
Breaking Symmetries in SAT Matrix Models

Inês Lynce1 and Joao Marques-Silva2

1 IST/INESC-ID, Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

2 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

Abstract. Symmetry occurs naturally in many computational prob-
lems. The use of symmetry breaking techniques for solving search prob-
lems reduces the search space and therefore is expected to reduce the
search time. Recent advances in breaking symmetries in SAT models are
mainly focused on the identification of permutable variables via graph
automorphism. These symmetries are denoted as instance-dependent,
and although shown to be effective for different problem instances, the
advantages of their generalised use in SAT are far from clear. Indeed, in
many cases symmetry breaking predicates can introduce significant com-
putational overhead, rendering ineffective the use of symmetry breaking.
In contrast, in other domains, symmetry breaking is usually achieved by
identifying instance-independent symmetries, often with promising ex-
perimental results. This paper studies the use of instance-independent
symmetry breaking predicates in SAT. A concrete application is con-
sidered, and techniques for symmetry breaking in matrix models from
CP are used. Our results indicate that instance-independent symmetry
breaking predicates for matrix models can be significantly more effective
than instance-dependent symmetry breaking predicates.

1 Introduction

In the recent past, symmetry breaking has been proposed as a technique that may
be essential for solving hard computational problems. Indeed, successful results
have been reported in different areas, including satisfiability (SAT), constraint
programming (CP), planning and model checking. Nonetheless, whereas in most
areas symmetries are broken according to specific properties of each problem
instance, in Boolean satisfiability a more generic approach is often followed [1].
Instead of breaking symmetries when modelling a problem instance with SAT,
generic symmetry breaking tools read a CNF formula and output the given
formula extended with symmetry breaking clauses, which result from a graph
automorphism analysis.

State-of-the-art SAT solvers are currently able to deal with very large formulae
and to perform hundreds of thousands of propagations per second. Hence, one
may think that augmenting the formula with symmetry breaking clauses in a
preprocessing step does not represent a significant overhead to a SAT solver.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 22–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Breaking Symmetries in SAT Matrix Models 23

However, this is not the case for preprocessing techniques in general. Only specific
techniques applied to specific problems have been shown to be effective.

On the other hand, mainly due to the effectiveness of SAT solvers learning
techniques, modelling has not been much developed in SAT, at least when com-
pared with other areas such as CP. Jointly with dynamic heuristics, learning is
able to extend the formula in such a way that strategic resolution steps are per-
formed. So, it is a reasonable approach to let the SAT solver learn intelligently
rather than telling in advance what it should be able to learn during search. How-
ever, learning can hardly replace symmetry breaking predicates. For example,
symmetry breaking predicates may reduce the number of solutions and learn-
ing does not. This paper compares the use of generalised CNF-based symmetry
breaking predicates, also known as instance-dependent predicates, with the use
of specific symmetry breaking predicates, i.e. instance-independent predicates, in
the context of SAT matrix models1.

2 Symmetry Breaking in SAT

The first complete framework suggesting a symmetry extraction mechanism for
satisfiability based on a reduction to graph automorphism was proposed in [2].
This approach has been recently adapted and made practical for satisfiability in
shatter [1]. For single variable permutations, shatter generates CNF formu-
lae linear in the number of variables. In addition, shatter proposes a number
of optimisations to the implementation of the graph automorphism algorithm.
(Observe, however, that graph automorphism is believed not to be in P, even
though it is not known whether it is NP-complete.)

The same authors have compared the efficiency of breaking instance-dependent
symmetries against the efficiency of breaking instance-independent symmetries [7].
For the concrete problem of exact graph colouring, the use of instance-dependent
symmetries is significantly more efficient. Instance-dependent symmetries are
identified automatically via graph automorphism, whereas instance-independent
symmetries are specific to the problem and are usually identified manually at
the time the encoding is done. Before the existence of an efficient tool such as
shatter, the generation of effective instance-independent symmetries was stud-
ied for several classes of combinatorial objects [8]. However, this approach was
not evaluated against a generic one. Moreover, the use of symmetry breaking
predicates in local search consistently has a negative effect in local search al-
gorithms [6]. Interestingly, this observation has motivated an opposite strategy
when applying local search: maximising symmetry in the SAT model.

