
Formal Approach to Integrating
Feature and Architecture Models

Mikoláš Janota Goetz Botterweck

Lero
University College Dublin
University of Limerick

Ireland

FASE ’08

IST-15905

Janota and Botterweck Integrating Feature and Architecture Models



Introduction

Software Product Lines

systematic development of families of similar systems

explicit modeling of the family

Modeling

feature models — customer-oriented models

architecture models — implementation-oriented models

our work provides formal foundation for integrating the two

Janota and Botterweck Integrating Feature and Architecture Models



Introduction

Software Product Lines

systematic development of families of similar systems

explicit modeling of the family

Modeling

feature models — customer-oriented models

architecture models — implementation-oriented models

our work provides formal foundation for integrating the two

Janota and Botterweck Integrating Feature and Architecture Models



Why Formalize?

Formalisms applied in domain engineering

Trans‐
formation

Semantic 
Interpretation

Software
Engineer

Domain Models

Automated 
Analyses

Formal 
Representation

Formalisms in research

better understanding of the relevant concepts

relating different approaches to one another

Janota and Botterweck Integrating Feature and Architecture Models



Why Formalize?

Formalisms applied in domain engineering

Trans‐
formation

Semantic 
Interpretation

Software
Engineer

Domain Models

Automated 
Analyses

Formal 
Representation

Formalisms in research

better understanding of the relevant concepts

relating different approaches to one another

Janota and Botterweck Integrating Feature and Architecture Models



Feature Models and their Semantics

Example

listing

shortlong

semantics as allowed configurations

∅, {listing , long}, {listing , short}

Janota and Botterweck Integrating Feature and Architecture Models



Feature Models and their Semantics

Example

listing

shortlong

semantics as allowed configurations

∅, {listing , long}, {listing , short}

Janota and Botterweck Integrating Feature and Architecture Models



Generalization

Domain

Problem space

Janota and Botterweck Integrating Feature and Architecture Models



Generalization

Domain model

Problem space

Janota and Botterweck Integrating Feature and Architecture Models



Generalization

Domain and Solution model

Problem space Solution space

Janota and Botterweck Integrating Feature and Architecture Models



Generalization

Domain and Solution model combined

Problem space Solution space

Janota and Botterweck Integrating Feature and Architecture Models



Models à la Math

Semantics as sets

feature models are sets of investigated problems

component models are sets of considered solutions

feature-component models are sets of pairs problem-solution

Examples

{ {f1}, {f2}, {f1, f2} }

{ ∅, {c1}, {c1, c2} }
{ 〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 }

Janota and Botterweck Integrating Feature and Architecture Models



Models à la Math

Semantics as sets

feature models are sets of investigated problems

component models are sets of considered solutions

feature-component models are sets of pairs problem-solution

Examples

{ {f1}, {f2}, {f1, f2} }
{ ∅, {c1}, {c1, c2} }

{ 〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 }

Janota and Botterweck Integrating Feature and Architecture Models



Models à la Math

Semantics as sets

feature models are sets of investigated problems

component models are sets of considered solutions

feature-component models are sets of pairs problem-solution

Examples

{ {f1}, {f2}, {f1, f2} }
{ ∅, {c1}, {c1, c2} }
{ 〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 }

Janota and Botterweck Integrating Feature and Architecture Models



Applications

Formalization enables precisely expressing the properties that
we wish to study.

Examples

implementable feature configurations:

I ≡ {f | (∃c)(〈f, c〉 ∈ Mfc)}

Is a feature model OK?

F ⊆ I

Janota and Botterweck Integrating Feature and Architecture Models



Applications

Formalization enables precisely expressing the properties that
we wish to study.

Examples

implementable feature configurations:

I ≡ {f | (∃c)(〈f, c〉 ∈ Mfc)}

Is a feature model OK?

