
Satisfiability:

Algorithms, Applications and Extensions

Javier Larrosa1 Inês Lynce2 Joao Marques-Silva3

1Universitat Politécnica de Catalunya, Spain

2Technical University of Lisbon, Portugal

3University College Dublin, Ireland

SAC 2010

SAT: A Simple Example

• Boolean Satisfiability (SAT) in a short sentence:

– SAT is the problem of deciding (requires a yes/no answer) if
there is an assignment to the variables of a Boolean formula
such that the formula is satisfied

• Consider the formula (a ∨ b) ∧ (¬a ∨ ¬c)

– The assignment b = True and c = False satisfies the formula!

SAT: A Practical Example

• Consider the following constraints:

– John can only meet either on Monday, Wednesday or Thursday
– Catherine cannot meet on Wednesday
– Anne cannot meet on Friday
– Peter cannot meet neither on Tuesday nor on Thursday
– Question: When can the meeting take place?

• Encode then into the following Boolean formula:
(Mon ∨ Wed ∨ Thu) ∧ (¬Wed) ∧ (¬Fri) ∧ (¬Tue ∧ ¬Thu)

– The meeting must take place on Monday

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Outline

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Motivation - Why SAT?

• Boolean Satisfiability (SAT) has seen significant
improvements in recent years

– At the beginning is was simply the first known NP-complete
problem [Stephen Cook, 1971]

– After that mostly theoretical contributions followed
– In the 90’s practical algorithms were developed and made

available
– Currently, SAT founds many practical applications
– SAT extensions found even more applications

Motivation - Some lessons from SAT I

• Time is everything

– Good ideas are not enough, you have to be fast!
– One thing is the algorithm, another thing is the implementation
– Make your source code available

◮ Otherwise people will have to wait for years before realising
what you have done

◮ At least provide an executable!

Motivation - Some lessons from SAT II

• Competitions are essential

– To check the state-of-the-art of SAT solvers
– To keep the community alive (for almost a decade now)
– To get students involved

• Part of the credibility of a community comes from the
correctness and robustness of the tools made available

Motivation - Some lessons from SAT III

• There is no perfect solver!

– Do not expect your solver to beat all the other solvers on all
problem instances

• What makes a good solver?

– Correctness and robustness for sure...
– Being most often the best for its category: industrial,

handmade or random
– Being able to solve instances from different problems

www.satcompetition.org

• Get all the info from the SAT competition web page

– Organizers, judges, benchmarks, executables, source code
– Winners

◮ Industrial, Handmade and Random benchmarks
◮ SAT+UNSAT, SAT and UNSAT categories
◮ Gold, Silver and Bronze medals

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Boolean Formulas

• Boolean formula ϕ is defined over a set of propositional
variables x1, . . . , xn, using the standard propositional
connectives ¬, ∧, ∨, →, ↔, and parenthesis

– The domain of propositional variables is {0, 1}
– Example: ϕ(x1, . . . , x3) = ((¬x1 ∧ x2) ∨ x3) ∧ (¬x2 ∨ x3)

• A formula ϕ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

– Example: ϕ(x1, . . . , x3) = (¬x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x3)

• Can encode any Boolean formula into CNF (more later)

Boolean Satisfiability (SAT)

• The Boolean satisfiability (SAT) problem:

– Find an assignment to the variables x1, . . . , xn such that
ϕ(x1, . . . , xn) = 1, or prove that no such assignment exists

• SAT is an NP-complete decision problem [Cook’71]

– SAT was the first problem to be shown NP-complete
– There are no known polynomial time algorithms for SAT
– 39-year old conjecture:

Any algorithm that solves SAT is exponential in the number of
variables, in the worst-case

Definitions

• Propositional variables can be assigned value 0 or 1

– In some contexts variables may be unassigned

• A clause is satisfied if at least one of its literals is assigned
value 1

(x1 ∨ ¬x2 ∨ ¬x3)

• A clause is unsatisfied if all of its literals are assigned value 0

(x1 ∨ ¬x2 ∨ ¬x3)

• A clause is unit if it contains one single unassigned literal and
all other literals are assigned value 0

(x1 ∨ ¬x2 ∨ ¬x3)

• A formula is satisfied if all of its clauses are satisfied

• A formula is unsatisfied if at least one of its clauses is
unsatisfied

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Algorithms for SAT

• Incomplete algorithms (i.e. can only prove (un)satisfiability):

– Local search / hill-climbing
– Genetic algorithms
– Simulated annealing
– ...

