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Abstract

In the field of human genomics, the identification of genetic variations among human
beings has emerged as a critical issue. Identifying those variants represents an important
step towards improving prevention, diagnosis and treatment of disease.

Single Nucleotide Polymorphisms are the most common variations between human
beings. Hence, building a full haplotype map (which identify SNPs) of the human genome
has become an important goal in genomics. Since, in practice, genotype data rather
than haplotype data is available, a key computational problem has been the inference of
haplotypes from genotypes.

Some studies have shown that Haplotype Inference by Pure Parsimony (HIPP), i.e.
trying to minimize the number of required haplotypes to explain a given set of genotypes,
is an accurate approach to the problem. Several authors have studied the HIPP problem.
In particular, some integer programming (IP) approaches have been developed. In this
work, these IP formulations have been modified in order to be solved using pseudo-boolean
ILP solvers. Experimental results have shown that PBO approaches are not only much
more efficient than theirs IP counterparts, but also competitive with SAT-based models
that represent the state of the art.
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Chapter 1

Introduction

Genetic differences between individuals have been an important object of study. For
genes associated with diseases, understanding human genetic variations can revolutionize
medicine with an early detection and treatment of illnesses, such as diabetes, cancer,
stroke, heart disease, depression and asthma.

Single Nucleotide Polymorphisms (SNPs), sites in the genome where DNA sequences
of many individuals differ by a single base, are the most common variations between
human beings. Hence, a fundamental task is to identify and study haplotypes, the set
of SNPs found to be statistically associated. However, due to technological limitations,
haplotypes are difficult to obtain. For a DNA region, each person has two haplotypes,
each one inherited from one parent. The conflated data of these two inherited haplotypes
is called genotype and is, in practice, simpler to obtain than the haplotypes themselves.

Haplotype Inference (HI), the process of going from genotypes to haplotypes, is the
object of this work. In particular, we focus in the Pure Parsimony approach to the HI
problem (HIPP), under the assumption that the number of haplotypes in a population is
much smaller than the number of possible genotypes.

Several authors have developed work using the Haplotype Inference by Pure Parsimony
approach. In 2003, Gusfield [11] proposed an integer linear programming (IP) formulation
called RTIP. However, this formulation grows exponentially on the size of the problem.
Although it solves very spidly small-sized instances, due to memory limitations, it is in-
capable of solving real problem instances, which could be very large. Lancia et al. [17]
proved that the HIPP problem is APX-hard and proposed a polynomial-sized integer lin-
ear program for the HIPP problem, but did not test it. Still in 2003, a branch and bound
algorithm, Hapar, was proposed by Wang and Lu [31] . In 2004, Brown and Harrower [2]
proposed a new integer linear programming formulation, PolyIP, that is polynomial on
the size of the instance. Also Brown and Harrower [3], in 2006, suggested an integer pro-
gramming which is a hybrid between RTIP and PolyIP and so called HybridIP. Recently,
in 2006, a very competitive SAT-based approach, proposed by Lynce and Marques-Silva,
named SHIPs [20], has been created. In this project, we emerged with a new idea to solve
the HIPP problem, which shows itself to be very competitive and robust.
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1.1 Contributions

In this thesis, three new approaches to Haplotype Inference by Pure Parsimony are in-
troduced. Based on existing integer linear programming formulations (RTIP, PolyIP and
HybridIP), we formulate three Pseudo-Boolean Optimization (PBO) models to the HIPP
problem (RTPB, PolyPB and HybridPB). The major innovation here, is that, instead of
using IP tools to solve the problem, we apply modern Pseudo-Boolean solvers. The most
used solver (MINISAT+) translate problem instances into SAT and then solve them.

The goal of this project is twofold. The first is to improve the efficiency of RTIP,
PolyIP and HybridIP. The second is to verify whether the success of SHIPs is due to
the use of SAT techniques or to the formulation itself. The first target was reached with
success: although the PBO solvers used seem to have some memory problems with the
exponential-sized RTIP, the pseudo-boolean approach is more appropriate to solve at least
Poly and Hybrid formulations. The efficiency of these two last models is remarkable. Not
only can we improve the required resolution time but also are we able to solve much more
instances in a reasonable time. PBO models were also tested against the branch-and-
bound approach, Hapar. Again, we show that our models are more efficient. Finally,
PolyPB and HybridPB are compared with SHIPs. Experimental results show that PBO
approaches are competitive with SHIPs. In fact, although PolyPB and HybridPB need
more time to solve most part of the instances, PBO approaches are able to solve a larger
set of hard instances in a reasonable time. This means that PBO models are more robust
than SHIPs. As a result, we conclude that SAT-based modern solvers fit very well the
resolution of the HIPP problem. In particular, PBO approaches are promising, pointing
for the need for further research in this field.

This final degree project involves a deep understanding of the Haplotype Inference
problem, and, in particular, of the Pure Parsimony approach. In order to understand
state-of-the-art formulations to the problem, several optimization methods and solvers
have been studied. A number of techniques are directly relevant. Among these, Integer
Programming, Satisfiability and, more deeply, Pseudo-Boolean Optimization have been
explored. The three IP formulations were implemented in order to be applied to PBO
solvers. Finally, all experimental results, data treatment, analysis and comparison of
the PBO approaches against the existing solvers were obtained during the course of this
project.
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1.2 Organization

This thesis compiles previous work about the Haplotype Inference by Pure Parsimony
(HIPP) and introduces an innovation which gives very competitive results.

In Chapter 2 we make an overview of celular biology, introduce genetic polymor-
phisms, haplotypes and, finally, explain the Haplotype Inference (HI) problem. Chapter
3 abstracts from biology, as much as possible, to explain the mathematical formulation of
the HI problem and the algorithmic models proposed to solve the problem. In particular,
we focus on the HIPP formulation and give some important mathematical results of the
problem.

HIPP formulations presented in this project use some techniques of discrete optimiza-
tion which represent rich fields of research because of their importance in several contexts.
Hence, Chapter 4 is a brief overview of Integer Linear Programming (IP), Boolean Sat-
isfiability (SAT) and, a hybrid between these, Pseudo-Boolean Optimization (PBO). We
also present briefly some of the software packages used to solve these problems.

In Chapter 5 we describe all existent Haplotype Inference formulations using the Pure
Parsimony criterion. We review three IP models: RTIP, PolyIP and HybridIP. We also
describe the branch and bound algorithm, HAPAR, and the SAT-based approach, SHIPs.
Finally, we introduce the three new PBO approaches based on the IP models.

Finally, in Chapter 6 we conduct an evaluation of the PBO, IP and SAT approaches.
Experiments show that, the use of PBO in this problem, represents a great improvement
over IP models and, moreover, is also competitive against the SAT-based approach SHIPs.
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Chapter 2

Biological Problem

2.1 DNA

DNA was discovered in 1869 by Johann Miescher when he isolated the substance from
the nucleus of white blood cells. However, for a long time, little attention was paid to
DNA; biologists did not believe that genes could be hidden in such a simple molecule.
DNA, deozyribonucleic acid, is a molecule consisting of a sugar, a phosfate group and one
of four nitrogenous bases: A(adenine), T(thymine), G(guanine), or C(cytosine). Only in
1944, Oswald Avery [1] and colleagues proved that indeed DNA is the stand of genetic
information and the interest in this molecule grew. DNA has a double-helical structure
as conjectured in 1953 by Watson and Crick [32]. DNA has the autoreplication property
and, furthermore, DNA is responsible for the protein synthesis.

