
Do SAT Solvers Make Good Configurators?

Mikoláš Janota
Lero, School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

mikolas.janota@ucd.ie

Abstract

A configuration process is about finding a configuration,
a setting, that satisfies the requirements given by the user
and constraints imposed by the domain. Feature models are
used to record product domains and constraints imposed on
individual products. As such constraints are in practice of
complex nature, it is desirable to perform the configuration
interactively. This article shows how to utilize a SAT solver
in an interactive configuration process to provide support to
the user.

1. Introduction

Configurable complex systems have gained attention in
recent years in such domains as the automotive industry and
feature models are used to capture the intended product do-
main [7, 11].

Each feature corresponds to a distinctive aspect of a
product and a customer specifies his requirements by defin-
ing the desired features. Features that were not specified
by the customer, must be configured at the producer’s side.
When the number of features is large and dependencies be-
tween them are complex, this represents non-trivial tasks
for the humans involved.

This is a clear motivation for interactive support during
the configuration process — a tool provides hints or per-
forms decisions throughout the whole process, alleviating
the burden imposed on the human.

Other researchers targeted this problem before. Ba-
tory [1] uses the so-called logic truth maintenance system,
whose disadvantage is that the approach does not guarantee
backtrack-freenes — the user may hit a dead end during the
configuration process.

Other approaches [10] use Binary Decision Diagrams
(BDDs) [3] that guarantee backtrack-freenes but are known
to suffer from space explosion as they are explicit represen-
tations of all possible configurations.

This article outlines a third path, building mainly on
Batory’s work, and that is it to apply a SAT solver, a
tool for deciding the satisfiability of Boolean formulas (see
e.g., [8, 5]).

The motivations to use of a SAT solver is two-fold.
Firstly, nowadays SAT solvers are extremely efficient de-
spite the NP-completeness of the problem and still improv-
ing as illustrated by the yearly SAT Competition1. Secondly,
a SAT solver is a step towards a more general constraint
solver with the support for other than merely Boolean do-
mains.

To the knowledge of the author guaranteeing backtrack-
freeness of and interactive configuration process by using a
SAT solver is novel.

2. Background

Feature models [7] play an important role in Software
Product Line Engineering [4]. In this article we are con-
cerned only with feature models as descriptions of the prod-
uct domain (also called problem space). In particular, we
only need to know the semantics of the model that we are
dealing with.

Various semantics of feature models exist, depending on
the their expressiveness [9, 6]. As we will be dealing with
configuring a feature model, it is natural to use so-called
constraint satisfaction problem (CSP) as the structure cap-
turing the semantics; the following definition introduces the
concept.

Definition 2.1 A constraint satisfaction problem is a triple
〈X,D, C〉, where X ≡ x1, . . . , xn are variables, D ≡
D1, . . . , Dn are their respective domains and C ⊆ D1 ×
· · · ×Dn is a constraint.

A valuation is a function from variables to their domains,
a valuation is called partial iff not all variables from X are
assigned a value, it is called complete iff all variables from
X are assigned a value.

1http://www.satcompetition.org/

1

http://www.satcompetition.org/


A solution v to a constraint satisfaction problem is a
complete valuation such that 〈v(x1), . . . , v(xn)〉 ∈ C.

The following toy example illustrates how feature mod-
els map to CSP, for more details on this topic see for in-
stance the work of Benavides et al. [2].

Example 2.1 A software application is developed for two
markets: for Ireland and United States. The application
deals with measurements and hence supports inches and
centimeters. When released to Irish market, centimeters
must be used whereas inches must be used for United States.
The corresponding CSP has two variables Country and
Units whose domains are {IE ,USA} and {cm, in}, re-
spectively. The constraint C comprises the following tuples
(pairs in this case).

{〈IE , cm〉 , 〈USA, in〉}

During the configuration process the user makes deci-
sions by assigning values to variables and his goal is to find
a solution to some given CSP.

In this article we will consider the scenario when a tool,
let us call it a configurator, reacts upon every user’s decision
and provides some form of feedback. More specifically, we
will be concerned with configurators that disable such val-
ues from variable domains whose selection would prevent
finding a solution to the CSP.

In our small example, when the user selects Ireland as
the desired country, the inches get disabled and centimeters
selected automatically as that is the only option left.

The configurator is called backtrack-free iff it enables
only the values for which there exists a solution, meaning
that the user will never reach a dead end forcing him to re-
tract some previous decisions. A configurator is called com-
plete iff it does not disable values for which there exists a
solution.

