is
justified by Observation 5 below, which in turn is justified by Observation 4.

Observation 4 Consider an arbitrary QBF (QcXc. Φc), possibly containing free
variables, but where each bound variable is bound by at most one quantifier.
Then it follows immediately from definition of quantification that:

∃Xc.Φc =
∨

π∈BXc

Φc[π] and ∀Xc.Φc =
∧

π∈BXc

Φc[π]

(Recall that “BXc ” denotes the set of all assignments to Xc.)

Observation 5 Since conjunction and disjunction are idempotent,

∃Xc.Φc = (∃Xc.Φc) ∨ Φc[πc], where πc ∈ BXc

∀Xc.Φc = (∀Xc.Φc) ∧ Φc[πc], where πc ∈ BXc

4.1 Implementation Details

We have implemented a limited version of CEGAR learning in the solver GhostQ
[18]. Our implementation uses a modified version of step 3 of Figure 1. We
substitute πc into the original version of the input formula Φin, not the current
version of Φin. Although substituting into the original formula instead of the

current formula potentially reduces the effectiveness of CEGAR learning (since
we can’t learn a refinement of a refinement), it reduces the memory consumed per
refinement. Unit propagation and the Pure Literal Rule are applied to simplify
the result of the substitution, among other optimizations.

Step 2 of Figure 1 extends the counterexample πc to a complete assignment to
the quantifier block Xc. This allows completely eliminating a quantifier block,
which may cause two quantifier blocks of the same quantification type to be-
come adjacent to each other. If so, the two adjacent blocks are merged together,
providing greater freedom in selecting variable order.

5 Experimental Results

Our objective was to analyze the effect of CEGAR on the different families of
available benchmarks. Due to do the large number of families in QBF-LIB [25],
we have targeted families from formal verification and planning as two prominent
applications of QBF. Several large and hard families were sampled with 150 files
(terminator, tipfixpoint, Strategic Companies); the area of planning con-
tains four classes for robot planning, each counting 1000 instances with similar
characteristics and thus only one of these classes was selected (Robots2D). The
solvers QuBE7.2, Quantor, and Nenofex were chosen for comparison. QuBE7.2 is
a state-of-the-art DPLL-based solver; Quantor and Nenofex are expansion-based
solvers (c.f. Section 6). The experimental results were obtained on an Intel Xeon
5160 3GHz, with 4GB of memory. The time limit was set to 800 seconds and the
memory limit to 2GB.

All the instances were preprocessed by the preprocessor bloqqer [5] and in-
stances solved by the preprocessor alone were excluded from further analysis.
An exception was made for the family Debug where preprocessing turned out to
be infeasible and the family was considered in its unpreprocessed form.

Unlike the other solvers, GhostQ’s input format is not clause-based (QDI-
MACS) but it is circuit-based. To enable running GhostQ on the targeted in-
stances, the solver was prepended with a reverse-engineering front-end. Since
this front-end cannot handle bloqqer’s output, GhostQ was run directly on the
instances without preprocessing. The other solvers were run on the preprocessed
instances (further preprocessing was disabled for QuBE7.2).

The relation between solving times and instances is presented by a cactus
plot in Figure 2; number of solved instances per family are shown in Table 2; a
comparison of RAReQS with other solvers is presented in Table 1. More detailed
information can be found at http://sat.inesc-id.pt/~mikolas/sat12.

On the considered benchmarks, RAReQS solved the most instances, approx-
imately 33% more than the second solver QuBE7.2. RAReQS also turned out
to be the best solver for most of the types of the considered instances. Table 1
further shows that for each of the other solvers, there is only a small portion of
instances that the other solver can solve and RAReQS cannot. Out of the 801
instances when the solver was aborted, only 50 ran out of of memory.

http://sat.inesc-id.pt/~mikolas/sat12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

C
P

U
 ti

m
e

(s
)

instances

N
en

of
ex

Q
ua

nt
or

G
ho

st
Q

G
ho

st
Q

-C
E

G
A

R

Q
uB

E
7.

2

R
A

R
eQ

S

RAReQS
GhostQ

GhostQ-CEGAR
QuBE7.2
Quantor
Nenofex

Fig. 2. Cactus plot of the overall results

GhostQ GhostQ-CEGAR QuBE7.2 Quantor Nenofex

Only RAReQS 1661 1336 998 2436 2564

Only competitor 242 269 46 30 13

Table 1. Number of instances solved by RAReQS but not by a competing solver, and
vice versa

In several families the addition of CEGAR learning to GhostQ worsened its
performance. With the exception of Robots2D, however, the performance was
worse only slightly. Overall, GhostQ benefited from the additional CEGAR learn-
ing and in particular for certain families. A family worth noting is irqlkeapclte,
where no instances were solved by any of the solvers except for GhostQ-CEGAR.

