
Counterfeiting Congestion
Control Algorithms

Margarida Ferreira, Akshay Narayan, Inês Lynce,
Ruben Martins, Justine Sherry

Desirable CCA properties

11/11/21 2Counterfeiting Congestion Control Algorithms

Fairness: whether competing
applications share network
bandwidth fairly

Stability: how stable bandwidth
allocations are (or whether
performance oscillates)

Utilization: whether network
links are utilized efficiently

Pictures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet

11/11/21 Counterfeiting Congestion Control Algorithms 3

Desirable CCA properties

Companies have deployed CCAs
that are not fair

411/11/21 Counterfeiting Congestion Control Algorithms

Companies are using new proprietary
CCAs for different applications

• Video streaming

• Online gaming

• Videoconferencing

11/11/21 Counterfeiting Congestion Control Algorithms 5

D. Caban, D. Ray and S.Seshan.
Understanding Congestion Control for
Cloud Game Streaming. CMU REU 2020

Our goal is to reverse
engineer CCAs

11/11/21 6Counterfeiting Congestion Control Algorithms

How do we reverse engineer CCAs?
Program Synthesis

711/11/21 Counterfeiting Congestion Control Algorithms

Program Synthesis

f(1, 2, 3) = 7

f(2, 3, 4) = 8

f(5, 3, 5) = 8

f(2, 4, 5) = 12

f(5, 15, 10) = 35

f?

811/11/21 Counterfeiting Congestion Control Algorithms

Program Synthesis

f(1, 2, 3) = 7
f(2, 3, 4) = 8
f(5, 3, 5) = 8

f(2, 4, 5) = 12
f(5, 15, 10) = 35

Synthesizer f(x, y, z) = x + y*z/x

911/11/21 Counterfeiting Congestion Control Algorithms

CCA Synthesis

f(input) = output

11/11/21 Counterfeiting Congestion Control Algorithms 10

CCA Synthesis

CCA(input) = output

11/11/21 Counterfeiting Congestion Control Algorithms 11

CCA Synthesis

CCA(network signals) = output

11/11/21 Counterfeiting Congestion Control Algorithms 12

ACKs

Sends

MSS

RTT
…

CCA Synthesis

CCA(network signals, state) = output

11/11/21 Counterfeiting Congestion Control Algorithms 13

CWND

SSThresh

…

CCA Synthesis

CCA(network signals, state) = new state

11/11/21 Counterfeiting Congestion Control Algorithms 14

CWND

SSThresh

…

CCA Synthesis

Network traces CCA

1511/11/21

Synthesizer

Counterfeiting Congestion Control Algorithms

11/11/21 16

CCA code

Counterfeiting Congestion Control Algorithms

11/11/21 Counterfeiting Congestion Control Algorithms 17

Most congestion control code is
boilerplate

CUBIC

VEGAS

BBR

Counterfeiting Congestion Control Algorithms11/11/21 18

CCA code

Counterfeiting Congestion Control Algorithms11/11/21 19

CCA code

Boilerplate code

Event
handlers

CCA Synthesis

Network traces

CCA:

2011/11/21

Synthesizer

Counterfeiting Congestion Control Algorithms

Event

handlers

CCA Synthesis

Network traces
Event

handlers

2111/11/21

Synthesizer

Counterfeiting Congestion Control Algorithms

Boilerplate code

Our 1st goal: synthesize a very
basic version of Reno

11/11/21 22

❌

❌

❌

Two event handlers:
• win-ack - updates CWND

when there is an ACK

• win-timeout - updates
CWND there is a timeout

Counterfeiting Congestion Control Algorithms

CCA Synthesis

Network traces win-ack

win-timeout

2311/11/21

Synthesizer

Counterfeiting Congestion Control Algorithms

Boilerplate code

Some inputs are unknown

h(CWND, ACKs, sent) = new CWND

Time ACKs Sent
1 - 1
2 - 1461
3 - 2921
4 - 4381
5 - -
6 - -
7 - -
8 1461 5841
9 - -
10 4381 7301
11 5841 8761
12 - 10221

...
2411/11/21 Counterfeiting Congestion Control Algorithms

Each timestep takes as input the
previous timestep’s output

h(CWND0 , ACKs0, sent0) = CWND1
h(CWND1 , ACKs1, sent1) = CWND2
h(CWND2 , ACKs2, sent2) = CWND3
h(CWND3 , ACKs3, sent3) = CWND4
h(CWND4 , ACKs4, sent4) = CWND5

...

2511/11/21

CWNDn = h(...h(h(h(CWND0 , ACKs0, sent0) , ACKs1, sent1) , ACKs2, sent2)...)

Counterfeiting Congestion Control Algorithms

Time ACKs Sent
1 - 1
2 - 1461
3 - 2921
4 - 4381
5 - -
6 - -
7 - -
8 1461 5841
9 - -
10 4381 7301
11 5841 8761
12 - 10221

...