• Complete algorithms (i.e. can prove both satisfiability and
unsatisfiability):

– Proof system(s)
◮ Natural deduction
◮ Resolution
◮ St̊almarck’s method
◮ Recursive learning
◮ ...

– Binary Decision Diagrams (BDDs)
– Backtrack search / DPLL

◮ Conflict-Driven Clause Learning (CDCL)

– ...

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)
– Done if all clauses satisfied

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)
– Done if all clauses satisfied

• Repeat (random) selection of assignment a number of times

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Pure Literals

• A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula

– Example:
ϕ = (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2) ∧ (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)

– x1 and x3 and pure literals

• Pure literal rule:
Clauses containing pure literals can be removed from the
formula (i.e. just assign pure literals to the values that satisfy
the clauses)

– For the example above, the resulting formula becomes:
ϕ = (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)

• A reference technique until the mid 90s; nowadays seldom
used

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

• Unit propagation can satisfy clauses but can also unsatisfy
clauses. Unsatisfied clauses create conflicts.

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Resolution

• Resolution rule:

– If a formula ϕ contains clauses (x ∨ α) and (¬x ∨ β), then one
can infer (α ∨ β)

(x ∨ α) ∧ (¬x ∨ β) ⊢ (α ∨ β)

• Resolution is a sound and complete rule

Resolution

• Resolution forms the basis of a complete algorithm for SAT
– Iteratively apply the following steps: [Davis&Putnam’60]

◮ Select variable x
◮ Apply resolution rule between every pair of clauses of the form

(x ∨ α) and (¬x ∨ β)
◮ Remove all clauses containing either x or ¬x

◮ Apply the pure literal rule and unit propagation

– Terminate when either the empty clause or the empty formula
(equivalently, a formula containing only pure literals) is derived

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(x3 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(x3 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(x3 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(x3 ∨ x4) ∧ (x3 ∨ ¬x4) ⊢

(x3)

• Formula is SAT

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

St̊almarck’s Method

• Recursive application of the branch-merge rule to each
variable with the goal of identifying common assignments

ϕ = (a ∨ b)(¬a ∨ c)(¬b ∨ d)(¬c ∨ d)

(a = 0) → (b = 1) → (d = 1)
UP(a = 0) = {a = 0, b = 1, d = 1}

(a = 1) → (c = 1) → (d = 1)
UP(a = 1) = {a = 1, c = 1, d = 1}

UP(a = 0) ∩ UP(a = 1) = {d = 1}

– Any assignment to variable a implies d = 1.
Hence, d = 1 is a necessary assignment!

• Recursion can be of arbitrary depth

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Recursive Learning

• Recursive evaluation of clause satisfiability requirements for
identifying common assignments

ϕ = (a ∨ b)(¬a ∨ c)(¬b ∨ d)(¬c ∨ d)

(a = 1) → (c = 1) → (d = 1)
UP(a = 1) = {a = 1, c = 1, d = 1}

(b = 1) → (d = 1)
UP(b = 1) = {b = 1, d = 1}

UP(a = 1) ∩ UP(b = 1) = {d = 1}

– Every way of satisfying (a ∨ b) implies d = 1.
Hence, d = 1 is a necessary assignment!