The genetic information of a human being define his traits, such as hair color, eye
color, susceptibility to diseases. These traits are caused by variations in genes. Despite
the great similarity between our genes, no two individuals are quite the same. The human
genome has, roughly, 3 billion nucleotides but about 99,9% of them are equal between
all human beings. However, this still leaves room to 43:909-000 different genomes, which is
enough for a great diversity. In particular, these differences explain the genetic variations
that influence how people differ in their risk of disease or their response to drugs.

2.2 Genetic Polymorphisms

We call genetic polymorphism to a difference in DNA sequence among individuals, groups
or populations. Single Nucleotide Polymorphisms, sequence repeats, insertions, deletions
and recombinations are kinds of polymorphisms in genes and give rise to the different
human traits. Genetic polymorphisms may be the result of chance processes, or may have
been induced by external agents, such as radiations or viruses. In particular, a genetic
mutation is a polymorphism which is not present in most individuals and either has been
associated with diseases or has resulted from external agents.

7
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2.2.1 SNPs

In this work, we will focus on single nucleotide polymorphisms, SNPs (“snips”), which are
single nucleotide sites of the human genome that show a significant variability within a
population. About 90% of all human polymorphisms are of this simple form.

There are two different types of nucleotide mutations resulting in SNPs: a transition
substitution which occurs between purines (A, G) (see Figure 2.1) or between pyrimidines
(C, T); and a transversion substitution between a purine and a pyrimidine.

o LAGE.
W ..

Figure 2.1: A part of two chromosomes showing a SNP, result of a transition substitution.
Both the A and G alleles are shown.

The probability of a given nucleotide site to be a SNP is approximately 1/1350 (see
Figure 2.2). However, SNPs are not uniformly distributed over the entire human genome,
neither over all chromosomes and neither within a single chromosome: coding regions
have three times more SNPs than non-coding regions; sex chromosomes have much lower
variations; within a single chromosome, SNPs can be concentrated about a specific region,
usually implying a region of medical or research interest.

AT AT TR T T T T T T T T AT T T G T T T AL TTC AATTRATTTATT TATTATTAATATTRTTATTITTTIG
AGA G RAATTT AL T TG TG CAA L TR AG TS AT G AL G TRATC TEAGCTCAC TRCACAC TC LG TTTCLTRE
T AR G A T T oG T Cs TEAG L C TG TOAG TAGE T GA LT ACA G TCACACAC L ACCACEOC LG RO TARTTTI TG
TATTT T AL T AGAG T TG GG T T CACC ATG T TG OO CAGAG TH 6T C TG RAC TG TLACE T IO TER TC LG L CAGEE TET
GEET o hAsa AL TG AT TACAG GO G T GAGE CA LG TOGGL O TT T GOAT CART T TE TACAGC T TETT TTCTT
THEL TRGACTT TACAL BT TTACE TTG TIC TG CETT CAGATATT TRT TG ‘ B TG THRCCAGTAGE ThAAS
AT T AT T T T AT AL T C TG TG T T AT T TETTATE TRG AT ﬁ ETCTTCGTRATIGLATT
CT AT LA AL T TAG CAT G TGS TAACARC TCTGLCT ST GE TITOS C AG G L T GOLEGT TS T TEATRGE
TEAGAAAAA TG AT T oI ARG TAAAT TAT TAAAGATT TTARATATAGEAA AR ARG TAAG CAAAGATAAS GAACAAARA
GOAAAGA A A TR TATTCTAA T o AT TATT TATTATAC AR TT AR GRARTTTOEA AL L TTTAGATTACAL TROTTTTARES
AT AR T T AT AL T T T TTAC T TT TA A A AR TACATG THT TAL AATT TTERGARG AL TAGT AACTCAC DO oA
CRGTGTAATGTEAMTATETCACTTACTAGA GHAL A AR GG CACTIGAALAAC ATC TE TAARC CATATAARARACAATTA
CA TG AT AA T A TE AR A A G RRA TT T T TTAGAAARCA T TACCAGEOOT AR TRALAAAC TAGRGU CRUATGTCAT
TR T L T G G T TG T GG A AR T T TAGAG TTATA IT TE T ACATAGT AT GLAR AL TERE LS CTAGTITATE
AR T AT T AT T T TAARAG T L T A A LA T SO TA GG TATAG G T ARG TG TEC TOC TR C AR TG TAT T GL AGA TI TG G
COAGATCCAGCATAGGGETATGTTTGCCATT TACAAAC T T TATOTC TTARGA GAGDARAT AT AG MG CAASACAGT
GEATGRETRGAGAGAGAAA GO TRATAC AAATATARATGASA L AATAATTG GAAAMATTGAGARA CTACTOATITTE ThA,
ATTACT CATGTATITTL. TAGAATTTAAGTETITTAATTT TTGAT AR A TCCoAATG TAATAT AAGATALGTATT AG TAAT
GO T AT s AR T A AT TG T LA T A T AATAT TSAT TTT CATAGT CoAR GRAATAASA T ARACC TT G RGAT AT TGTIG
AT AT T T O A G T T A G e R A G A A T LT T T TR T LA TC TE TC T T IO CAC T ARG R AAGT TCAACTATT
AATTTAGOCACAT A AATAATTAL TCRATTE TAAAATRCLAAASAGG TAATTT AL GAGALT TALALL TRALAAGTTTA
AGATAGTCACACTRASCTATATTAALAAR TECAC A THETTOGAACTAGG CETTATAT TAAAGAGGLTAALAATTG
CAMTAAGRCOACAGOCTTT. PR T T TAAA TRT GAAA GG TOAAACTAGAA T AL TARAATCCTATAALTTTAA
ATCMWMBN TTAAAGTTAATATACAAGAATATEGTAGS CTE A TCTARTRAACATATAGT
AR AT AAARE ATAS TATT T i S A T L T G OaAAR TE T T T TG C AL O TG AARACAC TATAT T TUARACTATTT
TIAABATGCAGTGATACTAGAAATATT TTAGRATCATATGTA

Figure 2.2: When DNA sequences on a part of chromosome 7 from two random individuals
are compared, then two single nucleotide polymorphisms (SNPs) occur in about 2.200
nucleotides

A SNP in a coding region may be classified into two classes depending on the different
effects on the resulting protein. A synonymous is a silent mutation where the exchange
of the aminoacid does not change the protein it produces; this happens due to redundancy
in the genetic code. On the other hand, a non-synonymous substitution results in an
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alteration of the encoded aminoacid. A missense mutation changes the protein by causing
a change of codon; a nonsense mutation results in a misplaced termination codon. One
half of all coding sequence SNPs result in non-synonymous codon changes.

As long as genomic variation is responsible for the diversity in the human species,
the study of SNPs is of great importance in discovering genes responsible for genetic
diseases and helping to prevent them. There are, already, over one million SNPs identified
using some biochemical reactions that isolate the precise location of a suspected SNP and
determine its identity, with the help of the DNA polymerase enzyme.

2.3 Haplotypes

There is some ambiguity in the definition of a haplotype. A haplotype can be the genetic
constitution of an individual chromosome, can refer to only one locus or to the entire
genome. Or, by the definition preferred in this work, a haplotype is the set of single
nucleotide polymorphisms found to be statistically associated on a single chromatin and
that tend to be inherit together, i.e. not easily separable by recombination. Nonetheless,
by the context, it is easy to understand the corresponding definition, since they are closely
related.