F ⊆ I

Janota and Botterweck Integrating Feature and Architecture Models



Defining Feature-Component Models

Split in user-friendly components

restriction on features (problems)

restriction on components (solutions)

mapping between the two (realized-by)

Example

f1 ∨ f2 ∧
c2 ⇒ c1 ∧

f1 realized-by c1 ∧
f2 realized-by c2

Janota and Botterweck Integrating Feature and Architecture Models



Defining Feature-Component Models

Split in user-friendly components

restriction on features (problems)

restriction on components (solutions)

mapping between the two (realized-by)

Example

f1 ∨ f2 ∧
c2 ⇒ c1 ∧

f1 realized-by c1 ∧
f2 realized-by c2

Janota and Botterweck Integrating Feature and Architecture Models



Realized-by

Possible interpretations

f1 realized-by c1
1 f1 ⇒ c1

2 f1 ⇔ c1
3 f1 ⇒ c1 but remove “unreasonable combinations”

Unreasonable combinations

with no unnecessary components or features that are not
selected but are implemented

implication interpretation
〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 ,
〈{f2}, {c1, c2}〉 , 〈{f1}, {c1, c2}〉

removing unreasonable yields

〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉

Janota and Botterweck Integrating Feature and Architecture Models



Realized-by

Possible interpretations

f1 realized-by c1
1 f1 ⇒ c1
2 f1 ⇔ c1

3 f1 ⇒ c1 but remove “unreasonable combinations”

Unreasonable combinations

with no unnecessary components or features that are not
selected but are implemented

implication interpretation
〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 ,
〈{f2}, {c1, c2}〉 , 〈{f1}, {c1, c2}〉

removing unreasonable yields

〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉

Janota and Botterweck Integrating Feature and Architecture Models



Realized-by

Possible interpretations

f1 realized-by c1
1 f1 ⇒ c1
2 f1 ⇔ c1
3 f1 ⇒ c1 but remove “unreasonable combinations”

Unreasonable combinations

with no unnecessary components or features that are not
selected but are implemented

implication interpretation
〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 ,
〈{f2}, {c1, c2}〉 , 〈{f1}, {c1, c2}〉

removing unreasonable yields

〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉

Janota and Botterweck Integrating Feature and Architecture Models



Realized-by

Possible interpretations

f1 realized-by c1
1 f1 ⇒ c1
2 f1 ⇔ c1
3 f1 ⇒ c1 but remove “unreasonable combinations”

Unreasonable combinations

with no unnecessary components or features that are not
selected but are implemented

implication interpretation
〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 ,
〈{f2}, {c1, c2}〉 , 〈{f1}, {c1, c2}〉

removing unreasonable yields

〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉

Janota and Botterweck Integrating Feature and Architecture Models



Realized-by

Possible interpretations

f1 realized-by c1
1 f1 ⇒ c1
2 f1 ⇔ c1
3 f1 ⇒ c1 but remove “unreasonable combinations”

Unreasonable combinations

with no unnecessary components or features that are not
selected but are implemented

implication interpretation
〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉 ,
〈{f2}, {c1, c2}〉 , 〈{f1}, {c1, c2}〉

removing unreasonable yields

〈{f1}, {c1}〉 , 〈{f1, f2}, {c1, c2}〉

Janota and Botterweck Integrating Feature and Architecture Models



Conclusions and Future Work

Two-tiered formalism provides insight into the problematics.

Resolves ambiguity. When explaining your approach, think of
the problem-solution pairs allowed.

How do languages used in practice map to our formalism?

Would it be useful to have a language construct “realized-by”?

Janota and Botterweck Integrating Feature and Architecture Models



Bonus Slide

Interpretation 3 different than 2

¬(f1 ∧ f2) ∧
c2 ⇒ c1 ∧

f1 realized-by c1 ∧
f2 realized-by c2

Works for non-boolean models

introduce orderings vf , vc

reasonable combinations as those that can’t be improved

〈f, c〉 not improvable iff

(∀ 〈f ′, c′〉 ∈ Mfc)((f vf f
′ ∧ c′ vc c)⇒ (f = f ′ ∧ c = c′))

Janota and Botterweck Integrating Feature and Architecture Models