3 Symmetry Breaking in Matrix Models

Symmetry in matrix models is usually broken by using lexicographic constraints
[3]. If permutations in rows and/or columns can be made without affecting the

1 The paper follows the classification of predicates proposed in [1].

24 I. Lynce and J. Marques-Silva

1 2 3 4
2
3
4

2
2

2
2

2
2 2

2 2
2

2
22

2
2
2

1
1
1
1

1
1

1
1 1

1
1

1 1
1

1
1

3
3

3
3 3

3
3

3 3

3
3

3
3

3
3

34
4
4
4 4

4
4

4 4
4
4
4

4
4

4
4

Fig. 1. A 4x4 Latin square with the first row and column fixed and its 4 solutions

existence of solutions, then an ordering should be fixed to eliminate these sym-
metries. Although different orderings may be used, lexicographic ordering is
considered to be the most intuitive. The resulting predicates are not guaranteed
to eliminate all symmetries, since the problem instance may contain other sym-
metries. Also, ordering constraints do not break all symmetries when matrices
have both row and column symmetries [3]. Nevertheless, symmetries in matrix
models have the advantages of being easily identified and broken at a small cost.

Example 1. Consider a 4x4 Latin square, i.e. a 4x4 matrix to be filled with 4
different symbols in such a way that each symbol occurs exactly once in each row
and exactly once in each column. This problem has 576 solutions. Clearly, most
symmetries can be easily eliminated by forcing the first row and the first column
to be lexicographically ordered. Nonetheless, these constraints do not prevent
this problem from having more than one solution: there are still 4 possible so-
lutions. Figure 1 illustrates a 4x4 Latin square after adding the lexicographic
constraints and the four possible solutions. Shatter is able to identify further
symmetries such that only two of these solutions can be found.

We now focus on the SHIPs SAT model [4,5]. SHIPs is a SAT-based approach
for solving the problem of haplotype inference by pure parsimony (HIPP). (A
detailed description of SHIPs can be found in [4,5].) Given a set G of n genotypes,
each of length m, the haplotype inference problem consists in finding a set H
of 2 · n haplotypes, not necessarily different, such that for each genotype gi ∈ G
there is at least one pair of haplotypes (hj , hk), with hj and hk ∈ H such that
the pair (hj , hk) explains gi. The pure parsimony approach finds a solution that
minimises the total number of distinct haplotypes used.

The organisation of the SHIPs algorithm considers increasing values r of can-
didate haplotypes, with 1 ≤ r ≤ 2 · n, such that a solution is found when r
haplotypes suffice to explain the n genotypes. The SHIPs model [4,5] can be
described by the matrix formulation G = Sa · H ⊕ Sb · H , where G is a n × m
matrix describing the genotypes, H is a r × m matrix of haplotype variables,
Sa and Sb are n × r matrices of selector variables, and ⊕ is the explanation
operation. One of the contributions of the SHIPs model are the techniques for
breaking key symmetries in the problem formulation. If matrix H is interpreted
as a vector of strings of size m, H = [h1h2 . . . hr]T , then we can impose the con-
dition h1 < h2 < . . . < hr, i.e. the haplotypes are lexicographically sorted.An
additional form of symmetry is due to the S variables. If Sa = [sa

1 . . . sa
n]T and

Sb = [sb
1 . . . sb

n]T , then we can impose the condition sa
i ≤ sb

i , 1 ≤ i ≤ n, i.e. for

Breaking Symmetries in SAT Matrix Models 25

each genotype i, the strings representing the selector variables a and the selector
variables b are lexicographically ordered.

4 Experimental Results

This section provides empirical evidence that breaking instance-independent sym-
metry in SAT matrix models can be more effective than breaking instance-
dependent symmetries. Different encodings for the SHIPs matrix model are
evaluated. Also, due to the incremental approach implemented in SHIPs, both sat-
isfiable and unsatisfiable problem instances are obtained. Consider a solution with
size s: then iterations with r < s represent unsatisfiable instances, and the itera-
tion with r = s represents a satisfiable instance. A set of 1183 problem instances
obtained from http://www.stats.ox.ac.uk/∼marchini/phaseoff.html and
from [5] were evaluated. The results were obtained on an Intel Xeon 5160 (3.0GHz
with 4GB of RAM) and a timeout of 1000s.