Table 2.1 gives twelve haplotypes (sets of SNPs) of the S2AR genes, a real example
from the f-Adrenergic receptors gene [6]. The nucleotide number refers to the position
of the site, relative to the first nucleotide of the starting codon (position 1). The allele
represents the two nucleotide possibilities at each SNP site: the first nucleotide is the wild
type, while the second one is the mutant.

Table 2.1: Haplotypes of the 5,AR genes.

Nucleotide -1023 -709 -654 -468 -406 -367 -47 -20 46 79 252 491 523
Alleles G/A C/A G/A C/G C/T T/C T/C T/C G/A C/G G/A C/T CJA

|
=
QQ

g
FPOQFQOOQNQQ
caacacacacaacaaraan
QOQQFQQAFFEFQ0
Qaacacacacaacaacaqa
caasacacaacaacacaa
Gl
HHEHAARBAEARHAQ
HHEHHERBHEPEa8HAQ
FOQFEFQQQEEQ
A accccaA
QAFQAFEFFOQQQR
caacacaarBaaaan
aaaarrraaaaa

2.3.1 The Origins of Haplotypes

Humans are diploid organisms, i.e. our genome contains pairs of chromosomes, with one
inherited from the father and the other inherited from the mother. However, chromosomes
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do not pass from generation to generation as identical copies. Rather, chromosomes pairs
suffer a process of recombination. This means that the two chromosomes of a pair exchange
pieces to build another chromosome which is passed on to the next generation. Although
segments of chromosomes are recombined over the course of many generations, there are
DNA sequences which are shared by multiple individuals (see Figure 2.3). These segments
which have not been broken up by recombination are the haplotypes.

el T8 EINE B

T R T
T

Figure 2.3: This diagram shows two ancestral chromosomes being recombined over many
generations to yield new chromosomes. If the genetic variant marked by A increases the
risk of a certain disease, the two individuals who have inherit this variant are in risk.
Adjacent to the variant A, at the same haplotype, there are many SNPs that can be used
to identify the location of the variant.

Genetic and archaeological evidences indicate that humans are descendant of ances-
tors who lived in Africa about 150.000 years ago. As we are a relatively young species,
most of the variation on any current human population comes from the ancestral human
population. As humans migrated out of Africa, they carried with them most but not all of
the genetic variation that existed in the ancestral population. Because recombination has
occured more times in Africa than outside Africa, African haplotypes tend to be longer
than the other haplotypes. As humans spread all over the world, random chance, natural
selection and other genetic mechanisms have given rise to different frequencies of haplo-
types in different populations, mostly in those that are widely separated and unlikely to
exchange DNA through mating. On the other hand, mutations have created new haplo-
types which have not had enough time to spread widely beyond the population, and so
appear more frequently in the originating region. Hence, isolated populations, like some
Indian tribes, can represent an important object of study.

2.3.2 Linkage Disequilibrium

Haplotypes may contain alleles in Linkage Disequilibrium (LD), i.e. it may exist
a non-random association between alleles at different loci, not necessarily on the same
chromosome. LD describes a situation in which some combinations of alleles or genetic
markers occur more or less frequently in a population than would be expected from a
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random formation of haplotypes based on alleles frequencies. More exactly, we have LD
when there are dependence between allele frequencies at separate loci. In the extreme
case, an allele found at one locus predicts which allele will be found at the other. In fact,
a chromosome region may contain many SNPs, but only a few “tag” SNPs are sufficient
to identify (tag) each of the haplotypes in question (see Figure 2.4). These SNPs suffice
to provide most of the information on the pattern of genetic variation in the region.

@ b e
s fa [a
fs
@le |
2l

Figure 2.4: A chromosome region with only the SNPs shown. Three haplotypes are shown.
The two SNPs in color are sufficient to identify (tag) each of the three haplotypes. For
example, if a chromosome has alleles A and T at these two tag SNPs, then it has the first
haplotype.

With increasing meiotic events, recombination between loci should lead alleles to equi-
librium. However, this will take longer for alleles at the same haplotype, due to reduced
recombination.



12 CHAPTER 2. BIOLOGICAL PROBLEM

2.4 Haplotype Inference

The Human genome is constituted by 23 pairs of chromosomes, with one element of each
pair inherited from each parent. The conflated data of both chromosomes on a pair is
the genotype, while the genetic information of a single chromosome is the haplotype.
This means that the genotype is the mixed data of two haplotypes. A genotype is not
always equal to the respective haplotypes due to SNPs. A locus is homozygous (or non-
ambiguous) if the two haplotypes have the same allele at this site and so does the genotype.
However, if a locus is heterozygous, then the two haplotypes are different at this position
and the genotype is ambiguous.

To understand the genetic contribution to diseases and their origins, it is often more
informative to have haplotype information rather than genotype data. However, it is not
easy to examine separately copies of chromosomes, i.e. to get the haplotype data, since
only genotype information is obtained when DNA is analyzed using currently available
techniques. The challenge is to infer haplotype data from genotype data. This process is
called haplotype inference.

Usually, and from now on in this thesis, we will consider that the underlying data that
forms a haplotype is reduced to the single nucleotide polymorphisms in the region. For
a SNP, the minority of the population has one nucleotide at this site (the least common
allele) while the majority of the population has another nucleotide (the most frequent
allele). Rarely occur more than two nucleotides in one site and this case will not be
considered in this work. This simplification is justified by the “infinite sites” hypotesis,
analysed in Section 2.5.

2.4.1 International HapMap Project

The International HapMap Project (www.hapmap.org) results from a collaboration among
scientists from Japan, UK, Canada, China, Nigeria and USA, with the goal of developing
a haplotype map of the human genome, the HapMap. This Project, which started in
2002, has the purpose of identifying which 200.000 to 1 million tag SNPs (see Figure 2.5)
provides almost as much mapping information as the total 10 million SNPs. This sub-
stantial reduction of the problem, will help researchers finding the haplotypes responsible
for diseases [30].

Although the majority of common haplotypes appear in all human populations, the
frequencies of occurrence differ. Hence, diversity in the samples of individuals chosen
is required. On the other hand, note that if a person is heterozygotic at a position
where both his parents are homozygotic but with different alleles, it is trivial to know
the origin of each allele in the individual. This last fact could improve the discovery of
haplotypes. The HapMap Project is using samples from 270 people: from the Yoruba
people in Ibadan, Nigeria (30 both-parent-and-adult-child trios), Japanese in Tokyo (45
unrelated individuals), Han Chinese in Beijing (45 unrelated individuals) and 30 trios
from USA (residents with ancestry from Northern and Western Europe).
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Figure 2.5: The construction of the HapMap project occurs in three steps: a) single nu-
cleotide polymorphisms (SNPs) are identified in DNA samples from multiple individuals,
b) adjacent SNPs that are inherit together are compiled into haplotypes, c¢) tag SNPs,
that uniquely identify those haplotypes, are identified. By genotyping the three tag SNPs
shown in this figure, researchers can identify which of the four haplotypes shown here are
present in each individual.

2.5 Genetic Models to Haplotype Inference

Without any genetic model or assumption it would be impossible to create algorithms to
solve the haplotype inference problem or to assess the biological fidelity of any proposed
solution. There are two major approaches to solve the inference problem: statistical
methods and combinatorial methods.

