
Assertion-based Loop Invariant Generation
or, Counter-example Refinement Backwards

Mikoláš Janota

System Research Group,
University College Dublin, Ireland

IST-15905

Mikoláš Janota Assertion-based Loop Invariant Generation

Motivation

I we are looking for loop invariants that will show that
something “bad” will not happen

for (int i = 0; i < a.length − 1; i++) {
i = i + 1;
a[i] = 0;

}

Mikoláš Janota Assertion-based Loop Invariant Generation

Motivation

I we are looking for loop invariants that will show that
something “bad” will not happen
//@ loop_invariant a != null;

//@ loop_invariant i + 1 >= 0;

for (int i = 0; i < a.length − 1; i++) {
i = i + 1;
a[i] = 0;

}

Mikoláš Janota Assertion-based Loop Invariant Generation

Scary Slide

//@ requires a != null;

/*@ requires

@ (\forall int x; (0 <= x & x < a.length) ==> a[x] != null); */

void setToZero(int [][] a) {
/*@ loop_invariant

@ (\forall int x; (0 <= x & x < a.length) ==> a[x] != null);

@ loop_invariant a != null;

@ loop_invariant i >= 0; */

for (int i = 0; i < a.length ; i++) {
/*@ loop_invariant j >= 0;

@ loop_invariant a != null;

@ loop_invariant

@ (\forall int x; (0 <= x & x < a.length) ==> a[x] != null); */

for (int j = 0; j < a[i]. length ; j++)
a[i][j] = 0;

}
}

Mikoláš Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

I let’s assume that desired behavior is expressed as assertions

I using a weakest precondition calculus we can back-propagate
assertions to the head of the loop

//@ loop_invariant (i < a.length - 1) ==> a != null;

//@ loop_invariant (i < a.length - 1) ==> 0 <= i + 1;

//@ loop_invariant (i < a.length - 1) ==> i + 1 < a.length;

for (int i = 0; i < a.length − 1; i++) {
i = i + 1;
//@ assert a != null;

//@ assert i <= 0;

//@ assert i < a.length;

a[i] = 0;
}

Mikoláš Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

I let’s assume that desired behavior is expressed as assertions

I using a weakest precondition calculus we can back-propagate
assertions to the head of the loop
//@ loop_invariant (i < a.length - 1) ==> a != null;

//@ loop_invariant (i < a.length - 1) ==> 0 <= i + 1;

//@ loop_invariant (i < a.length - 1) ==> i + 1 < a.length;

for (int i = 0; i < a.length − 1; i++) {
i = i + 1;
//@ assert a != null;

//@ assert i <= 0;

//@ assert i < a.length;

a[i] = 0;
}

Mikoláš Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

I let’s assume that desired behavior is expressed as assertions

I using a weakest precondition calculus we can back-propagate
assertions to the head of the loop
//@ loop_invariant (i < a.length - 1) ==> a != null;

//@ loop_invariant (i < a.length - 1) ==> 0 <= i + 1;

//@ loop_invariant (i < a.length - 1) ==> i + 1 < a.length;

for (int i = 0; i < a.length − 1; i++) {
i = i + 1;
//@ assert a != null;

//@ assert i <= 0;

//@ assert i < a.length;

a[i] = 0;
}

Mikoláš Janota Assertion-based Loop Invariant Generation

Invariants from Assertions Using Weakest Precondition

I let’s assume that desired behavior is expressed as assertions

I using a weakest precondition calculus we can back-propagate
assertions to the head of the loop
//@ loop_invariant (i < a.length - 1) ==> a != null;

//@ loop_invariant (i < a.length - 1) ==> 0 <= i + 1;

//@ loop_invariant (i < a.length - 1) ==> i + 1 < a.length;

for (int i = 0; i < a.length − 1; i++) {
i = i + 1;
//@ assert a != null;

//@ assert i <= 0;

//@ assert i < a.length;

a[i] = 0;
}

Mikoláš Janota Assertion-based Loop Invariant Generation

Assertion Back-propagation

I we take a nest of loops

P0;
{I1} while (C1) do
. . .

Pn−1;
{In} while (Cn) do

Pn;
assert e;

I and propagate the invariant outwards

In ≡wlp(Pn, e)

Ii ≡wlp(Pi , Ii+1)

Mikoláš Janota Assertion-based Loop Invariant Generation

Are the Invariants OK?

I all loops must preserve the pertaining invariant

|= Ii ⇒ wlp(LoopBodyi , Ii)

I the invariant of the outermost loop must be established by the
preceding command

|= wlp(P0, I1)

Mikoláš Janota Assertion-based Loop Invariant Generation

Implementation in ESC/Java2

JML-annotated Java code

AST

Guarded Commands

desugared GC

VC

bugs

Java parsing

GC generation

loop desugaring

VC generation

proving

invariant
generation

Mikoláš Janota Assertion-based Loop Invariant Generation

Input Language

I Guarded Commands:

cmd := x ← expr | assume f | assert f |
cmd 8 cmd | cmd ; cmd | {I}while expr do cmd

I, f are first-order logic formulas
I captures JML-annotated Java, examples:

I assert pre — a precondition of a called method,
I desired behavior, such as assert a 6= null
I assume post — a postcondition of a called method

Mikoláš Janota Assertion-based Loop Invariant Generation

Tweaking the Algorithm

I invariant strengthening, heuristically altering the invariant
when found that it does not preserve the pertaining loop, e.g.,

I[v 7→ v ′], v is free in I and v ′ is a fresh variable

I applying formula simplifications to the inferred invariants

I when computing weakest precondition, ignoring commands
that do not seam relevant (relying on a heuristic)

Mikoláš Janota Assertion-based Loop Invariant Generation

Experiences and Future Work

I works splendidly on the examples I wrote, nevertheless,

I little of existing code is verifiable

I generated invariants are not too big, nevertheless,

I there is still opportunity to prune away trivial invariants

I reporting invariants to the user would serve as valuable
feedback

I extending the analysis to take into account assertions after
the loop would make the analysis considerably more useful

Mikoláš Janota Assertion-based Loop Invariant Generation

