
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Forest: An Interactive Multi-tree Synthesizer
for Regular Expressions?

(B) Margarida Ferreira1,2, Miguel Terra-Neves2, Miguel Ventura2,
Inês Lynce1, and Ruben Martins3

1 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{margaridaacferreira, ines.lynce}@tecnico.ulisboa.pt

2 OutSystems, Linda-a-Velha, Portugal
{miguel.neves, miguel.ventura}@outsystems.com

3 Carnegie Mellon University, Pittsburgh, USA
rubenm@cs.cmu.edu

Abstract Form validators based on regular expressions are often used
on digital forms to prevent users from inserting data in the wrong format.
However, writing these validators can pose a challenge to some users.
We present Forest, a regular expression synthesizer for digital form
validations. Forest produces a regular expression that matches the de-
sired pattern for the input values and a set of conditions over capturing
groups that ensure the validity of integer values in the input. Our syn-
thesis procedure is based on enumerative search and uses a Satisfiability
Modulo Theories (SMT) solver to explore and prune the search space. We
propose a novel representation for regular expressions synthesis, multi-
tree, which induces patterns in the examples and uses them to split the
problem through a divide-and-conquer approach. We also present a new
SMT encoding to synthesize capture conditions for a given regular ex-
pression. To increase confidence in the synthesized regular expression,
we implement user interaction based on distinguishing inputs.
We evaluated Forest on real-world form-validation instances using reg-
ular expressions. Experimental results show that Forest successfully
returns the desired regular expression in 70% of the instances and out-
performs Regel, a state-of-the-art regular expression synthesizer.

1 Introduction

Regular expressions (also known as regexes) are powerful mechanisms for de-
scribing patterns in text with numerous applications. One notable use of regexes
is to perform real-time validations on the input fields of digital forms. Regexes
help filter invalid values, such as typographical mistakes (‘typos’) and format
inconsistencies. Aside from validating the format of form input strings, regular
expressions can be coupled with capturing groups. A capturing group is a sub-
regex within a regex that is indicated with parenthesis and captures the text
? This work was supported by NSF award CCF-1762363 and through FCT under
project UIDB/50021/2020, and project ANI 045917 funded by FEDER and FCT.

2 Ferreira et al.

matched by the sub-regex inside them. Capturing groups are used to extract in-
formation from text and, in the domain of form validation, they can be used to
enforce conditions over values in the input string. In this paper, we focus on the
capture of integer values in input strings, and we use the notation $i, i ∈ {0, 1, ...}
to refer to the integer value of the text captured by the (i+ 1)th group.

Form validations often rely on complex regexes which require programming
skills that not all users possess. To help users write regexes, prior work has pro-
posed to synthesize regular expressions from natural language [1,9,12,27] or from
positive and negative examples [1,7,10,26]. Even though these techniques assist
users in writing regexes for search and replace operations, they do not specifi-
cally target digital form validation and do not take advantage of the structured
format of the data.

In this paper, we propose Forest, a new program synthesizer for regular ex-
pressions that targets digital form validations. Forest takes as input a set of ex-
amples and returns a regex validation. Forest accepts three types of examples:
(i) valid examples: correct values for the input field, (ii) invalid examples:
incorrect values for the input field due to their format, and (iii) conditional
invalid examples (optional): incorrect values for the input field due to their
values. Forest outputs a regex validation, consisting of two components: (i) a
regular expression that matches all valid and none of the invalid examples
and (ii) capture conditions that express integer conditions that are satisfied
by the values on all the valid but none of the conditional invalid examples.

Motivating Example. Suppose a user is writing a form where one of the fields
is a date that must respect the format DD/MM/YYYY. The user wants to accept:

19/08/1996 22/09/2000 29/09/2003
26/10/1998 01/12/2001 31/08/2015

But not:
19/08/96 22.09.2000 29/9/2003
26-10-1998 1/12/2001 2015/08/31

A regular expression can be used to enforce this format. Instead of writing it, the
user may simply use the two sets of values as valid and invalid input examples
to Forest, who will output the regex [0-9]{2}/[0-9]{2}/[0-9]{4}.

Additionally, if the user wants to validate not only the format, but also the
values in the date, we can consider as conditional invalid the examples:

33/08/1996 22/13/2000 12/31/2003
26/00/1998 00/12/2001 52/03/2015

Forest will output a regex validation complete with conditions over captur-
ing groups that ensures only valid values are inserted as the day and month:
([0-9]{2})/([0-9]{2})/[0-9]{4}, $0 ≤ 31 ∧ $0 ≥ 1 ∧ $1 ≤ 12 ∧ $1 ≥ 1.

As we can see in the motivating example, data inserted into digital forms is
usually structured and shares a common pattern among the valid examples. In
this example, the data has the shape dd/dd/dddd where d represents a digit. This

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 3

Desired
regex

validation

Input examples

Synthesis

Regular expression Capture conditions

Invalid Valid Conditional invalid

Figure 1: Regex synthesis

contrasts with general regexes for search and replace operations that are often
performed over unstructured text. Forest takes advantage of this structure by
automatically detecting these patterns and using a divide-and-conquer approach
to split the expression into simpler sub-expressions, solving them independently,
and then merging their information to obtain the final regular expression. Addi-
tionally, Forest computes a set of capturing groups over the regular expression,
which it then uses to synthesize integer conditions that further constrain the ac-
cepted values for that form field.