Statistical methods are usually based on an explicit model of haplotype evolution; the
inference problem is then cast as a maximum-likelihood or a Bayesian inference problem.
The standard and reasonable assumption one typically consider is that the process of
mating among individuals is completely random. Under this assumption, an explicit
likelihood function can the derived and the goal is to determine its maximum value.
This represents the main problem in practice. Once this value is determined, one can
estimate the haplotype frequencies underlying the observed genotype frequencies. With
the haplotype frequencies, one can estimate the most probable pair of haplotypes to justify
a given genotype. The likelihood approach is, in fact, a special case of the Bayesian-
inference problem, which is the process used in well known programs such as Phase and
Haplotyper. However, in this project, we will not go deep into the statistical methods;
for more information, see [23] or [28], amongst others.

Given some biological assumptions, combinatorial approaches often state an explicit
objective function and try to optimize it or use some inference rules in order to obtain
a solution to the inference problem. The most well known assumption used is the “in-
finite sites” model. The “infinite sites” hypothesis states that the number of sites on a
genome is so large that the probability of occurring more than one mutation at one site
is infinitely small and, therefore, we can assume that it has never occurred in a single
species. Although this assumption is almost universally made and empirical data often
agrees with this assumption, this is not always true. These cases represent exception and
are somewhat difficult to handle.

Several combinatorial models have been proposed to solve the haplotype inference:
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e CLARK’S RULE

In 1990 [4], Clark proposed a common sense approach to haplotyping, which became
known as Clark’s Rule.

Under this model, haplotypes in the solution are obtained by successively applying
an inference rule, explained in Chapter 3, page 18.

Clark’s method is based in the “infinite sites” genetic model.

PERFECT PHYLOGENY (or Coalescent Model)

In 2002, Gusfield [10], introduced the Perfect Phylogeny Haplotyping (PPH) prob-
lem.

He was motivated by studies on the haplotype structure, which show that human
DNA can be partitioned into long blocks where genetic recombination has been
rare. Indeed, Perfect Phylogeny Haplotyping is based on the “no-recombination in
long blocks” assumption which assures that a haplotype of an individual is a copy
of one of the haplotypes in one of his parents, and then, the backwards history of
a single haplotype is just a path. The “infinite sites” assumption also represents
an important role in this model. Under these assumptions, the coalescent model
describes the evolutionary history of 2n haplotypes as a tree with 2n leaves, where
each of the m sites labels exactly one edge of the tree (see Chapter 3, page 17).

The PPH problem can be solved in polynomial time by reducing it to a graph
realization problem.

PURE PARSIMONY

The Pure Parsimony criteria was first proposed by Earl Hubbell in 2002, who also
proved that this problem is NP-hard [12].

Extending Clark’s idea, this approach consists in finding a solution to the haplotype
inference problem that minimizes the total number of distinct haplotypes used.

The Pure Parsimony model is consistent with biological facts. The number of combi-
natorially possible haplotypes is vastly bigger than the number of distinct haplotypes
expected and observed. The fact is explained by the small mutation rate at each
site (“infinite sites” assumption) and by the fact that that the recombination rates
are low (but not necessarily inexistent as in PPH) on the sequence that constitutes
a haplotype. Furthermore, Clark’s method seems to give a more realistic solution
when it selects less haplotypes [4].

Pure Parsimony is the core of this project and will be explained in detail in the next
chapters.



Chapter 3

Mathematical Formulation of
Haplotype Inference

3.1 Basic Definitions

We represent each haplotype by an element of {0, 1}™, m € N. Each haplotype is therefore
a binary vector where each position represents a SNP. At each site, 0 represents the wild
type allele, while 1 represents the mutant allele.

Each genotype is represented by an element of X™ where ¥ = {0,1,2}, i.e a vector
with 0, 1 and 2, where each position represents a SNP. We use 0 (1) when the site is
homozygous with value 0 (1), i.e. 0 (1) is inherited from both parents. The value 2
corresponds to a heterozygous site, when different nucleotides were obtained from each
parent.

Definition 3.1.1 Consider the set ¥ = {0, 1,2}.

A genotype g is a vector in ¥, m € IN.

A haplotype h is a binary vector, i.e. an element of {0,1}™, m € N.

A site of g (h) is a component of the vector g (h).

A site of g, glj] (1 < j < m), is homozygous (or non ambiguous) if g[j] = 0 or
glj] = 1. Otherwise, g[j| = 2, and the site is heterozygous (or ambiguous).

Definition 3.1.2 Let hy and hy be two haplotypes of the same size m.
We define their sum' g = hy @ hy as the following genotype with size m:

1= {40 G 1

We say that a genotype g is resolved (or explained) by a pair of haplotypes {hi, ha} if
g = h1 @ hy. In this case, we say that hy is the hy conjugate with respect to g. Note that,
once you have g and hy, ho can be uniquely determined.

If a genotype ¢' has at least m — 1 homozygous sites, then it is said that the genotype
is resolved. In this case, there are only two haplotypes by, hl, (not necessarily different)
such that ¢' = h' & h,.

INote that this operation is commutative.

15
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Example 3.1.3 For instance, hy = 0100112 and hy = 110101 are two haplotypes with 6
sites.

Their sum s the 6-site genotype g = hy @ hy = 210221.

We can say that g is resolved (or explained) by hy and hs.

For instance, genotype g = 02101 is resolved because the haplotype explaining pair
must be 00101/01101. However, usually, genotypes have more than one ambiguous sites
and many pairs could possibly explain them. In general, if the genotype has h heterozy-
gous sites, there are 2"~! possible parent pairs that could explain it. For example, geno-
type 002122 has 2>~! = 4 possibilities: 000100/001111; 001100/000111; 000110/001101;
001110/000101.

Definition 3.1.4 Two genotypes, g1 and go, are compatible if g1[j] = g2[j] whenever both
g1[j] and go[j] are non ambiguous sites. Alternatively, g1 and go are compatible if for
every j =1,...,m g1 + g2 # 1. Otherwise, they are incompatible.

A haplotype h is compatible with a genotype g if hlj| = g[j] whenever g[j] is a non
ambiguous site.

A population is a family G = {g¢1,..., g} of n genotypes, on m sites. Moreover, G is
an n X m matrix, where each row is a m-site genotype. A set H of haplotypes ezplains a
population G if for every g € G there exists hy, hy € H such that g = hy @ ho.

The Haplotype Inference problem can be defined as:

Problem 3.1.5 Haplotype Inference Problem

Given a family G of genotypes, find a set of haplotypes H that explains G and a
relation between elements of G and H, such that each g € G corresponds to two haplotypes
hi,hy € H (not necessarily distinct) and g = hy @ hs.

Without any restriction, this problem seems trivial to solve. However, remember that
we are trying to solve a biological problem and therefore, to achieve biological relevance,
several limitations need to be imposed on the solutions.

ZNotation: we write 010011 to represent vectors instead of (0,1,0,0,1,1).



3.2. COMBINATORIAL METHODS FOR HAPLOTYPE INFERENCE 17

3.2 Combinatorial Methods for Haplotype Inference

This section will present three combinatorial approaches for the Haplotype Inference prob-
lem. The third model, Pure Parsimony, is the main object of this project and will be
studied in detail in Chapter 5.

3.2.1 Perfect Phylogeny Haplotyping or Coalescent Model

This model, first presented by Gusfield in 2002 [10], represents the evolutionary history
of haplotypes as a directed, acyclic graph, where the lengths of the edges represent the
passage in time (in number of generations).