• Recursion can be of arbitrary depth

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

Historical Perspective I

• In 1960, M. Davis and H. Putnam proposed the DP
algorithm:

– Resolution used to eliminate 1 variable at each step
– Applied the pure literal rule and unit propagation

• Original algorithm was inefficient

Historical Perspective II

• In 1962, M. Davis, G. Logemann and D. Loveland proposed
an alternative algorithm:

– Instead of eliminating variables, the algorithm would split on a
given variable at each step

– Also applied the pure literal rule and unit propagation

• The 1962 algorithm is actually an implementation of
backtrack search

• Over the years the 1962 algorithm became known as the
DPLL (sometimes DLL) algorithm

Basic Algorithm for SAT – DPLL

• Standard backtrack search

• At each step:

– [DECIDE] Select decision assignment
– [DEDUCE] Apply unit propagation and (optionally) the pure

literal rule
– [DIAGNOSIS] If conflict identified, then backtrack

◮ If cannot backtrack further, return UNSAT
◮ Otherwise, proceed with unit propagation

– If formula satisfied, return SAT
– Otherwise, proceed with another decision

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

a

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

conflict

a

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

b

a

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

a

c

b

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

a

c

b

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

conflict

a

c

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

solution

a

c

b

conflict

Outline

Motivation

What is Boolean Satisfiability?

SAT Algorithms

Incomplete Algorithms
Local Search

Complete Algorithms
Basic Rules
Resolution
St̊almarck’s Method
Recursive Learning
Backtrack Search (DPLL)
Conflict-Driven Clause Learning (CDCL)

CDCL SAT Solvers

• Introduced in the 90’s
[Marques-Silva&Sakallah’96][Bayardo&Schrag’97]

• Inspired on DPLL

– Must be able to prove both satisfiability and unsatisfiability

• New clauses are learnt from conflicts

• Structure of conflicts exploited (UIPs)

• Backtracking can be non-chronological

• Efficient data structures [Moskewicz&al’01]

– Compact and reduced maintenance overhead

• Backtrack search is periodically restarted [Gomes&al’98]

• Can solve instances with hundreds of thousand variables and
tens of million clauses

CDCL SAT Solvers

• Introduced in the 90’s
[Marques-Silva&Sakallah’96][Bayardo&Schrag’97]

• Inspired on DPLL

– Must be able to prove both satisfiability and unsatisfiability

• New clauses are learnt from conflicts

• Structure of conflicts exploited (UIPs)

• Backtracking can be non-chronological

• Efficient data structures

– Compact and reduced maintenance overhead

• Backtrack search is periodically restarted

• Can solve instances with hundreds of thousand variables and
tens of million clauses

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (a = 0) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (a = 0) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (a = 1) ∨ (c = 1) ∨ (f = 1)

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (a = 0) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (a = 1) ∨ (c = 1) ∨ (f = 1)

– Learn new clause (a ∨ c ∨ f)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (c = 1) ∨ (f = 1)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (c = 1) ∨ (f = 1)

– Learn new clause (c ∨ f)

Non-Chronological Backtracking

c

i

h

f

a

(c ∨ f)(a ∨ c ∨ f)

Non-Chronological Backtracking

c

i

h

f

a

(c ∨ f)(a ∨ c ∨ f)

• Learnt clause: (c ∨ f)

• Need to backtrack, given
new clause

• Backtrack to most recent
decision: f = 0

• Clause learning and
non-chronological
backtracking are hallmarks
of modern SAT solvers

Most Recent Backtracking Scheme

c

i

h

f

a

(a ∨ c ∨ f)

Most Recent Backtracking Scheme

c

i

h

f

a

(a ∨ c ∨ f)

Most Recent Backtracking Scheme

a

c

i

h

a

(a ∨ c ∨ f)

f (a ∨ c ∨ f)

• Learnt clause: (a ∨ c ∨ f)

• No need to assign a = 1 -
backtrack to most recent
decision: f = 0

• Search algorithm is no
longer a traditional
backtracking scheme

Unique Implication Points (UIPs)

a i

h

b

c

g d

conflict f

e

• Exploit structure from the implication graph

– To have a more aggressive backtracking policy

• Identify additional clauses to be learnt
[Marques-Silva&Sakallah’96]