Input-output examples do not require specialized knowledge and are accessi-
ble to users. However, there is one downside to using examples as a specification:
they are ambiguous. There can be solutions that, despite matching the exam-
ples, do not produce the desired behavior in situations not covered in them.
The ambiguity of input-output examples raises the necessity of selecting one
among multiple candidate solutions. To this end, we incorporate a user interac-
tion model based on distinguishing inputs for both the synthesis of the regular
expressions and the synthesis of the capture conditions.

In summary, this paper makes the following contributions:

– We propose a multi-tree SMT representation for regular expressions that
leverages the structure of the input to apply a divide-and-conquer approach.

– We propose a new method to synthesize capturing groups for a given regular
expression and integer conditions over the resulting captures.

– We implemented a tool, Forest, that interacts with the user to disam-
biguate the provided specification. Forest is evaluated on real-world in-
stances and its performance is compared with a state-of-the-art synthesizer.

2 Synthesis Algorithm Overview

The task of automatically generating a program that satisfies some desired be-
havior expressed as a high-level specification is known as Program Synthesis.
Programming by Example (PBE) is a branch of Program Synthesis where the
desired behavior is specified using input-output examples.

Our synthesis procedure is split into two stages, each relative to an output
component. First, Forest synthesizes the regular expression, which is the basis

4 Ferreira et al.

Desired
program

Synthesizer

Enumerator Verifier Distinguisher

candidate
program

reason of
failure

DSL

2 correct
programs

I/O examples

new I/O
example

new
input

Figure 2: Interactive enumerative search

for the synthesis of capturing groups. Secondly, Forest synthesizes the capture
conditions, by first computing a set of capturing groups and then the conditions
to be applied to the resulting captures. The synthesis stages are detailed in sec-
tions 3 and 4. Figure 1 shows the regex validation synthesis pipeline. Both stages
of our synthesis algorithm employ enumerative search, a common approach to
solve the problem of program synthesis [4,5,10,17,21]. The enumerative search
cycle is depicted in Figure 2.

There are two key components for program enumeration: the enumerator
and the verifier. The enumerator successively enumerates programs from the
a predefined Domain Specific Language (DSL). Following the Occam’s razor
principle, programs are enumerated in increasing order of complexity. The DSL
defines the set of operators that can be used to build the desired program.
Forest dynamically constructs its DSL to fit the problem at hand: it is as
restricted as possible, without losing the necessary expressiveness. The regular
expression DSL construction procedure is detailed in section 3.1.

For each enumerated program, the verifier subsequently checks whether it
satisfies the provided examples. Program synthesis applications generate very
large search spaces; nevertheless, the search space can be significantly reduced by
pruning several infeasible expressions along with each incorrect expression found.
In the first stage of the regex validation synthesis, the enumerated programs
are regular expressions. The enumeration and pruning of regular expressions is
described in section 3.2. In the second stage of regex validation synthesis, we deal
with the enumeration of capturing groups over a pre-existing regular expression.
This process is described in section 4.1.

To circumvent the ambiguity of input-output examples, Forest implements
an interaction model. A new component, the distinguisher, ascertains, for any two
given programs, whether they are equivalent. When Forest finds two different
validations that satisfy all examples, it creates a distinguishing input : a new
input that has a different output for each validation. To disambiguate between
two programs, Forest shows the new input to the user, who classifies it as valid
or invalid, effectively choosing one program over the other. The new input-output
pair is added to the examples, and the enumeration process continues until there
is only one solution left. This interactive cycle is described for the synthesis of
regular expressions in section 3.3 and capture conditions in section 4.3.

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 5

concat

concat

concat
range

[0-9] 2

/

ε ε

concat
range

[0-9] 2

/

ε ε

range

[0-9]

ε

ε ε

ε

ε ε

4

ε

ε ε

ε

ε ε

Figure 3: [0-9]{2}/[0-9]{2}/[0-9]{4} represented as a k-tree with k = 2

3 Regular Expressions Synthesis

In this section we describe the enumerative synthesis procedure that generates
a regular expression that matches all valid examples and none of the invalid.

3.1 Regular Expressions DSL

Before the synthesis procedure starts, we define which operators can be used
to build the desired regular expression and the values each operator can take
as argument. Forest’s regular expression DSL includes the regex union and
concatenation operators, as well as several regular expression quantifiers:

– Kleene closure: r∗ matches r zero or more times,
– positive closure: r+ matches r one or more times,
– option: r? matches r zero or one times,
– ranges: r{m} matches r exactly m times, and r{m,n} matches r at least m

times and at most n times.

The possible values for the range operators are limited depending on the valid
examples provided by the user. For the single-valued range operator, r{m}, we
consider only the integer values such that 2 ≤ m ≤ l, where l is the length of
the longest valid example string. In the two-valued range operator, r{m,n}, the
values of m and n are limited to integers such that 0 ≤ m < n ≤ l. The tuple
(0,1) is not considered, since it is equivalent to the option quantifier: r{0, 1} = r?.

All operators can be applied to regex literals or composed with each other
to form more complex expressions. The regex literals considered in the syn-
thesis procedure include the individual letters, digits or symbols present in the
examples and all character classes that contain them. The character classes con-
templated in the DSL are [0-9], [A-Z], [a-z] and all combinations of those,
such as [A-Za-z] or [0-9A-Za-z]. Additionally, [0-9A-F] and [0-9a-f] are
used to represent hexadecimal numbers.