This model is based on two assumptions: “no-recombination in long blocks” [13] and
“Infinite sites” [29] model. Note that in the absence of recombination, each haplotype
sequence has a single ancestor in the previous generation. Under the “no-recombination in
long blocks” assumption, each haplotype is passed on through generations intact. Then,
the backwards history of a block is not affected by recombination, i.e. a haplotype is
just a path through generations. It does not matter whether an individual has two
parents, or whether each of his parents has two haplotypes. Another important element
in the coalescent model is the “infinite sites” assumption. This means that SNPs are so
sparse relative to the mutation rate that, in the human history, at most one mutation has
occurred at any site.

Problem 3.2.1 The Perfect Phylogeny Haplotype(PPH) Problem
Given a family G of genotypes, find a solution to the Haplotype Inference Problem
such that the set of haplotypes, H, satisfies a perfect phylogeny.

Definition 3.2.2 Perfect Phylogeny
Let Hopyrm be a 0-1 matriz with 2n rows and m columns. A perfect phylogeny for H
s a rooted tree T with exactly 2n leaves that obeys the following properties:

1. Each of the 2n rows labels exactly one leaf of T.
Each of the m columns labels exactly one edge of T.

FEvery interior edge (one not touching a leaf) of T is labeled by at least one column.

For any row i, the columns that label the edges along the unique path from the root
to leaf i specify the columns of H that have a value of one in row i in H. In other
words, that path is a compact representation of the row 1.

Theorem 3.2.3 Classical Theorem of Perfect Phylogeny

A binary matriz H has a perfect phylogeny if and only if for each pair of columns,
there are no three rows with values 0,1; 1,0; and 1,1 in those two columns. Moreover,
wn this case, the perfect phylogeny for H is unique if and only if the columns of H are
distinct.

Example 3.2.4 Consider the family of genotypes G = {22,02,10}. We have two solu-
tions for the haplotype inference problem H, = {10,01, 01,00, 10,10} or H, = {00, 11,00, 01, 10, 10}.
However, only H, satisfies a perfect phylogeny.
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3.2.2 Clark’s Method

Under this model, haplotypes in the solution are obtained successively applying the fol-
lowing algorithm.

First identify all genotypes in G with zero or one ambiguous sites and resolve them
in the only way possible, building the initial determined haplotypes, and create the set of
determined haplotypes, H, with them. Genotypes with zero or one ambiguous sites are
considered resolved and removed from (. Then, successively, apply the inference rule:

Definition 3.2.5 Clark’s Inference Rule

If you can resolve a genotype g € G using a haplotype pair {h,h'}, where h € H
(determined haplotype) and h' is its conjugate with respect to g, then consider g resolved
with h and ', add b’ to the set H of determined haplotypes and remove g from G.

The algorithm finishes when all genotypes have been resolved or no further genotypes
can be resolved by applying the Inference Rule. In this last case, we say that the algo-
rithm left orphan genotypes.

Clark’s method is a non-completely specified algorithm to solve the HI problem: for
an ambiguous genotype we could have several choices for the determined haplotype and,
consequently, for the explaining haplotype pair. These choices can constrain future choices
as the set of determined haplotypes become different. Then, different choices lead to
different solutions. Furthermore, while a choice can resolve all genotypes, another may
leave ambiguous genotypes that cannot be resolved (orphans).

Some studies have been made in order to decide which are the right choices [24]. Clark
suggested to run the algorithm several times with different genotype orders and to choose
the solution that resolve more genotypes (local inference method). However, in general,
only a tiny number of possibilities can be tried. This leads to the Maximum Resolution
Problem: given a set of genotypes, select the execution that maximizes the number of
ambiguous genotypes that can be resolved by successive application of Clark’s Inference
Rule. This problem is shown to be NP-hard [9].

Several alternative variations were analysed [24] and the consensus solution was pro-
posed as a good method to find the best resolution. After running the algorithm several
times, the authors suggested to select solutions using the fewest or close to the fewest
number of distinct haplotypes. From this set of solutions, record the haplotype pair that
was most commonly used to explain each genotype g. The set of those haplotypes is the
consensus solution, which seems to have higher accuracy than other solutions.

3.2.3 Pure Parsimony

The Haplotype Inference by Pure Parsimony (HIPP) problem can be mathematically
formulated as follows:

Problem 3.2.6 Given a family G of genotypes, find a minimum-cardinality set of hap-
lotypes H that explain G.

Note that the solution to the HIPP problem may not be unique.
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Example 3.2.7 Consider the set of genotypes G = {02120,22110,20120}. There are
HI solutions for this set that use five haplotypes, but H; = {00100,01110,10110} and
H, = {00110,01100, 10100} are two HIPP solutions with only three distinct haplotypes.

Complexity
Theorem 3.2.8 The Haplotype Inference by Pure Parsimony problem is APX-hard [17].
Definition 3.2.9 A problem is APX-hard if it is NP-hard and there is a constant value

0 below which it is impossible to approximate the problem in polynomial time, unless
P=NP?.

The proof of the APX-hardness of the HIPP [17] is done by reducing of the NODE-
COVER * problem, which is known to be APX-hard, to the HIPP problem.

3Proving that P = NP or that P # NP is an open problem, although it is widely believed that it is
unlikely that P = NP

4Given as input an undirected graph G = (V, E), we are asked to find a node cover X C V having the
smallest possible cardinality. A node cover is a vertex-set X C V such that every edge in E has at least
one endpoint in X.
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3.3 Lower and Upper Bounds to Pure Parsimony

The Pure Parsimony approach searches a solution to the HI problem that minimizes the
number of haplotypes used to explain the given genotypes. In this section, we investigate
upper and lower bounds to this number, denoted by OPT (number of haplotypes on the
optimal solution).

The following results, published by Lancia et al. and Lynce et al. [17, 20], are not only
theoretically important, but also useful in practice, when applied to some HIPP resolution
methods.

In the following, let G be the set of genotypes we want to explain and n = |G|.

Trivial lower and upper bounds to OPT are, respectively, 1 and 2n.

Proposition 3.3.1 Let G be a nonempty population. Then, there exists H that explains
G with 1 < |H| < 2G|, i.e.

1 < OPT < 2n.

Proof 3.3.2 For a m-site genotype g € G, let hy be the haplotype whose sites are 1 when-
ever g is 1 and 0 in all other positions. Let hi[j] be 0 whenever g[j] = 0 and 1 otherwise.
Hence, g = hy @ hy. It is straightforward that at the most 2n distinct haplotypes are
required to explain g.

Proposition 3.3.3 Assume that G is a population such that |G| =n > 2, and each g is
unique in G. Suppose H explains G. Then |H| > /2n. In particular, OPT > /2n.

Proof 3.3.4 Suppose H explains G and each g is unique in G. Then, for each g € G we
can associate a different pair of haplotypes. Hence, n < (“;I') = (|H|(|H| —1))/2, which
implies |H| > v/2n.

3.3.1 Clique-Based Bounding

The latest bounds considered are still very loose in general. We know that the HIPP
problem is APX-hard, hence it is not possible to find bounds that are always tight.
Anyway, better bounds were studied, because even though they are not very tight, some
approaches (e.g. SHIPs) work very well with them in practice.

We begin presenting some definitions of graph theory.

Definition 3.3.5 Let G = (V, E) be a graph. A clique in G is a subgraph G' = (V' E')
of G such that if vi,vo € V' then vivy € E'.

A maximal clique of G is a clique of G with a maximum number of vertices.