Formally, in each step of the configuration process, there
is a user selection su — a valuation on variables Xu ⊆ X .
The configurator is complete and backtrack-free iff for any
xi /∈ Xu, the configurator disables the value v from the
domain Di if and only if there is no solution to the CSP
such that it agrees with su on the variables Xu and assigns
v to xi.

2.1. Propositional World

A propositional constraint satisfaction problem is such
CSP where each of the variable domains is {TRUE, FALSE}.
This makes the job of the configurator somewhat simpler. If
the configurator infers that a solution exists for only one of
the two values, the variable must assume the second value
and the user will not be allowed to change it; we will say
that such variable is locked.

Note that if there is no solution for either of the two val-
ues for some variable, the given CSP does not have a solu-
tion as all variables must be assigned to by a solution.

Rather unsurprisingly, any propositional constraint sat-
isfaction problem 〈X,D,C〉 can be captured as a Boolean
formula on the variables from X such that the valuations
satisfying the formula correspond to the solutions of the
problem.

Example 2.2 Even though Example 2.1 is not given as
propositional, it can be easily modeled as such. The fol-
lowing formula illustrates the principle.

(IE ∨USA) ∧ (¬ IE ∨USA) ∧ IE ⇒ cm ∧
(in ∨ cm) ∧ (¬ in ∨¬ cm) ∧USA⇒ in

As we are interested in the existence of solutions, it
means that we are interested in satisfying a Boolean for-
mula. To this end we will utilize a SAT solver. A SAT
solver accepts as input a formula in so-called conjunctive
normal form (CNF). A formula is in CNF iff it is a con-
junct of disjunctions of variables or negated variables, e.g.,
(¬a ∨ b) ∧ (¬b ∨ c). Each of the conjuncts, e.g., ¬a ∨ b, is
called a clause and the dijuncts are called literals (a single
literal is also considered as a clause). An important prop-
erty of CNF is that any Boolean function can be captured
in a CNF. Note that formula in Example 2.2 is in CNF after
rewriting the implications as disjunctions.

A SAT solver determines whether the given formula is
satisfiable or not. If it is satisfiable, it produces a variable
valuation such that the formula evaluates to TRUE. If such
valuation does not exist (the formula is unsatisfiable), it pro-
duces a proof of the unsatisfiability.

3. A SAT solver in Configuration Process

Our goal here will be to device an algorithm TEST-VARS
that is called at the beginning of the configuration process
and then after each user’s decision.

We will rely on the following armory. For any variable
we can call the procedures LOCK and UNLOCK to disable
and enable, respectively, the user to set the variable’s value.
Further, calls to SET(variable , value) sets a value for a vari-
able; RESET(variable) brings the variable to an unassigned
state.

The SAT solver is represented by the function SAT(ψ)
that returns either null iff ψ is unsatisfiable or it responds
with a set of literals (negated or unnegated variables) that
correspond to a satisfying valuation of ψ. For example, it
may respond {a,¬b} to the query a ∨ b.

The state of the configuration process and the constraint
is captured in the formula φ. So for instance, if the CSP
under concern is represented by the formula ψ and the user

2



TEST-VARS()
1 foreach x that was not assigned to by the user
2 do CanBeTrue ← TEST-SAT(φ, x)
3 CanBeFalse ← TEST-SAT(φ,¬x)
4 if ¬(CanBeTrue ∧ CanBeFalse)

then error “Unsatisfiable constraint!”
5 if ¬CanBeTrue then SET(x, FALSE)
6 if ¬CanBeFalse then SET(x, TRUE)
7 if CanBeTrue ∧ CanBeFalse
8 then RESET(x)
9 UNLOCK(x)

10 else LOCK(x)

Figure 1. Basic version

sets the variable v1 to TRUE and the variable v2 to FALSE,
the formula φ will be equal to ψ ∧ v1 ∧ ¬v2.

Figure 1 presents the skeleton of the algorithm. For each
variable it computes whether there are satisfying valuations
having the variable set to TRUE and FALSE, respectively.
The four possible combinations are investigated: If neither
of them exists, then φ itself is unsatisfiable (line 4). If ex-
actly one exists, then the variable is enforced to have the
value for which there is a satisfying valuation (lines 5, 6)
and the variable is locked (line 10). If both exist, the al-
gorithm makes sure the variable is in the default state, i.e.,
unassigned and unlocked (lines 8, 9).

This algorithm calls the solver twice on each variable, so
it is warranted to investigate if it can be made more efficient.