Naïve approach

11/11/21 Counterfeiting Congestion Control Algorithms 26

Naïve search

11/11/21 Counterfeiting Congestion Control Algorithms 27

Candidate h functions:

• win-ack = CWND + AKD * CWND / x1
• win-timeout = CWND / x2

Trace
a

Trace
c

Trace
d

Trace
b

Are there win-ack and
win-timeout handlers

that fit the traces?

Naïve search

11/11/21 Counterfeiting Congestion Control Algorithms 28

Candidate h functions:

• win-ack = CWND + AKD * CWND / MSS
• win-timeout = CWND / x2

Trace
a

Trace
c

Trace
d

Trace
b

Are there win-ack and
win-timeout handlers

that fit the traces?

Naïve search

11/11/21 Counterfeiting Congestion Control Algorithms 29

Candidate h functions:

• win-ack = CWND + AKD * CWND / MSS
• win-timeout = CWND - x2

Trace
a

Trace
c

Trace
d

Trace
b

Are there win-ack and
win-timeout handlers

that fit the traces?

Naïve search

11/11/21 Counterfeiting Congestion Control Algorithms 30

Candidate h functions:

• win-ack = CWND + AKD - MSS
• win-timeout = CWND - x2

Trace
a

Trace
c

Trace
d

Trace
b

Are there win-ack and
win-timeout handlers

that fit the traces?

Naïve search

11/11/21 Counterfeiting Congestion Control Algorithms 31

Candidate h functions:

• win-ack = CWND + AKD * MSS / CWND
• win-timeout = CWND - x2

Trace
a

Trace
c

Trace
d

Trace
b

Are there win-ack and
win-timeout handlers

that fit the traces?

Naïve search

11/11/21 Counterfeiting Congestion Control Algorithms 32

Candidate h functions:

• win-ack = CWND + AKD * MSS / CWND
• win-timeout = CWND * w0

Trace
a

Trace
c

Trace
d

Trace
b

Are there win-ack and
win-timeout handlers

that fit the traces?

The search space is very, very large

~20,000 win-ack handlers
x

~20,000 win-timeout handlers
=

several hundred million possible CCAs

but we cannot do several hundred million solver calls.

11/11/21 Counterfeiting Congestion Control Algorithms 33

Synthesizer

CCA synthesis is challenging

11/11/21 35

Traditional synthesis:
f(1, 2, 3) = 7
f(2, 3, 4) = 8
f(5, 3, 5) = 8

f(2, 4, 5) = 12

f(x, y, z) = x + y*z/x

Synthesizer

CCA synthesis:

CWNDn = h(...h(h(h(CWND0 , ACKs, sent0) , ACKs, sent1) , ACKs, sent2)...)

?

Counterfeiting Congestion Control Algorithms

Our synthesizer:
Mister 880
2 main goals:

• Make simpler solver calls

• Decrease search space

11/11/21 36Counterfeiting Congestion Control Algorithms

Start with shortest trace

Shortest
trace

Synthesizer

Solver

SimulationAll traces

Candidate
CCA

Correct?

no

Failed trace

yes
CCA

3711/11/21 Counterfeiting Congestion Control Algorithms

Is there a CCA that fits
the shortest trace?

Does this CCA fit all
the traces?

❌

❌

❌

Synthesize one handler at a time

11/11/21 38

win-ack:
Updates CWND when
there is an ACK

win-timeout:
Updates CWND when
there is a timeout

Counterfeiting Congestion Control Algorithms

Is there a win-ack
handler that fits this

part of the trace?

Given that win-ack, is
there a win-timeout that

fits the whole trace?

Do not consider functions that
cannot be handlers

CWND = CWND * AKD

The result is not in bytes.

CWND = CWND / AKD * MSS

will never increase CWND.

11/11/21 Counterfeiting Congestion Control Algorithms 41

Reduces search space by ~80%

bytes bytesbytes2

Mister 880 divides the search into
smaller, easier problems

Main ideas:
• Start with shortest trace ✓simpler solver calls

• Synthesize one handler at a time ✓simpler solver calls

• Domain-specific knowledge ✓decrease search space

11/11/21 Counterfeiting Congestion Control Algorithms 42

Simplified Reno

win-ack(CWND, AKD, MSS) = CWND + AKD * MSS / CWND

win-timeout(CWND, w0) = w0

Naïve approach without our
optimizations did not finish.

Mister 880 synthesized in
13 minutes on a 2015 MacBook Pro.

11/11/21 43Counterfeiting Congestion Control Algorithms

$1

Counterfeiting Congestion
Control Algorithms

Margarida Ferreira
margarida@cmu.edu

Future directions:

• How can we work from Internet traces?

• How can we synthesize more complex CCAs?

$1

$100

11/11/21 Counterfeiting Congestion Control Algorithms 45