Definition 3.3.6 Given a family G of genotypes, we define the incompatibility graph I
as the graph whose vertices are the genotypes and has an edge between two vertices if the
respective genotypes are incompatible, i.e. I = (Vi, Er) where Vi = G and E; = {g.g; :
9i, g5 € G are incompatible}.
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Proposition 3.3.7 Suppose I is an incompatibility graph with o clique with size k (i.e.
with k wvertices). Then, the minimum number of required haplotypes, OPT, is at least
2k — o, where o is the number of genotypes in the clique that are homozygous in all sites.

Proof 3.3.8 First we prove the following lemma:

Lemma 3.3.9 Let H; and H, be the sets of haplotypes compatible with g1 and g, re-
spectively. If g1 and go are incompatible, then Hy N Hy = ¢.

Proof of the lemma: As g1 and go are incompatible, there exists k: 1 < k < m, non
ambiguous position for both genotypes, such that gi[k] # ga2[k]. Suppose h € Hy. Then
hlj] = g1[j] whenever g1[j] is a non ambiguous site. In particular, h[k] = g1[k] # ga[k].
Hence, h is not compatible with g, i.e. h ¢ Hy. Similarly, if h € Hy then h ¢ H.

Let G be the clique in I with size k and {g;}i1,..x e its vertices. Then, g1, .., gy are
incompatible and from the latest lemma Hy,..., Hy, are disjunct. As a result, a solution
to the HI problem must have two distinct haplotypes for each genotype g; € G, unless g;
has no heterozygous sites, in which case only one haplotype in necessary. Hence, OPT >
2k — 0.

The lower bound calculated in the previous proposition can be improved if we make
a better analysis of genotype structures. Note that, if a genotype has a heterozygous site
where all genotypes which are compatible with him, and used in lower bound purposes,
have the same homozygous value, then a different haplotype is required and the lower
bound can be increased by 1.

Algorithm 1 Lower Bound Algorithm
ImproveLB(G()

1. lb(—2|Gc|—0'
2. Sort genotypes by increasing number of heterozygotic sites
3. Create set Gggr with genotypes in clique G¢

4. for each g € G of non-clique genotypes do
Let S be the subset of genotypes in Gsgr compatible with g
if g has a heterozygous site j and every s € S has the homozygous site j then
b+ 1b+1
ng < MergeGenotypes(S U g)
Gspr < (Gser — S)Ung
end if

5. end for

6. return b

Algorithm 1 formalizes this idea. The lower bound is initialized with the value calcu-
lated in Proposition 3.3.7 to guarantee never to get a bound inferior to the clique-based
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bound of Proposition 3.3.7. Then, we search genotypes, not in the clique, that require one
more explaining haplotype. Procedure MergeGenotypes creates a new genotype from a
set of genotypes such that any heterozygous site or site with genotypes having both 0
and 1 becomes heterozygous. If all genotypes have the same homozygous site, then the
resulting genotype keeps the same value at the respective position (Equation 3.1).

0 if ifg[j]=0 forevery g€ S
MergeGenotypes(S)[j] =< 1 if ifg[jj=1foreveryge S ,1<j5;<m; (3.1)
2 if  otherwise

The output is the new lower bound. A simple analysis shows that this algorithm runs
in O(n?m).



Chapter 4

Discrete Optimization Problems

The approaches to HIPP problem presented in this work use some important techniques
which are able to find application problems in several fields. In this chapter, we look
into those techniques: Integer Linear Programming Optimization (IP), Pseudo-Boolean
Optimization (PBO) and Boolean Satisfiability (SAT).

4.1 Integer Linear Programming

In the following chapter, three Integer Linear Programming formulations to solve Haplo-
type Inference by Pure Parsimony will be presented.

Integer Linear Programming (IP) is a special case of Linear Programming (LP). LP
is a field of research rather studied and with several important results. We only provide
a brief overview, essential to have a good understanding of the models used.

Many practical optimization problems can be expressed using Linear Programming
formulations.

The goal of Linear Programming is to optimize (minimize or maximize) a linear func-
tion, subject to a finite set of linear constraints (equalities or inequalities). The general
formulation is shown in Table 4.1'. Function f is known as the objective function or cost
function, derived from the importance of LP in microeconomics and business manage-
ment. A standard example of LP application consists in maximizing the business profit
subject to constraints evolving the cost of production scheme.

Table 4.1: Linear Programming Optimization

minimize (or maximize): f(z1,...,Z,) = D5 ¢;Tj;

subject to:
9i(T1, - @) = D25 aiwy < b
ci,a; ER 1<i<m,1<j5<n

!Note that >-constraints can be changed into <-constraints by multiplying by —1. An equality can
be converted into two inequalities.

23
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In 1947, Dantzig developed the simplex method to solve LPs. Although the complexity
of simplex is exponential in the worst case, this algorithm is efficient in most cases and is
very useful in practice. Although some methods have been developed to solve LPs in poly-
nomial time, simplex is still commonly used. CPLEX (www.ilog.com/products/cplex)
is the most well known commercial tool used to solve LPs applying the simplex procedure.

Although many problems can be naturally formulated as LPs, there are others which
require further restrictions. For instance, there are many problems that only admit vari-
ables with integer values. These problems, formulated as LPs where all variables take
only integer values, are known as integer linear programming (IP) formulations. In this
case, the problems become harder and the methods used to solve LPs do not work. In
fact, solving a generic IP is an NP-hard problem. However, several techniques have been
studied in order to solve IPs reasonably quickly, in most practical situations.

Usually, to solve an IP problem, one solves the respective LP relaxation, obtained
removing the integrality constraints on the variables, and then tries to find the optimal
integer solution. This last step can be taken applying different techniques.

One method uses the fact that the solution of an LP minimization problem (a max-
imization formulation can be easily conversed into a minimization), constitutes a lower
bound to the IP problem because all integer solutions are also solutions of the LP. In order
to push the solution from the LP domain to the IP domain, one can add constraints, called
valid cuts, which are valid for all feasible IP solutions but are violated by the current LP
solution. Then, once again, we solve the LP relaxation and obtain a new solution. We
repeat this process until we reach an integral solution, the one we are looking for.

Another method used to solve an IP minimization is the branch-and-bound algorithm.
First, calculate an upper bound to the value of any feasible solution. Let v be a variable
which could take n < 400 distinct integer values and branch the problem to the n IPs
obtained by setting v to each possible value. The lowest optimal IP solution among this
set is the optimal solution of the original IP. Then, as long as there are variables that
admit only a limited set of values, one could repeat the proceedure and explore the entire
solution space. However, on each branch, if the LP solution is greater than the upper
bound, then we can discard this branch and stop exploring it.

A branch-and-cut algorithm is a branch-and-bound proceeding where, at each step,
we add valid cuts to improve the bounds. In general, this is an efficient method to solve
IP problems. Given the NP-hardness of IP, any of these procedures has exponential
complexity on the worst case.
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4.2 Boolean Satisfiability

We begin this section by introducing some basic definitions of propositional logic.

4.2.1 Propositional Logic

Let X = {x;}ien be the numerable set of propositional variables, which can be assigned
to 0 (false) or 1 (true).

Definition 4.2.1 Propositional Formulas
The set ® of propositional formulas is defined inductively as follows:

e 1, € ®, for eachi € N.
o (—p € D), whenever p € P.
e (1 V o) € D, whenever pq, s € .

e (1 A pg) € @, whenever vy, s € .

Implication, (@1 = s2), is also usually introduced but it is not used in this section.
However it could be seen as an abbreviation of (-1 A @9).