– Create clauses (a ∨ c ∨ f) and (¬i ∨ f)
– Imply not only a = 1 but also i = 0

• 1st UIP scheme is the most efficient [Zhang&al’01]

– Create only one clause (¬i ∨ f)
– Avoid creating similar clauses involving the same literals

Clause deletion policies

• Keep only the small clauses [Marques-Silva&Sakallah’96]

– For each conflict record one clause
– Keep clauses of size ≤ K

– Large clauses get deleted when become unresolved

• Keep only the relevant clauses [Bayardo&Schrag’97]

– Delete unresolved clauses with ≤ M free literals

• Keep only the clauses that are used [Goldberg&Novikov’02]

– Keep track of clauses activity

Data Structures

• Key point: only unit and unsatisfied clauses must be detected
during search

– Formula is unsatisfied when at least one clause is unsatisfied
– Formula is satisfied when all the variables are assigned and

there are no unsatisfied clauses

• In practice: unit and unsatisfied clauses may be identified
using only two references

• Standard data structures (adjacency lists):

– Each variable x keeps a reference to all clauses containing a
literal in x

• Lazy data structures (watched literals):

– For each clause, only two variables keep a reference to the
clause, i.e. only 2 literals are watched

Standard Data Structures (adjacency lists)

size = 5
literals1= 0
literals0 = 4

size = 5
literals1= 0
literals0 = 5

size = 5
literals1= 1
literals0 = 4

unit

satisfied

unsatisfied

• Each variable x keeps a reference
to all clauses containing a literal in
x

– If variable x is assigned, then all
clauses containing a literal in x

are evaluated
– If search backtracks, then all

clauses of all newly unassigned
variables are updated

• Total number of references is L,
where L is the number of literals

Lazy Data Structures (watched literals)

satisfied

after backtracking to level 4

unresolved

unit

@5 @3 @1

@1@7@3@5

@5 @7 @7 @1

@1@3

@3

unresolved

@1@3

• For each clause, only two
variables keep a reference to the
clause, i.e. only 2 literals are
watched

– If variable x is assigned, only
the clauses where literals in x

are watched need to be
evaluated

– If search backtracks, then
nothing needs to be done

• Total number of references is
2 × C , where C is the number
of clauses

– In general L ≫ 2 × C , in
particular if clauses are learnt

Search Heuristics

• Standard data structures: heavy heuristics
– DLIS: Dynamic Large Individual Sum [Marques-Silva’99]

◮ Selects the literal that appears most frequently in unresolved
clauses

• Lazy data structures: light heuristics
– VSIDS: Variable State Independent Decaying Sum

[Moskewicz&al’01]
◮ Each literal has a counter, initialized to zero
◮ When a new clause is recorded, the counter associated with

each literal in the clause is incremented
◮ The unassigned literal with the highest counter is chosen at

each decision

– Other variations
◮ Counters updated also for literals in the clauses involved in

conflicts [Goldberg&Novikov’02]

Restarts I

• Plot for processor verification instance with branching
randomization and 10000 runs

– More than 50% of the runs require less than 1000 backtracks
– A small percentage requires more than 10000 backtracks

• Run times of backtrack search SAT solvers characterized by
heavy-tail distributions

Restarts II

solutioncutoffcutoff

• Repeatedly restart the search each time a cutoff is reached
– Randomization allows to explore different paths in search tree

• Resulting algorithm is incomplete
– Increase the cutoff value
– Keep clauses from previous runs

cutoff

solution
clauses

new

Conclusions

• The ingredients for having an efficient SAT solver
– Mistakes are not a problem

◮ Learn from your conflicts
◮ ... and perform non-chronological backtracking
◮ Restart the search

– Be lazy!
◮ Lazy data structures
◮ Low-cost heuristics

Thank you!

	Motivation
	What is Boolean Satisfiability?
	SAT Algorithms
	Incomplete Algorithms
	Local Search

	Complete Algorithms
	Basic Rules
	Resolution
	Stålmarck's Method
	Recursive Learning
	Backtrack Search (DPLL)
	Conflict-Driven Clause Learning (CDCL)