First let us look at the situation when the call to SAT
returns a satisfying valuation. If a variable xi in such valua-
tion was assigned a certain value, TRUE let’s say, then φ∧xi

is satisfiable (since φ∧ l∧xi is satisfiable). Therefore, there
is no need to call the solver on φ ∧ xi.

So the first improvement to the algorithm is to store the
values of which we already know that appear in satisfying
valuations encountered so far.

Can, on the other hand, the negative response of the
solver be useful? Yes it can! Consider the situation when
the constraint contains the formula x1 ⇒ x2. If the solver
knows that x2 cannot be TRUE, it can quickly deduce that
x1 cannot be TRUE either2. This motivates the second im-
provement: storing the values that were disabled and conjo-
ing them to the overall formula in subsequent queries.

Figure 2 presents the procedure TEST-SAT. Literal l
in inserted into the set KnownValues if φ ∧ l if satis-
fiable. Analogously, literal l is added to the formula
DisabledValues if φ ∧ l is unsatisfiable.

2 The solver detects that from the clause¬x1 ∨ x2 the literal¬x1 must
be TRUE to satisfy the clause. This technique is known under the name
Unit Propagation and is an essential part of state-of-the-art solvers.

TEST-SAT(φ: Formula , l: Literal ) : Boolean
if l ∈ KnownValues then return TRUE
if l ∈ DisabledValues then return FALSE
L← SAT(φ ∧ l ∧

∧
k∈DisabledValues ¬k)

if L 6= null
then KnownValues ← KnownValues ∪L
else DisabledValues ← DisabledValues ∪{l}

return L 6= null

Figure 2. Improved version of TEST-SAT

When and how do we initialize the two sets? The
safest (and coarsest) approach is to empty both sets when-
ever φ changes, i.e., at he beginning of each execution of
TEST-VARS. However, if we know that φ has been strength-
ened, which happens for instance when a user sets a value
of an unassigned variable, we can keep DisabledValues
and empty KnownValues . Analogously, if φ is weak-
ened, e.g., when a user’s decision is retracted, we can keep
KnownValues and empty DisabledValues . For further dis-
cussion on this topic see Section 6. To conclude, the follow-
ing two procedures show how TEST-VARS is invoked.

ASSERT-DECISION(l : Literal )
decisions ← decisions ∪{l}
φ←

∧
l∈decisions l

KnownValues ← ∅
TEST-VARS()

RETRACT-DECISION(l : Literal )
decisions ← decisions r{l}
φ←

∧
l∈decisions l

DisabledValues ← ∅
TEST-VARS()

3.1. Producing Explanations

For each locked variable a configurator should explain to
the user why it was locked. The explanation should contain
the user’s decisions that led to the lock, but even better, the
relevant parts of the constraint.

In our case, when the constraint is in a CNF, obvious can-
didates for parts of the constraint are the individual clauses
(disjunctions of literals).

Recall that a value is locked if the solver returns unsatis-
fiability for the other value. For example, if a variable was
locked in the TRUE value, then it must have been shown
that there is no solution with the variable having the value

3



FALSE. The proof of the unsatisfiability is exactly the ex-
planation we are looking for.

Obtaining a proof from a SAT solver is rather straight-
forward, see for example [13]. The proof is a subset of the
input clauses whose conjunct is unsatisfiable.

However, a proof obtained from the solver might not be
minimal in the sense that removing certain clauses or user-
decisions will still yield an unsatisfiable formula. Naturally,
for the user-friendliness sake, it is desirable for the explana-
tion to be small.

To this end a fast technique with good results was pro-
posed by Zhang and Malik [12], which calls the solver again
on the proof that it has just produced. As the proof is an
unsatisfiable formula, the solver will find it unsatisfiable
and produce a new proof (possibly smaller than the orig-
inal one). This process is iterated until the proof remains
unreduced by the solver.

4. Implementation

The author implemented the ideas presented in Section 3
and the implementation can be found at our research group’s
website 3.

Figure 3 offers a screenshot of the application. A sub-
tle difference from the presentation in Section 3. Due to
the check-box user interface, that the user can only select
features — set variables to TRUE— and deselect features
— set TRUE variables to unassigned. Consequently, user
decisions comprise merely non-negated literals.

Apart from automated selections and explanations, the
application detects which constraints still remain to be sat-
isfied. In the image we can see that the type of engine and
gearshift are yet to be specified. Another functionality is
the configuration completion, which fills in some values,
determined by the SAT solver, that satisfy the unsatisfied
constraints.