From an initial universe of 1183 instances, we removed 348 instances with
equal computed lower and upper bounds [4]. Of the remaining instances, 134
are aborted when symmetry breaking is not used and 74 are aborted when
symmetry breaking is used. Moreover, the run times with symmetry breaking
are also consistently smaller. Figure 2 provides two plots comparing the effect
of breaking instance-independent symmetries in terms of the total CPU time
for unsatisfiable and satisfiable instances, respectively. Clearly, for unsatisfiable
instances it is always useful to break symmetries, whereas for satisfiable instances
it is useful in most cases. Next, we compare the use of shatter [1] on each set
of unsatisfiable and satisfiable instances. Shatter may be applied either to the
CNF formula resulting from the SHIPs model, for which instance-independent
symmetry breaking predicates have been included, or to the plain model, for
which no symmetries are broken. Figure 3 compares both approaches. Even

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

W
it
h
o
u
t

S
B

P

With SBP

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

W
it
h
o
u
t

S
B

P

With SBP

Fig. 2. CPU times with and without instance-independent symmetry breaking predi-
cates (SBP) on unsatisfiable and satisfiable instances

26 I. Lynce and J. Marques-Silva

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

Shatter

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

Shatter

Fig. 3. Shatter vs SHIPS+Shatter on unsatisfiable and satisfiable instances

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

SHIPs

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

SHIPs

Fig. 4. SHIPs vs SHIPS+Shatter on unsatisfiable and satisfiable instances

though shatter performs better on the SHIPs model rather than on the plain
model, the difference is not significant, in particular for satisfiable instances.

Finally, Figure 4 compares the use of instance-independent symmetry breaking
predicates (i.e. SHIPs) with the use of both instance-independent and instance-
dependent symmetry breaking predicates (i.e. SHIPs+Shatter) in terms of CPU
time. The use of instance-independent symmetry breaking predicates is consis-
tently more efficient than the use of both types of symmetry breaking predicates.
Moreover, Shatter in unable to break all the symmetries in the allowed CPU
time (1000s) for many instances. This is probably due to these instances having
many symmetries, which can be easily identified beforehand.

One additional question is: “If there was an oracle giving the CNF formula
computed by shatter what would be the SAT solver performance?” With this
purpose, the formula computed by shatter within 1000s was given to the SAT

Breaking Symmetries in SAT Matrix Models 27

solver. Then we compared the time required by SHIPs with the time required by
the SAT solver on the formula computed by shatter. If shatter is run on the
plain model, i.e. without symmetry breaking predicates, then the SAT solver
is able to solve more problem instances than using the plain model, but still
less 45 instances than SHIPs. Also, the instances not solved by SHIPs are also
not solved after using shatter. If shatter is run on the SHIPs model, which
includes symmetry breaking predicates, then exactly the same instances are not
solved. For the instances solved, the use of shatter yields a negligible speedup.

5 Conclusions and Future Work

Despite its impact in CP, symmetry breaking is seldom used in SAT. The main
reason is that symmetry breaking can be time-consuming and not always effective
in modern SAT solvers. This paper explores a different line of research, which has
been quite successful in CP: instead of considering instance-dependent symmetry
breaking, we propose problem-specific instance-independent symmetry breaking.
Clearly, this necessarily depends on the application domain. The paper focus on
symmetry breaking techniques for SAT matrix models, and more concretely for
the HIPP problem. The experimental results show that more careful modelling
of computational problems with SAT techniques, and exploring well-established
symmetry breaking techniques, can be a quite effective approach, and can signif-
icantly outperform existing instance-dependent symmetry breaking approaches.

References

1. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving difficult instances
in the presence of symmetry. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 22(9):1117–1137, 2003.

2. J. M. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning, 1996.

3. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In International Conference
on Principles and Practice of Constraint Programming (CP), 2002.

4. I. Lynce and J. Marques-Silva. Efficient haplotype inference with Boolean satisfia-
bility. In National Conference on Artificial Intelligence (AAAI), 2006.

5. I. Lynce and J. Marques-Silva. SAT in bioinformatics: Making the case with haplo-
type inference. In International Conference on Theory and Applications of Satisfi-
ability Testing (SAT), 2006.

6. S. Prestwich. First-solution search with symmetry breaking and implied constraints.
In CP Workshop on Modelling and Problem Formulation, 2001.

7. A. Ramani, I. L. Markov, K. A. Sakallah, and F. A. Aloul. Breaking instance-
independent symmetries in exact graph coloring. Journal of Artificial Intelligence
Research, 26:289–322, 2006.

8. I. Shlyakhter. Generating effective symmetry-breaking predicates for search prob-
lems. In LICS Workshop on Theory and Applications of Satisfiability Testing, 2001.

	Introduction
	Symmetry Breaking in SAT
	Symmetry Breaking in Matrix Models
	Experimental Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