Some particular formulas, called CNF formulas, have great importance in Satisfiability
(SAT) theory.
Definition 4.2.2 Literal, Clause and CNF Formulas

e A literal | is either a variable x; or its complement —zx;.
e A clause w is a disjunction (V) of literals.

e A CNF (conjunctive normal form) formula ¢ is a conjunction (A) of clauses.

Definition 4.2.3 Satisfaction
Let p be an assignment, i.e. p: X — {0,1}.
The satisfaction of a formula ¢ by an assignment p is defined inductively as follows:

* pE i if p(zi) = 1;

e pE () if p i p;
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e plE (1 V) if pl= w1 or p = @
° pE(pAp) if plE o1 and p = @a;

By the definition of satisfaction, we conclude that, given an assignment p, a CNF
formula is satisfied by p if all its clauses are satisfied. A clause is satisfied when at least
one of its literals is satisfied. Finally, a positive (negative) literal z; (—z;) is satisfied by
pif p(z;) =1 (p(z;) = 0).

Moreover, each formula ¢ denotes a unique n-variable Boolean function f(z1,...,x,)
(f:{0,1}" — {0,1}), where x1,...,z, are the variables of .

We say simply that a formula ¢ is satisfiable if there exists an assignment which
satisfies (.

Theorem 4.2.4 For each propositional formula there is an equivalent CNF formula.

We say that two formulas are equivalent if both denote the same Boolean function.

4.2.2 Satisfiability Problem

The Boolean Satisfiability problem (SAT) consists of, given a formula ¢, deciding whether
there exists an assignment to the variables such that ¢ becomes satisfied. This important
problem was the first proved to be NP-complete.

SAT instances contain a large set of problems and in several contexts; for instance,
large design and analysis problems from the field of Electronic Design Automation (EDA)
can be cast as SAT instances. Due to its great importance, many algorithms have been
studied to increase the range of applicability of SAT. The most well known procedures are
backtracking search algorithms which at each node of the search tree, elects an assignment
and prunes subsequent search by iteratively applying the unit clause and the pure literal
rules [25]. The unit clause rule is the following: if a formula ¢ contains a unit clause
(clause with only one literal), assign the value true to this literal. Tterated application of
the unit clause is called the Boolean Constraint Propagation.

SAT can be seen as a particular case of IP. In fact, any SAT problem is an IP instance
with an objective function which is constant. Each clause on the SAT problem is equiva-
lent to a constraint of the respective IP problem. For instance, the clause —a VvV SV § is
satisfied if and only if (1 —«a)+ 46 > 1.

MINISAT [7], SATZ [18] and GRASP [22] are examples of some efficient SAT solvers.
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4.3 Pseudo-Boolean Optimization

Although growing interest in SAT has lead to the construction of powerful SAT-solvers,
several problems cannot be easily formulated directly into SAT, and less restricted solvers
were created.

Pseudo-Boolean Optimization (PBO) problems, also known as 0-1 Integer Program-
ming problems, can be considered intermediates between IPs and SAT. A PBO problem
consists in finding a satisfying assignment to a set of PB-constraints that minimizes a
given objective function. A PB-constraint is an inequality 2?21 a;l; > b, where, for all 7,
l; is a literal and a;, b are integer coefficients. The left-hand side will be abbreviated by
LHS, and the right-hand constant b referred to as RHS. A PB-constraint is said to be
satisfied under an assignment if the sum of its activated coeflicients exceeds or is equal to
the right-hand side constant b.

The differences between IP and PBO are that, in PBO, variables are restricted to
boolean values and all coefficients must be integers. On the other hand, a SAT problem
is a PBO problem without an objective function. However, in general, a PB constraint
is equivalent to a large, potentially exponential, number of CNF clauses. Only a PB-
constraint where all coefficients are equal to one is equivalent to a single CNF clause.

Every PB-constraint can be rewritten in a normal form where all coefficients are non-
negative integers. Hence, any instance of a linear Pseudo-Boolean Optimization problem
can be cast as follows:

Table 4.2: Pseudo-Boolean Optimization

inimize Y . | ¢;T;;
min -1 CiTy;
subject to ZFI ai;il; > by;

z; € {0,1};
aij,b,-,chNO;lgigm,lngn

In this project we use two Pseudo-Boolean solvers that have shown to perform well
on the PB-evaluation 2005 [21]: MINISAT+ [8] and Pueblo [27].

4.3.1 MINISAT+

MINISAT+ (8] solves PBO problems by converting PB constraints to equivalent systems
of CNF clauses and submitting them to a SAT solver (MINISAT).

Three different techniques can be used in MINISAT+ for translating pseudo-boolean
constraints into clauses: BDDs, adders or sorters. The first technique consists in convert-
ing the PB constraint into the BDD representation and then translating the BDD into
CNF clauses. Another method is to convert the PB constraint to a network of adders,
where the sum at the LHS of the PB constraint is produced as a binary number and the
circuit representing the comparison of this sum against the RHS is created. Then, the
CNF representation of this circuit is obtained. Finally, converting the PB constraint to a
network of sorters, where numbers are represented in unary instead of binary, again the
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circuit is obtained and translated to CNF clauses. For more details on these techniques,
the original reference [8] should be consulted.

To handle the objective function f(x), MINISAT+ iteratively runs the SAT solver until
it finds an assignment that minimizes f(z). First, the PBO solver runs the SAT solver on
the set of constraints (without considering the objective function) to get an initial solution
74 such that f(Z3) = k. Then, the constraint f(2’) < k is added to the problem and the
SAT solver is run again. The process is iterated until the problem is unsatisfiable. At
this point, we know that we have the optimal solution, and its cost is k. Note that, each
constraint added subsumes all previous ones. So, at each step, the optimization inequality
can be replaced with the new one, in order to have control on the number of constraints
of the problem. However, in MINISAT+ it is not so easy because as the constraint has
been converted into a number of clauses, usually new variables have been introduced;
removing clauses containing those variables will vastly reduce the pruning power of the
learned clauses. As a result, MINISAT+ implements the naive optimization loop.

4.3.2 Pueblo

Pueblo [27] is a hybrid pseudo-boolean SAT solver. Cutting plane techniques (used usually
by IP solvers) and implication graph analysis (used in modern SAT and PB solvers) for
conflict-based learning are combined in order to produce a more powerful solver. Pueblo
creates both a PB constraint and a CNF clause after a conflict is detected. Constraints

and clauses are treated as separate constraint classes, in order to benefit from the best of
both.



Chapter 5

Haplotype Inference by Pure
Parsimony Approaches

Over the last few years, several methods for solving the Haplotype Inference by Pure Par-
simony problem have been proposed. Gusfield [11], Brown and Harrower [2, 3] suggested
Integer Linear Programming approaches to the problem, Wand and Xu [31] proposed
a branch-and-bound algorithm and, more recently, Lynce and Marques-Silva [19] came
up with a Satisfiability approach. Finally, inspired by IPs and SAT models, this work
suggests a new HIPP approach based on Pseudo-Boolean Optimization.

5.1 Integer Linear Programming Approaches

5.1.1 RTIP

In 2003, Dan Gusfield [11] introduced the first Integer Linear Programming formulation to
solve the HIPP problem. First, he created a conceptual formulation called TIP, described
below. This formulation, and thus the running time required to create it, increases expo-
nentially with the problem size, and therefore it is impractical to use it without additional
improvements. Then, Gusfield introduced a simplification that improves TIP significantly.