3.2 Regex Enumeration

To enumerate regexes, the synthesizer requires a structure capable of represent-
ing every feasible expression. We use a tree-based representation of the search

6 Ferreira et al.

concat

range

[0-9] 2

/

ε ε

range

[0-9] 2

/

ε ε

range

[0-9] 4

Figure 4: [0-9]{2}/[0-9]{2}/[0-9]{4} represented as a multi-tree with n = 5
and k = 2, resulting from the concatenation of 5 simpler regexes

space. A k-tree of depth d is a tree in which every internal node has exactly
k children and every leaf node is at depth d. A program corresponds to an as-
signment of a DSL construct to each tree node, the node’s descendants are the
construct’s arguments. If k is the greatest arity among all DSL constructs, then
a k-tree of depth d can represent all programs of depth up to d in that DSL.
The arity of constructs in Forest’s regex DSLs is at most 2, so all regexes in
the search space can be represented using 2-trees. To allow constructs with arity
smaller than k, some children nodes are assigned the empty symbol, ε. In Fig-
ure 3, the regex from the motivating example, [0-9]{2}/[0-9]{2}/[0-9]{4},
is represented as a 2-tree of depth 5.

To explore the search space in order of increasing complexity, we enumerate
k-trees of lower depths first and progressively increase the depth of the trees
as previous depths are exhausted. The enumerator encodes the k-tree as an
SMT formula that ensures the program is well-typed. A model that satisfies the
formula represents a valid regex. Due to space constraints we omit the k-tree
encoding but further details can be found in the literature [2,17].

Multi-tree representation. We considered several validators for digital forms
and observed that many regexes in this domain are the concatenation of rela-
tively simple regexes. However, the successive concatenation of simple regexes
quickly becomes complex in its k-tree representation. Recall the regex for date
validation presented in the motivating example: [0-9]{2}/[0-9]{2}/[0-9]{4}.
Even though this is the concatenation of 5 simple sub-expressions, each of depth
at most 2, its representation as a k-tree has depth 5, as shown in Figure 3.

The main idea behind the multi-tree constructs is to allow the number of
concatenated sub-expressions to grow without it reflecting exponentially on the
encoding. The multi-tree structure consists of n k-trees, whose roots are con-
nected by an artificial root node, interpreted as an n-ary concatenation opera-
tor. This way, we are able to represent regexes using fewer nodes. Figure 4 is
the multi-tree representation of the same regex as Figure 3, and shows that the
multi-tree construct can represent this expression using half the nodes.

The k-tree enumerator successively explores k-trees of increasing depth. How-
ever, multi-tree has two measures of complexity: the depth of the trees, d, and
the number of trees, n. Forest employs two different methods for increasing
these values: static multi-tree and dynamic multi-tree.

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 7

Static multi-tree. In the static multi-tree method, the synthesizer fixes n
and progressively increases d. To find the value of n, there is a preprocessing
step, in which Forest identifies patterns in the valid examples. This is done by
first identifying substrings common to all examples. A substring is considered a
dividing substring if it occurs exactly the same number of times and in the same
order in all examples. Then, we split each example before and after the dividing
substrings. Each example becomes an array of n strings.

Example 1. Consider the valid examples from the motivating example. In these
examples, ‘/’ is a dividing substring because it occurs in every example, and
exactly twice in each one. ‘0’ is a common substring but not a dividing substring
because it does not occur the same number or times in all examples. After
splitting on ‘/’, each example becomes a tuple of 5 strings:

(‘19’, ‘/’, ‘08’, ‘/’, ‘1996’)
(‘26’, ‘/’, ‘10’, ‘/’, ‘1998’)
(‘22’, ‘/’, ‘09’, ‘/’, ‘2000’)

(‘01’, ‘/’, ‘12’, ‘/’, ‘2001’)
(‘29’, ‘/’, ‘09’, ‘/’, ‘2003’)
(‘31’, ‘/’, ‘08’, ‘/’, ‘2015’)

Then, we apply the multi-tree method with n trees. For every i ∈ {1, ..., n},
the ith sub-tree represents a regex that matches all strings in the ith position
of the split example tuples and the concatenation of the n regexes will match
the original example strings. Since each tree is only synthesizing a part of the
original input strings, a reduced DSL is recomputed for each tree.

Dynamic multi-tree. The dynamic multi-tree method is employed when the
examples cannot be split because there are no dividing substrings. In this sce-
nario, the enumerator will still use a multi-tree construct to represent the regex.
However, the number of trees is not fixed and all trees use the original, complete
DSL. A multi-tree structure with n k-trees of depth d has n × (kd − 1) nodes.
Forest enumerates trees with different values of (n, d) in increasing order of
number of nodes, starting with n = 1 and d = 2, a simple k-tree of depth 2.

Pruning. We prune regexes which are provably equivalent to others in the
search space by using algebraic rules of regular expressions like the following:

(r∗)∗ ≡ r∗ (r?)? ≡ r? (r+)+ ≡ r+
(r+)∗ ≡ (r∗)+ ≡ r∗ (r?)∗ ≡ (r∗)? ≡ r∗ (r?)+ ≡ (r+)? ≡ r∗
(r∗){m} ≡ (r{m})∗ (r+){m} ≡ (r{m})+ (r?){m} ≡ (r{m})?

r{n}{m} ≡ r{m}{n} ≡ r{m× n}

To prevent the enumeration of equivalent regular expressions, we add SMT
constraints that block all but one possible representation of each regex. Take,
for example, the equivalence (r?)+ ≡ r∗. We want to consider only one way to
represent this regex, so we add a constraint to block the construction (r?)+ for
any regex r. Another such equivalence results from the idempotence of union:

8 Ferreira et al.

r|r = r. To prevent the enumeration of expressions of the type r|r, every time
the union operator is assigned to a node i, we force the sub-tree underneath
i’s left child to be different from the sub-tree underneath i’s right child by at
least one node. When we enumerate a regex that is not consistent with the
examples, it is eliminated from the search space. Along with the incorrect regex,
we want to eliminate regexes that are equivalent to it. The union operator in
the regular expressions DSL is commutative: r|s = s|r, for any regexes r and
s. Thus, whenever an expression containing r|s is discarded, we eliminate the
expression that contains s|r in its place as well.