The usefulness of CEGAR was in particular demonstrated by the families
incrementer-encoder, conformant-planning, trafficlight-controller,
Sorting-networks, and BMC where RAReQS solved significantly more instances
than the existing solvers, and GhostQ-CEGAR improved significantly over GhostQ.
Most notably, for incrementer-encoder (484) and RobotsD2 (700) only one
instance was not solved by RAReQS, and for blackbox-01X-QBF (320) and
trafficlight-controller (1459) RAReQS solved all instances.

6 Related Work

CEGAR has proven useful in number of areas, most notably in model check-
ing [10] and SMT solving [24,2]; more recently it has been applied to handle
quantification in SMT [27,23]. Special cases of QBF, with limited number of
quantifiers, have been targeted by CEGAR: computing vertex eccentricity [22],
nonmonotonic reasoning [6,16], two-level quantification [17].

Family Lev. RAReQS GhostQ GhostQ-Cegar QuBE7.2 Quantor Nenofex

trafficlight-ctlr (1459) 1–287 1459 806 1001 1092 955 863

RobotsD2 (700) 2–2 699 350 271 630 0 30

incrementer-encoder (484) 3–119 483 285 477 284 51 27

blackbox-01X-QBF (320) 2–21 320 138 126 224 3 4

Strat. Comp. (samp.) (150) 1–2 107 12 12 107 18 12

BMC (85) 1–3 73 26 48 37 65 64

Sorting-networks (84) 1–3 72 24 32 45 38 38

blackbox-design (27) 5–9 27 27 27 18 0 0

conformant-planning (23) 1–3 17 7 16 5 13 12

Adder (28) 3–7 11 2 2 4 5 9

Lin. Bitvec. Rank. Fun. (60) 3–3 9 0 0 0 0 0

Ling (8) 1–3 8 6 8 8 8 8

Blocks (7) 3–3 7 6 7 5 7 7

fpu (6) 1–3 6 0 0 6 6 6

RankingFunctions (4) 2–2 3 0 0 3 0 0

Logn (2) 3–3 2 2 2 2 2 2

Mneimneh-Sakallah (163) 1–3 110 148 141 89 3 22

tipfixpoint-sample (150) 1–3 26 128 127 22 5 6

terminator-sample (150) 2–2 98 109 103 9 25 0

tipdiam (121) 1–3 55 99 93 54 21 14

Scholl-Becker (55) 1–29 37 43 40 29 32 27

evader-pursuer (15) 5–19 10 11 8 11 2 2

uclid (3) 4–6 0 2 2 0 0 0

toilet-all (136) 1–1 134 133 131 131 135 133

Counter (58) 1–125 30 14 11 20 33 15

Debug (38) 3–5 3 0 0 0 24 6

circuits (63) 1–3 8 4 5 5 9 8

Gent-Rowley (205) 7–81 52 67 67 70 2 0

jmc-quant (+squaring) (20) 3–9 2 0 0 6 0 2

irqlkeapclte (45) 2–2 0 0 44 0 0 0

total (4669) 3868 2449 2801 2916 1462 1317

Table 2. Number of instances solved within 800 seconds by each solver. “Lev” indicates
the number of quantifier blocks (min–max) in the family of instances, post-bloqqer.

A SAT solver was used in [26] to guide DPLL search of a QBF solver and
to cut out unsatisfiable branches. A notion of abstraction was also used in QBF
preprocessing [21]. This notion, however, differs from the one used in RAReQS
as it means treating universally quantified variables as existentially quantified.

An important feature of RAReQS is the expansion of the given QBF into
a propositional formula, which is then solved by a SAT solver. This technique
is used for preprocessing [7] but also several existing solvers tackle QBF solv-
ing in this way, most notably QUBOS [1], Quantor [4], and Nenofex [19]. Just
as RAReQS uses multi-games, these solvers employ some various techniques
to mitigate the blowup of the expansion (besides preprocessing). QUBOS uses
miniscoping, Quantor tree-like prefixes, and Nenofex uses negation normal form.
In these aspects, the solvers share similarities with RAReQS.

