How to Complete an Interactive Configuration Process?

<u>Mikoláš Janota</u> Goetz Botterweck Radu Grigore Joao Marques-Silva

> Lero University College Dublin Ireland

lero

SFI grant no. 03/CE2/I303_1

Feature Diagrams

Feature Diagrams

Mikoláš Janota et al.

"I'm Done"

"I'm Done"

Mikoláš Janota et al.

"I'm Done" sometimes doesn't work

Mikoláš Janota et al.

"I'm Done" sometimes doesn't work

Mikoláš Janota et al.

Conditions

- All features must have a value.
- Values must conform to the constraints.

Conditions

- All features must have a value.
- Values must conform to the constraints.

Scenarios

- manual user fills in everything
- blind completion automated tool fills in everything

Conditions

- All features must have a value.
- Values must conform to the constraints.

Scenarios

- manual user fills in everything
- blind completion automated tool fills in everything
- smart completion automated tool fills as much as possible without making decisions for the user

Smart Completion

Mikoláš Janota et al.

Decisions and Dispensable Variables

• A set of variables is deselectable *iff* they can be all deselected all at once.

$$\mathcal{D}(\phi, X) \stackrel{\text{\tiny def}}{=} SAT \left(\phi \land \bigwedge_{v \in X} \neg v \right)$$

Decisions and Dispensable Variables

• A set of variables is deselectable *iff* they can be all deselected all at once.

$$\mathcal{D}(\phi, X) \stackrel{\text{\tiny def}}{=} SAT \left(\phi \land \bigwedge_{v \in X} \neg v
ight)$$

- A set of variables X must be decided iff
 - X it is not deselectable.
 All of the proper subsets of X are deselectable. ¬D(φ, X) ∧ (∀Y ⊆ X)(D(φ, Y))

Decisions and Dispensable Variables

• A set of variables is deselectable *iff* they can be all deselected all at once.

$$\mathcal{D}(\phi, X) \stackrel{\text{\tiny def}}{=} SAT \left(\phi \land \bigwedge_{v \in X} \neg v
ight)$$

A set of variables X must be decided iff

 X it is not deselectable.
 All of the proper subsets of X are deselectable. ¬D(φ, X) ∧ (∀Y ⊂ X)(D(φ, Y))

A variable is dispensable *iff* it does not belong to any set that must be decided.

Examples

$x \lor y \lor z$

- Deselectable: $\{x, y\}$, $\{x, z\}$, $\{y, z\}$, $\{x\}$, $\{y\}$, $\{z\}$, and \emptyset
- Not deselectable: $\{x, y, z\}$
- {x, y, z} must be decided and none of the variables are dispensable.

Examples

$\mathbf{x} \lor \mathbf{y} \lor \mathbf{z}$

- Deselectable: $\{x, y\}$, $\{x, z\}$, $\{y, z\}$, $\{x\}$, $\{y\}$, $\{z\}$, and \emptyset
- Not deselectable: $\{x, y, z\}$
- {x, y, z} must be decided and none of the variables are dispensable.

$\mathbf{x} \Rightarrow (\mathbf{y} \lor \mathbf{z})$

 {x, y, z} is deselectable therefore does not have to be decided and all variables are dispensable.

Examples

$\mathbf{x} \lor \mathbf{y} \lor \mathbf{z}$

- Deselectable: $\{x, y\}$, $\{x, z\}$, $\{y, z\}$, $\{x\}$, $\{y\}$, $\{z\}$, and \emptyset
- Not deselectable: $\{x, y, z\}$
- {x, y, z} must be decided and none of the variables are dispensable.

$\mathbf{x} \Rightarrow (\mathbf{y} \lor \mathbf{z})$

 {x, y, z} is deselectable therefore does not have to be decided and all variables are dispensable.

$(\mathbf{x} \Rightarrow (\mathbf{y} \lor \mathbf{z})) \land \mathbf{x}$

•
$$\{y, z\}$$
 must be decided.

Dispensable Variables and Minimal Models

• A variable is dispensable *iff* it is False in all minimal models.

Dispensable Variables and Minimal Models

• A variable is dispensable *iff* it is False in all minimal models.

$x \lor y \lor z$
x y z
T F F
FTF
FFT

Dispensable Variables and Minimal Models

• A variable is dispensable *iff* it is False in all minimal models.

$x \lor y \lor z$	
x y z	
T F F	
F T F	
FFT	
$x \Rightarrow (y \lor z)$	
x y z	
F F F	

Propositional Circumscription

 $\phi \models_{\min} \psi$

Generalized Closed World Assumption (GCWA)

For a general set of possibilities, it is hard to help the user.But it is possible, if there is a preference on the possibilities.

- For a general set of possibilities, it is hard to help the user.
- But it is possible, if there is a preference on the possibilities.
- We can focus on the most preferred possibilities.

- For a general set of possibilities, it is hard to help the user.
- But it is possible, if there is a preference on the possibilities.
- We can focus on the most preferred possibilities.

General Case Meets the Boolean Case

• A value *c* is settled for a variable *v* iff *v* has the value *c* in all most preferred possibilities.

General Case Meets the Boolean Case

A value c is settled for a variable v iff v has the value c in all most preferred possibilities.

Settled Values and Dispensable Variables

• A variable is dispensable iff False is settled for it under the point-wise preference for False.

General Case Meets the Boolean Case

• A value *c* is settled for a variable *v* iff *v* has the value *c* in all most preferred possibilities.

Settled Values and Dispensable Variables

• A variable is dispensable iff False is settled for it under the point-wise preference for False.

 In configuration of Boolean constraints it led to defining dispensable variables.

- Motivation was to provide smart completion.
- In configuration of Boolean constraints it led to defining dispensable variables.
- Dispensable variables are closely related to CWA.

- Motivation was to provide smart completion.
- In configuration of Boolean constraints it led to defining dispensable variables.
- Dispensable variables are closely related to CWA.
- In non-Boolean case, smart completion can be provided in the presence of preference.

- Motivation was to provide smart completion.
- In configuration of Boolean constraints it led to defining dispensable variables.
- Dispensable variables are closely related to CWA.
- In non-Boolean case, smart completion can be provided in the presence of preference.
- Dispensable variables can be seen as a preference for deselecting.
- Analogously CWA as a preference for False.

Name	Features	Clauses	Length	Done	Minimal models
tightvnc	21	22	5.5	5.5	1.0 ± 0.0
apl	27	41	12.2	11.9	1.0 ± 0.0
gg4	58	139	10.0	3.8	15.3 ± 22.6
berkeley	94	183	26.6	17.9	1.7 ± 1.1
violet	170	341	56.1	47.1	1.6 ± 0.9
E-shop	287	420	143	N/A	N/A