3.3 Regex Disambiguation

To increase confidence in the synthesizer’s solution, Forest disambiguates the
specification by interacting with the user. We employ an interaction model based
on distinguishing inputs, which has been successfully used in several synthesizers
[11,24,25,14]. To produce a distinguishing input, we require an SMT solver with
a regex theory, such as Z3 [15,23]. Upon finding two regexes that satisfy the
user-provided examples, r1 and r2, we use the SMT solver to solve the formula:

∃s : r1(s) 6= r2(s), (1)

where r1(s) (resp. r2(s)) is True if and only if r1 (resp. r2) matches the string s.
A string s that satisfies (1) is a distinguishing input. Forest asks the user to
classify this input as valid or invalid, and s is added to the respective set of
examples, thus eliminating either r1 or r2 from the search space. After the first
interaction, the synthesis procedure continues only until the end of the current
depth and number of trees.

4 Capturing Groups Synthesis

In this section we describe the synthesis procedure of the second component
of a regex validation: a set of integer conditions over captured values that are
satisfied by all valid examples but none of the conditional invalid examples.

4.1 Capturing Groups Enumeration

To enumerate capturing groups, Forest starts by identifying the regular expres-
sion’s atomic sub-regexes: the smallest sub-regexes whose concatenation results
in the original complete regex. For example, [0-9]{2} is an atomic sub-regex:
there are no smaller sub-regexes whose concatenation results in it. It does not
make sense to place a capturing group inside atomic sub-regexes: ([0-9]){2}
does not have a clear meaning. Once identified, the atomic sub-regexes are placed
in an ordered list. Enumerating capturing groups over the regular expression is
done by enumerating non-empty disjoint sub-lists of this list. The elements inside
each sub-list form a capturing group.

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 9

Example 2. Recall the date regex: [0-9]{2}/[0-9]{2}/[0-9]{4}. The respec-
tive list of atomic sub-regexes is [[0-9]{2}, /, [0-9]{2}, /, [0-9]{4}]. The
following are examples of sub-lists of the atomic sub-regexes list and their re-
sulting capturing groups:

[[[0-9]{2}], /, [0-9]{2}, /, [0-9]{4}] → ([0-9]{2})/[0-9]{2}/[0-9]{4}

[[[0-9]{2}], /, [[0-9]{2}], /, [[0-9]{4}]] → ([0-9]{2})/([0-9]{2})/([0-9]{4})

4.2 Capture Conditions Synthesis

To compute capture conditions, we need all conditional invalid examples to be
matched by the regular expression. After, capturing groups are enumerated as
described in section 4.1. The number of necessary capturing groups is not known
beforehand, so we enumerate capturing groups in increasing number.

A capture condition is a 3-tuple: it contains the captured text, an integer com-
parison operator and an integer argument. Forest considers only two integer
comparison operators, ≤ and ≥. However, the algorithm can be easily expanded
to include other operators. Let C be a set of capturing groups and C(x) the in-
teger captures that result from applying C to example string x. Let DC be the
set of all possible capture conditions over capturing groups C. DC results from
combining each capturing group with each integer operator. Finally, let V be
the set of all valid examples, I the set of all conditional invalid examples, and
X = V ∪ I the union of these two sets.

Given capturing groups C, Forest uses Maximum Satisfiability Modulo The-
ories (MaxSMT) to select from DC the minimum set of conditions that are sat-
isfied by all valid examples and none of the conditional invalid. To encode the
problem, we define two sets of Boolean variables. First, we define scap,x for every
cap ∈ C(x) and x ∈ X . scap,x = True if capture cap in example x satisfies all
used conditions that refer to it. We also define ucond for all cond ∈ DC . ucond =
True means condition cond is used in the solution. Additionally, we define a set
of integer variables bcond, for all conditions cond ∈ DC that represent the integer
argument present in each condition.

Let SMT(cond, x) be the SMT representation of condition cond for example
x: the capture is an integer value, and the integer argument is the corresponding
bcond variable. Let Dcap ⊆ DC be the set of capture conditions that refer to
capture cap. Constraint (2) states that a capture cap in example x satisfies all
conditions if and only if for every condition that refers to cap either it is not used
in the solution or it is satisfied for the value of that capture in that example:

scap,x ↔
∧

cond∈Dcap

ucond → SMT(cond, x). (2)

Example 3. Recall the first valid string from the motivating example: x0 =
“19/08/1996”. Suppose Forest has already synthesized the desired regular ex-
pression and enumerated a capturing group that corresponds to the day:
([0-9]{2})/[0-9]{2}/[0-9]{4}. Let cond0 and cond1 be the conditions that

10 Ferreira et al.

refer to the first (and only) capturing group, $0, and operators ≤ and ≥ respec-
tively. The SMT representation for cond0 and x0 is SMT(cond0, x0) = 19 ≤
bcond0 . Constraint (2) is:

s0,x0 ↔ (ucond0 → 19 ≤ bcond0) ∧ (ucond1 → 19 ≥ bcond1).