Figure 3. Configuration in action

The program is written entirely in Java and a SAT solver
was written as well. Even though a third-party SAT solver
could have been used, the author felt as he needs to write

3 http://kind.ucd.ie/products/opensource/Config/
releases/

one to better understand what he’s doing. Moreover, the
proof generation is harder to access in other solvers as they
need to account for enormous proofs and hence typically
record them on the disk.

Nevertheless, it wouldn’t be difficult to adapt an existing
SAT solver for the same purpose; MINISAT, for instance,
is well documented, open-source, and ranks well in compe-
titions [5].

5. Summary and Discussion

The article presents how to use a SAT solver to imple-
ment an interactive and backtrack-free tool support for con-
figuration process. Compared to using BDDs, this approach
is lazy, so to say. A BDD is a pre-compiled representation of
the configuration space and it is easy to find small Boolean
formulas that explode the BDD in size. On the other hand,
to heavily burden a modern SAT solver with a small formula
is quite difficult.

Hence, the author believes that the SAT solver approach
has a better chance of scaling.

A disadvantage of SAT solvers is that they require a spe-
cific input format — typically CNF. That can be overcome
by clausifying the input, which can be done in such way that
the output is linear w.r.t. input. However, such conversion
would complicate the explanation generation. For BDDs,
this is even worse as the formula’s structure is lost.

6. Future Work

Efficiency The algorithm presented in Section 3 is not ex-
changing information between different calls for different
user selections as much as it could have. It could be eas-
ily improved by looking at the proofs of locked variables.
As long as the user does not alter the decisions on which a
proof depends, the pertaining variable will remain locked.

Generalization It is not hard to see how the algorithm
TEST-VARS could be generalized for variables with other
than just two-valued domains. The algorithm would iterate
over each domain, testing each value and eventually analyz-
ing the cardinality of the reduced domain. It is clear, how-
ever, that for large domains this would be computationally
infeasible and hence a more sophisticated technique is re-
quired for such. Most likely, calls to the solver would query
for multiple values at a time.

7. Acknowledgments

This work is partially supported by Science Foundation
Ireland under grant no. 03/CE2/I303 1.

4

http://kind.ucd.ie/products/opensource/Config/releases/
http://kind.ucd.ie/products/opensource/Config/releases/


References

[1] D. Batory. Feature models, grammars, and propositional for-
mulas. In H. Obbink and K. Pohl, editors, SPLC ’05, LNCS.
Springer-Verlag, 2005.

[2] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Auto-
mated reasoning on feature models. In P. Oscar and J. a.
Falcão e Cunha, editors, Proceedings of 17th International
Conference on Advanced Information Systems Engineering
(CAiSE 05), volume 3520 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2005.

[3] R. E. Bryant. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computers, 35(8),
1986.

[4] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison–Wesley Publishing Company,
2002.

[5] N. Eén and N. Sörensen. An extensible SAT-solver. In
Theory and Applications of Satisfiability Testing (SAT ’03).
Springer-Verlag, 2003. Available at http://www.een.
se/niklas.

[6] M. Janota and J. Kiniry. Reasoning about feature models in
higher-order logic. In P. Kellenberger, editor, Proceedings
of the 11th International Software Product Line Conference,
SPLC ’07. IEEE Computer Society, 2007.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (FODA),
feasibility study. Technical Report CMU/SEI-90-TR-021,
SEI, Carnegie Mellon University, Nov. 1990.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. CHAFF: Engineering an efficient SAT solver. In
39th Design Automation Conference (DAC ’01), 2001.

[9] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature di-
agrams: A survey and a formal semantics. In Proceeding of
14th IEEE International Requirements Engineering Confer-
ence (RE). IEEE Computer Society, 2006.

[10] S. Subbarayan. Integrating CSP decomposition techniques
and BDDs for compiling configuration problems. In Pro-
ceedings of the CP-AI-OR. Springer-Verlag, 2005.

[11] S. Thiel and A. Hein. Modeling and using product line vari-
ability in automotive systems. IEEE Software, 19(4):66–72,
2002.

[12] L. Zhang and S. Malik. Extracting small unsatisfiable cores
from unsatisfiable boolean formulas. In Proceedings of SAT,
2003.

[13] L. Zhang and S. Malik. Validating SAT solvers using an
independent resolution-based checker: practical implemen-
tations and other applications. In Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2003.

5

http://www.een.se/niklas
http://www.een.se/niklas