The way the expansion is carried out is significantly different. While the
other solvers start the expansion from the innermost variables, RAReQS starts
from the outermost variables. The main difference, however, lies in the careful

expansion in RAReQS. In the aforementioned solvers, once a variable is scheduled
to be expanded, both of its values are considered in the expansion. In contrast,
in RAReQS only a particular assignment to a block of variables chosen in the
expansion and the expansion is checked whether it is sufficient or not. This is
an important factor for both time and space complexity. For large formulas, the
traditional expansion-based solvers are bound to generate unwieldy formulas
but the use of abstraction in RAReQS enables the solver to stop before this
expansion is reached. This leads to generating easier formulas for the underlying
SAT solver and dramatically mitigates the problems with memory blowup.

7 Conclusions and Future Work

Applying the CEGAR paradigm, this paper develops two novel techniques for
QBF solving. The first technique is a CEGAR-driven solver RAReQS and the
second an additional learning technique for DPLL solvers.

In its workings, RAReQS is close to expansion-based solvers (e.g. Quantor,
Nenofex) but with the important difference that the expansion is done step-by-
step, driven by counterexamples. Thus, the solver builds an abstraction of the
given formula by constructing a partial expansion. The downside of this approach
may be that if in the end a full expansion is needed, then RAReQS performs the
same expansion as a traditional expansion-based solver but with the overhead
of intermediate tests for whether or not the expansion is already sufficient.

However, the approach has important advantages. Whenever there is no win-
ning move for the partial expansion, then there is no winning move for the given
formula. This enables RAReQS to quickly stop for formulas with no winning
moves. For formulas for which there is a winning move, RAReQS only needs to
build a strong-enough partial expansion whose winning moves are also likely to be
winning moves for the given formula. The experimental results demonstrate the
ability of RAReQS to avoid the inherent memory blowup of expansion solvers,
and, that careful expansion outperforms a traditional DPLL-based approach on
a large number of practical instances.

We have shown that abstraction-refinement as used in RAReQS is also appli-
cable within DPLL solvers as an additional learning mechanism. This provides a
more powerful learning technique than standard clause/cube learning, although
it requires more memory. Experimental evaluation indicates that this type of
learning is indeed useful for DPLL-based solvers.

In the future we plan to further develop our DPLL solver so that it supports
the full range of CEGAR learning exploited by RAReQS and to investigate
how to fine-tune this learning in order to mitigate the speed penalty for the
cases where the learning provides little information over the traditional learning.
This can not only be done by better engineering of the solver but also devising
schemata that disable the learning once deemed too costly. In RAReQS we plan
to investigate how to integrate techniques used in other solvers. In particular,
more aggressive preprocessing as used in Quantor and techniques for finding
commonalities in formulas used in Nenofex and dependency detection [20].

References

1. Ayari, A., Basin, D.A.: QUBOS: Deciding quantified Boolean logic using proposi-
tional satisfiability solvers. In: FMCAD (2002)

2. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: CAV (2002)

3. Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: LPAR (2004)
4. Biere, A.: Resolve and expand. In: SAT (2004)
5. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: CADE

(2011)
6. Browning, B., Remshagen, A.: A SAT-based solver for Q-ALL SAT. In: ACM

Southeast Regional Conference (2006)
7. Bubeck, U., Büning, H.K.: Bounded universal expansion for preprocessing QBF.

In: SAT (2007)
8. Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook

of Satisfiability. IOS Press (2009)
9. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate Quantified

Boolean Formulae. In: National Conference on Artificial Intelligence (1998)
10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement for symbolic model checking. J. ACM 50(5) (2003)
11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT (2003)
12. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE 7.0 system description. Journal

on Satisfiability, Boolean Modeling and Computation 7 (2010)
13. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-

mulas. In: Handbook of Satisfiability. IOS Press (2009)
14. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor

for QBFs based on equivalence reasoning. In: SAT (2010)
15. Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation.

In: AAAI (2010)
16. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction

refinement algorithm for propositional circumscription. In: JELIA (Sep 2010)
17. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: SAT

(2011)
18. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF

solver with game-state learning. In: SAT (2010)
19. Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: SAT (2008)
20. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT (2010)
21. Lonsing, F., Biere, A.: Failed literal detection for QBF. In: SAT (2011)
22. Mneimneh, M.N., Sakallah, K.A.: Computing vertex eccentricity in exponentially

large graphs: QBF formulation and solution. In: SAT (2003)
23. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: CAV (2010)
24. de Moura, L.M., Rue, H., Sorea, M.: Lazy theorem proving for bounded model

checking over infinite domains. In: CADE (2002)
25. The Quantified Boolean Formulas satisfiability library, http://www.qbflib.org/
26. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: CP (2005)
27. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-

vector formulas. In: FMCAD (2010)
28. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability

solver. In: ICCAD (2002)

http://www.qbflib.org/

	Solving QBF with Counterexample Guided Refinement