Then, we ensure the used conditions are satisfied by all valid examples and
none of the conditional invalid examples:∧

x∈V

∧
cap∈C(x)

scap,x ∧
∧
x∈I

∨
cap∈C(x)

¬scap,x. (3)

Since we are looking for the minimum set of capture conditions, we add soft
clauses to penalize the usage of capture conditions in the solution:∧

cond∈DC

¬ucond. (4)

We consider part of the solution only the capture conditions whose ucond
is True in the resulting SMT model. We also extract the values of the integer
arguments in each condition from the model values of the bcond variables.

4.3 Capture Conditions Disambiguation

To ensure the solution meets the user’s intent, Forest disambiguates the spec-
ification using, once again, a procedure based on distinguishing inputs. Once
Forest finds two different sets of capture conditions S1 and S2 that satisfy the
specification, we look for a distinguishing input: a string c which satisfies all
capture conditions in S1, but not those in S2, or vice-versa. First, to simplify
the problem, Forest eliminates from S1 and S2 conditions which are present
in both: these are not relevant to compute a distinguishing input. Let S∗1 (resp.
S∗2) be the subset of S1 (resp. S2) containing only the distinguishing conditions,
i.e., the conditions that differ from those in S2 (resp. S1).

We do not compute the distinguishing string c directly. Instead, we com-
pute the integer value of the distinguishing captures in c, i.e., the captures that
result from applying the regular expression and its capturing groups to the dis-
tinguishing input string. We define |C| integer variables, ci, which correspond to
the values of the distinguishing captures: c0, c1, ..., c|C| = C(c).

As before, let SMT(cond, c) be the SMT representation of each condition
cond. Each capture in C(c) is represented by its respective ci, the operator main-
tains it usual semantics and the integer argument is its value in the solution to
which the condition belongs. Constraint (5) states that c satisfies the conditions
in one solution but not the other.∧

cond∈S∗1

SMT(cond, c) 6=
∧

cond∈S∗2

SMT(cond, c). (5)

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 11

In the end, to produce the distinguishing string c, Forest picks an example
from the valid set, applies the regular expression with the capturing groups to
it, and replaces its captures with the model values for ci.

Forest asks the user to classify c as valid or invalid. Depending on the
user’s answer, c is added as a valid or conditional invalid example, effectively
eliminating either S1 or S2 from the search space.

Example 4. Recall the examples from the motivating example. No example in-
validates a date with the day 32, so Forest will find two correct sets of cap-
ture conditions over the regular expression ([0-9]{2})/([0-9]{2})/[0-9]{4}:
S1 = {$0 ≤ 31, $0 ≥ 1, $1 ≤ 12, $1 ≥ 1}, and S2 = {$0 ≤ 32, $0 ≥ 1, $1 ≤
12, $1 ≥ 1}. First, we define two sets containing only the distinguishing cap-
tures: S∗1 = {$0 ≤ 31} and S∗2 = {$0 ≤ 32}. Then, to find c0, the value of the
distinguishing capture for these solutions, we solve the constraint:

∃c0 : c0 ≤ 31 6= c0 ≤ 32

and get the value c0 = 32 which satisfies S∗2 (and S2), but not S∗1 (or S1).
If we pick the first valid example, “19/08/1996” as basis for c, the respective

distinguishing input is c = “32/08/1996”. Once the user classifies c as invalid, c
is added as a conditional invalid example and S2 is removed from consideration.

5 Related Work

Program synthesis has been successfully used in many domains such as string
processing [8,19,7,26], query synthesis [11,25,17], data wrangling [2,5], and func-
tional synthesis [3,6]. In this section, we discuss prior work on the synthesis of
regular expressions [10,1] that is most closely related to our approach.

Previous approaches that perform general string processing [7,26] restrict the
form of the regular expressions that can be synthesized. In contrast, we support
a wide range of regular expressions operators, including the Kleene closure, pos-
itive closure, option, and range. More recent work that targets the synthesis of
regexes is done by AlphaRegex [10] and Regel [1]. AlphaRegex performs
an enumerative search and uses under- and over-approximations of regexes to
prune the search space. However, AlphaRegex is limited to the binary alpha-
bet and does not support the kind of regexes that we need to synthesize for
form validations. Regel [1] is a state-of-the-art synthesizer of regular expres-
sions based on a multi-modal approach that combines input-output examples
with a natural language description of user intent. They use natural language
to build hierarchical sketches that capture the high-level structure of the regex
to be synthesized. In addition, they prune the search space by using under- and
over-approximations and symbolic regexes combined with SMT-based reasoning.
Regel’s evaluation [1] has shown that their PBE engine is an order of magni-
tude faster than AlphaRegex. While Regel targets more general regexes that
are suitable for search and replace operations, we target regexes for form vali-
dation which usually have more structure. In our approach, we take advantage

12 Ferreira et al.

of this structure to split the problem into independent subproblems. This can
be seen as a special case of sketching [22] where each hole is independent. Our
pruning techniques are orthogonal to the ones used by Regel and are based on
removing equivalent regexes prior to the search and to remove equivalent failed
regexes during search. To the best of our knowledge, no previous work focused
on the synthesis of conditions over capturing groups.

Instead of using input-output examples, there are other approaches that syn-
thesize regexes solely from natural language [9,12,27]. We see these approaches as
orthogonal to ours and expect that Forest can be improved by hints provided
by a natural language component such as was done in Regel.

6 Experimental Results

Implementation. Forest is open-source and publicly available at https://github.
com/Marghrid/FOREST. Forest is implemented in Python 3.8 on top of Trin-
ity, a general-purpose synthesis framework [13]. All SMT formulas are solved
using the Z3 SMT solver, version 4.8.9 [15]. To find distinguishing inputs in reg-
ular expression synthesis, Forest uses Z3’s theory of regular expressions [23].
To check the enumerated regexes against the examples, we use Python’s regex li-
brary [18]. The results presented herein were obtained using an Intel(R) Xeon(R)
Silver 4110 CPU @ 2.10GHz, with 64GB of RAM, running Debian GNU/Linux 10.
All processes were run with a time limit of one hour.

Benchmarks. To evaluate Forest, we used 64 benchmarks based on real-world
form-validation regular expressions. These were collected from regular expres-
sion validators in validation frameworks and from regexlib [20], where users
can upload their own regexes. Among these 64 benchmarks there are different
formats: national IDs, identifiers of products, date and time, vehicle registration
numbers, postal codes, email and phone numbers. For each benchmark, we gen-
erated a set of string examples. All 64 benchmarks require a regular expression
to validate the examples, but only 7 require capture conditions. On average,
each instance is composed of 13.2 valid examples (ranging from 4 to 33) and 9.3
invalid (ranging from 2 to 38). The 7 instances that target capture conditions
have on average 6.3 conditional invalid examples (ranging from 4 to 8).

The goal of this experimental evaluation is to answer the following questions:
Q1: How does Forest compare against Regel? (section 6.1)
Q2: How does pruning affect multi-tree’s time performance? (section 6.2)
Q3: How does static multi-tree improve on dynamic multi-tree? (section 6.2)
Q4: How does multi-tree compare against other encodings? (section 6.3)
Q5: How many examples are required to return a correct solution? (section 6.4)

Forest, by default, uses static multi-tree (when possible) with pruning. It
correctly solves 31 benchmarks (48%) in under 10 seconds. In one hour, Forest
solves 47 benchmarks (73%), with 96% accuracy: only two solutions did not
correspond to the desired regex validation. Forest disambiguates only among
programs at the same depth, and so if the first solution is not at the same depth

https://github.com/Marghrid/FOREST
https://github.com/Marghrid/FOREST

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 13

Table 1: Comparison of time performance using different synthesis methods
Timeout (s) 10 60 3600

Forest (with interaction) 31 39 47
Forest’s 1st regex (no interaction) 40 46 50
Multi-tree w/o pruning 20 32 38
Dynamic-only multi-tree 5 10 18
k-tree 4 9 15
Line-based (w/o pruning) 4 4 12
Regel 29 38 47
Regel PBE 5 7 23

8 16 24 32 40 48 56 64
0

600

1,200

1,800

2,400

3,000

3,600

Instances solved

T
im

e
(s
)

Line-based
k-tree

Dynamic multi-tree
Regel PBE

Multi-tree w/o pruning
Regel
Forest

Forest’s 1st regex

Figure 5: Instances solved using different methods

as the correct one, the correct solution is never found. After 1 hour of running
time, Forest is interrupted, but it prints its current best validation before
terminating. After the timeout, Forest returned 3 more regexes, 2 of which the
correct solution for the benchmark. In all benchmarks to which Forest returns
a solution, the first matching regular expression is found in under 10 minutes. In
40 benchmarks, the first regex is found in under 10 seconds. The rest of the time
is spent disambiguating the input examples. Forest interacts with the user to
disambiguate the examples in 27 benchmarks. Overall, it asks 1.8 questions and
spends 38.6 seconds computing distinguishing inputs, on average.

Regarding the synthesis of capture conditions, in 5 of the benchmarks, we
need only 2 capturing groups and at most 4 conditions. In these instances, the
conditions’ synthesis takes under 2 seconds. The remaining 2 benchmarks need 4
capturing groups and take longer: 99 seconds to synthesize 4 conditions and 1068
seconds for 6 conditions. During capture conditions synthesis, Forest interacts
7.14 times and takes 0.1 seconds to compute distinguishing inputs, on average.

Table 1 shows the number of instances solved in under 10, 60 and 3600
seconds using Forest, as well as using the different variations of the synthesizer
which will be described in the following sections. The cactus plot in Figure 5

14 Ferreira et al.

shows the cumulative synthesis time on the y-axis plotted against the number of
benchmarks solved by each variation of Forest (on the x-axis). The synthesis
methods that correspond to lines more to the right of the plot are able to solve
more benchmarks in less time. We also compare solving times with Regel [1].
Regel takes as input examples and a natural description of user intent. We
consider not only the complete Regel synthesizer, but also the PBE engine of
Regel by itself, which we denote by Regel PBE.

6.1 Comparison with Regel

As mentioned in section 5, Regel’s synthesis procedure is split into two steps:
sketch generation (using a natural language description of desired behavior) and
sketch completion (using input-output examples). To compare Regel and For-
est, we extended our 64 form validation benchmarks with a natural language
description. To assess the importance of the natural language description, we
also ran Regel using only its PBE engine. Sketch generation took on average
60 seconds per instance, and successfully generated a sketch for 63 instances.
The remaining instance was run without a sketch. We considered only the high-
est ranked sketch for each instance. In Table 1 we show how many instances can
be solved with different time limits for sketch completion; note that these values
do not include the sketch generation time. Regel returned a regular expression
for 47 instances within the time limit. Since Regel does not implement a dis-
ambiguation procedure, the returned regular expression does not always exhibit
the desired behavior, even though it correctly classifies all examples. Of the 47
synthesized expressions, 31 exhibit the desired intent. This is a 66% accuracy,
which is the same as Forest without disambiguation (Forest’s 1st regex) but
it is much lower than Forest with disambiguation at 96%. We also observe that
Regel’s performance is severely impaired when using only its PBE engine.

51 out of the 63 generated sketches are of the form �{S1, ..., Sn}, where each
Si is a concrete sub-regex, i.e., has no holes. This construct indicates the desired
regex must contain at least one of S1, ..., Sn, and contains no information about
the top-level operators that are used to connect them. 22 of the 47 synthesized
regexes are based on sketches of that form, and they result from the direct
concatenation of all components in the sketch. No new components are generated
during sketch completion. Thus, most of Regel’s sketches could be integrated
into Forest, whose multi-tree structure holds precisely those top-level operators
that were missing from Regel’s sketches.

6.2 Impact of pruning the search space and splitting examples

To evaluate the impact of pruning the search space as described in section 3.2, we
ran Forest with all pruning techniques disabled. In the scatter plot in Figure 6a,
we can compare the solving time on each benchmark with and without pruning.
Each mark in the plot represents an instance. The value on the y-axis shows
the synthesis time of multi-tree with pruning disabled and the value on the x-
axis the synthesis time with pruning enabled. The marks above the y = x line

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 15

0.1 1 10 100 1,000

0.1

1

10

100

1,000
3600 second timeout

3
6
0
0

seco
n
d

tim
eo

u
t

Multi-tree w/ pruning (s)

M
ul
ti
-t
re
e
w
/o

pr
un

in
g
(s
)

(a) Impact of pruning

0.1 1 10 100 1,000

0.1

1

10

100

1,000
3600 second timeout

3
6
0
0

seco
n
d

tim
eo

u
t

Multi-tree (s)

D
yn

am
ic
-o
nl
y
M
ul
ti
-t
re
e
(s
)

(b) Impact of example-splitting

Figure 6: Comparison of synthesis time using different variations of Forest.

(also represented in the plot) represent problems that took longer to synthesize
without pruning than with pruning. On average, with pruning, Forest can
synthesize regexes in 42% of the time and enumerates about 15% of the regexes
before returning. There is no significant change in the number of interactions
before returning the desired solution.

Forest is able to split the examples and use static multi-tree as described in
section 3.2 in 52 benchmarks (81%). The remaining 12 are solved using dynamic
multi-tree. To assess the impact of using static multi-tree we ran Forest with a
version of the multi-tree enumerator that does not split the examples, and jumps
directly to dynamic multi-tree solving. In the scatter plot in Figure 6b, we com-
pare the solving times of each benchmark. Using static multi-tree when possible,
Forest requires, on average, less than two thirds of the time (59.1%) to return
the desired regex for benchmarks solved by both methods. Furthermore, with
static multi-tree Forest can synthesize more complex regexes: the maximum
number of nodes in a solution returned by dynamic multi-tree is 12 (avg. 6.7),
while complete multi-tree synthesizes regexes of up to 24 nodes (avg. 10.3).

6.3 Multi-tree versus k-tree and line-based encodings

To evaluate the performance of multi-tree enumeration, we ran Forest with two
other enumeration encodings: k-tree and line-based. The latter is a state of the
art encoding for the synthesis of SQL queries [17]. k-tree is the default enumera-
tor in Trinity [13], and the line-based enumerator is available in Squares [16].
The k-tree encoding has a very similar structure to that of multi-tree, so our
pruning techniques were easily applied to this encoding. On the other hand,
line-based encoding is intrinsically different, so the pruning techniques were not
implemented. We compare the line-based encoding to multi-tree without prun-
ing. In every other aspect, the three encodings were run in the same conditions,
using Forest’s regex DSL. k-tree is able to synthesize programs with up to

16 Ferreira et al.

10 nodes, while the line-based encoding synthesizes programs of up to 9 nodes.
Neither encoding outperforms multi-tree.

As seen in Table 1, line-based encoding does not outperform the tree-based
encodings for the domain of regexes while it was much better for the domain of
SQL queries [17]. We conjecture this disparity arises from the different nature
of DSLs. Most SQL queries, when represented as a tree, leave many branches of
the tree unused, which results in a much larger tree and SMT encoding.

6.4 Impact of fewer examples

To assess the impact of providing fewer examples on the accuracy of the solution,
we ran Forest with modified versions of each benchmark. First, each benchmark
was run with at most 10 valid and 10 invalid examples, chosen randomly among
all examples. Conditional invalid examples are already very few per instance, so
these were not altered. The accuracy of the returned regexes is slightly lower.

With only 10 valid and 10 invalid examples, Forest returns the correct regex
in 93.5% of the benchmarks, which represents a decrease of only 2.5% relative
to the results with all examples. We also saw an increase in the number of inter-
actions before returning, since fewer examples are likely to be more ambiguous.
With only 10 examples, Forest interacts on average 2.2 times per benchmark,
which represents an increase of about a fifth. The increase in the number of
interactions reflects on a small increase in the synthesis time (less than 1%).

After, we reduced the number of examples even further: only 5 valid and 5
invalid. The accuracy of Forest in this setting was reduced to 71%. On average,
it interacted 4.3 times per benchmark, which is over two times more than before.

7 Conclusions and Future Work

Regexes are commonly used to enforce patterns and validate the input fields of
digital forms. However, writing regex validations requires specialized knowledge
that not all users possess. We have presented a new algorithm for synthesis of
regex validations from examples that leverages the common structure shared
between valid examples. Our experimental evaluation shows that the multi-tree
representation synthesizes three times more regexes than previous representa-
tions in the same amount of time and, together with the user interaction model,
Forest solves 70% of the benchmarks with the correct user intent. We verified
that Forest maintains a very high accuracy with as few as 10 examples of each
kind. We also observed that our approach outperforms Regel, a state-of-the-art
synthesizer, in the domain of form validations.

As future work, we would like to explore the synthesis of more complex
capture conditions, such as conditions depending on more than one capture.
This would allow more restrictive validations; for example, in a date, the possible
values for the day could depend on the month. Another possible extension to
Forest is to automatically separate invalid from conditional invalid examples,
making this distinction imperceptible to the user.

Forest: An Interactive Multi-Tree Synthesizer for Regular Expressions 17

References

1. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions. In: PLDI. ACM (2020)

2. Chen, Y., Martins, R., Feng, Y.: Maximal multi-layer specification synthesis. In:
ESEC/SIGSOFT FSE. pp. 602–612. ACM (2019)

3. Fedyukovich, G., Gupta, A.: Functional synthesis with examples. In: CP. Lecture
Notes in Computer Science, vol. 11802, pp. 547–564. Springer (2019)

4. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: PLDI. pp. 420–435. ACM (2018)

5. Feng, Y., Martins, R., Geffen, J.V., Dillig, I., Chaudhuri, S.: Component-based
synthesis of table consolidation and transformation tasks from examples. In: PLDI.
pp. 422–436. ACM (2017)

6. Golia, P., Roy, S., Meel, K.S.: Manthan: A data driven approach for boolean func-
tion synthesis. In: CAV. Springer (2020)

7. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: POPL. pp. 317–330. ACM (2011)

8. Kini, D., Gulwani, S.: Flashnormalize: Programming by examples for text normal-
ization. In: IJCAI. pp. 776–783. AAAI Press (2015)

9. Kushman, N., Barzilay, R.: Using semantic unification to generate regular expres-
sions from natural language. In: HLT-NAACL. pp. 826–836. The Association for
Computational Linguistics (2013)

10. Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for intro-
ductory automata assignments. In: GPCE. pp. 70–80. ACM (2016)

11. Li, H., Chan, C., Maier, D.: Query from examples: An iterative, data-driven ap-
proach to query construction. Proc. VLDB Endow. 8(13), 2158–2169 (2015)

12. Locascio, N., Narasimhan, K., DeLeon, E., Kushman, N., Barzilay, R.: Neural gen-
eration of regular expressions from natural language with minimal domain knowl-
edge. In: EMNLP. pp. 1918–1923. The Association for Computational Linguistics
(2016)

13. Martins, R., Chen, J., Chen, Y., Feng, Y., Dillig, I.: Trinity: An Extensible Syn-
thesis Framework for Data Science. PVLDB 12(12), 1914–1917 (2019)

14. Mayer, M., Soares, G., Grechkin, M., Le, V., Marron, M., Polozov, O., Singh, R.,
Zorn, B.G., Gulwani, S.: User interaction models for disambiguation in program-
ming by example. In: UIST. pp. 291–301. ACM (2015)

15. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

16. Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho, V.M.: Squares.
https://squares-sql.github.io, accessed on May 27, 2020

17. Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho, V.M.: Encod-
ings for enumeration-based program synthesis. In: CP. Lecture Notes in Computer
Science, vol. 11802, pp. 583–599. Springer (2019)

18. Python Software Foundation: Python3’s regular expression module re. https://
docs.python.org/3/library/re.html, accessed on October 11, 2020

19. Raza, M., Gulwani, S.: Automated data extraction using predictive program syn-
thesis. In: AAAI. pp. 882–890. AAAI Press (2017)

20. Regular Expression Library: www.regexlib.com, accessed on May 27, 2020
21. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart

and fast term enumeration for syntax-guided synthesis. In: CAV. Lecture Notes in
Computer Science, vol. 11562, pp. 74–83. Springer (2019)

https://squares-sql.github.io
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
www.regexlib.com

18 Ferreira et al.

22. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15(5-6),
475–495 (2013)

23. Stanford, C., Veanes, M., Bjørner, N.: Symbolic boolean derivatives for efficiently
solving extended regular expression constraints. Tech. Rep. MSR-TR-2020-25, Mi-
crosoft (August 2020), updated November 2020.

24. Wang, C., Cheung, A., Bodík, R.: Interactive query synthesis from input-output
examples. In: SIGMOD Conference. pp. 1631–1634. ACM (2017)

25. Wang, C., Cheung, A., Bodík, R.: Synthesizing highly expressive SQL queries from
input-output examples. In: PLDI. pp. 452–466. ACM (2017)

26. Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using exam-
ples. In: OOPSLA. pp. 195–213. ACM (2016)

27. Zhong, Z., Guo, J., Yang, W., Peng, J., Xie, T., Lou, J., Liu, T., Zhang, D.: Sem-
regex: A semantics-based approach for generating regular expressions from natural
language specifications. In: EMNLP. pp. 1608–1618. Association for Computational
Linguistics (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	FOREST: An Interactive Multi-tree Synthesizer for Regular Expressions