We begin by describing the conceptual formulation of TIP. Let g; denote the i geno-
type and suppose it has h; ambiguous sites (i.e. sites with value 2). Then, there are 2" ~*
pairs of haplotypes that can explain genotype g;. Expand all these possible explaining
pairs, enumerate them and attribute a variable y; ; to each pair j (1 < j < 2h=1). At the
same time, enumerate the corresponding haplotypes in such a way that equal haplotypes
have the same enumeration number. Whenever a haplotype that has not been seen before
is enumerated, we create a new variable x; which represents this new haplotype. Let H
be the set of different haplotypes in this expansion (and |H| its cardinality). Then, the
formulation TIP is the following:

minimize: ‘k:|1 Tk

subject to:
oh;—1

Zj:l Yij =1 (5.1)

29
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Yij — Thyy, <0 (5.2)
Yij — Ty, <0
Tk, Yij € {0,1}

1<i<ml<j<2hihl <k <2oh!

Constraint (5.1) means that each genotype must be explained by one and only one
pair of haplotypes. Only one variable y; ;, for each 7, must be assigned to 1, the one
representing the chosen pair. Constraints (5.2) and (5.3) say that if one haplotype pair is
the solution to explain genotype g;, then the associated haplotypes must also be selected.
Note that if y; ; is assigned to 1, then we should also set zy, ; and zy, ;, to 1, where zy,
and zy, ; represent the two haplotypes (not necessarily distinct) which belong to pair y; ;.

The objective function ensures that the number of x; variables set to 1 is the minimum
possible. Remember that we want a minimum number of haplotypes to be selected.

For example, suppose we have two 4-site genotypes: ¢; = 2102 and g, = 0201.
For genotype g1, we have two possible explaining pairs, y;; = {1101;0100} and y, o =
{1100; 0101}, while g, has only one parent pair y,; = {0101;0001}. One possible enumer-
ation for the haplotypes is: x; = 1101, 2, = 0100, z3 = 1100, x4 = 0101 and z5 = 0001.
The formulation for this example will be:

Y11t ye =1;

y2,1 = 15
yi,1 — 21 < 0;
yi,1 — 22 < 0;
Y12 — 3 < 0;
Y2 — T4 < 0;
y2,1 — T4 < 0;
y2,1 — x5 < 0;

Although this formulation is correct and useful theoretically, observe that it is expo-
nential in the number of heterozygous sites. Indeed, this formulation would be generally
impractical on problems of current biological interest. Consequently, Gusfield proposed
a simplification which turns the model, in general, considerably smaller. Instead of con-
sidering all possible parents for each genotype, the RTIP (reduced TIP) approach only
expands pairs where at least one haplotype could partly explain another genotype. Note
that the solution with less haplotypes must discard these parents, so this simplification
will not change the correctness of the TIP formulation. For instance, in the example, pair
y1, would be discarded from all equations. If for one genotype all possible parents were
discarded, then no matter which possible pair we choose we get anyway a parsimonious
solution.

The success of this idea is helped by the fact that population DNA sequences have
suffered many recombinations. As the level of recombination rises, haplotypes become
more differentiated. Consequently, also genotypes become more different, and we have
more pairs that can be discarded in the RTIP approach and, as a result, this reduced
model becomes much smaller than TIP.
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However, if we needed to expand all pairs of haplotypes before removing variables,
the profits would be insignificant. Nonetheless this is not necessary. Let H; an Hj; be
the set of haplotypes that can partly explain genotype ¢g; and gy respectively. Note that
the intersection of such sets, i.e. the set of haplotypes that can explain partially both
genotypes can be determined in O(m | Hy N Hy |), where m is the number of sites of ¢,
and go. Simply, cover g; and g, from left to right: if for a given site, one has value 1 and
the other has value 0 then H; N Hy = (; if a site occurs with value 2 for one genotype
and 0 or 1 for the other, then haplotypes in the intersection must have this site with the
same value of the later.

Even with these optimizations, RTIP remains an exponential-sized model in the worst
case.

5.1.2 PolyIP

In 2004, Brown and Harrower [2] discovered a polynomial-sized formulation for HIPP.
PolyIP is another Integer Linear Programming (IP) formulation for Pure Parsimony.

Let genotype g; be explained by haplotypes ho; 1 and ho;. Then, create a variable for
each site of hg;_; and hy;. In addition, denote by y; , the variable representing site & of
haplotype h;, in such a way that y; x = h;[k] (note that h;[k] € {0,1}). Then, PolyIP can
be formulated as follows:

minimize: S
subject to:
0 if gy [k] =0
Yor 1k +Yorp =< 2 if gu[k] =1 (5.4)
1 if gy[k] =2
dij 2 Yik — Yjik (5.5)

dij > Yik — Yik
T >2— i+ dy
Ti, Yik, dij € {0,1}

1</ <m1<k<ml1<i<j<2n

Constraint (5.4) ensures that hg;—; and hy; really explain g;, 1 < i < n. In order to
count the number of different haplotypes used, we introduce new variables d; ; (1 < i <
J < 2n) such that d;; = 1 if (but not only if) h; # h;. If h; # h;, there must exist £,
1 < k < m, such that y;x # y,x; consequently, constraints (5.5) and (5.6) force d; ; to be
1.

Next, create variables z; for 1 < 4 < 2n, such that z; is 1 if (but not only if) it is
different from all haplotypes that had appeared before. This is the meaning of constraint
(5.7). Note that 23—211 d;; = i —11if h; is distinct from the previous haplotypes, by the
definition of d; ;.

To understand the objective function, remember that we want to minimize the number
of distinct haplotypes used, i.e. minimize of variables x; set to 1.
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Both the number of variables and the number of constraints in this formulation are
O(nm+mn?). So, in contrast with TIP and RTIP formulations, which, as we have seen, are
exponential-sized formulations, PolyIP can be formulated in polynomial time and space.
However, remember that solving an IP is NP-hard and so the performance of PolyIP
applied to a IP solver, just like it has been formulated, may be poor. This happens
because the PolyIP formulation does not behave well under LP relaxation. Consequently,
many cuts and simplifications were done in PolyIP in order to help the IP solver to find
the right solution [3]. For instance, the authors have changed the definition of d; ; so that
it is assigned to 1 only when h; and h; differ. Also, they have augmented the objective
function and added some cuts that depend on input data patterns. These changes had
the objective of reducing the gap between the optimal solutions of the LP relaxation and
the IP, and improve the efficiency of PolyIP solver.

Perhaps surprisingly, the exponential-sized RTIP does not always run slower than
the polymomial-sized PolyIP. In fact, RTIP is able to solve, in seconds, many problem
instances for which PolyIP needs hours (although the opposite also happens). Perhaps the
reason is that the smaller formulation has to computationally discover necessary features
of the optimal solution (such as the candidate pairs) that are explicitly specified in the
larger formulation.
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5.1.3 HybridIP

In 2006, Brown and Harrower [3] presented a hybrid between RTIP and PolyIP, which joins
the strength of both formulations. Although RTIP is impractical to solve big instances, it
is very fast solving small problems. This happens because when we are able to formulate
RTIP, the formulation of the problem is described in detail and, most of the times, it can
be easily solved by the IP solver.

With HybridIP, the authors intended to create a formulation with both practical size
and reasonable runtimes. In order to reach this goal, HybridIP, inspired by RTIP, expands
some haplotype pairs and then, formulates the problem similarly to PolyIP. The HybridIP
formulation is described below.

minimize: SOl gt 432 g
subject to:
Z Wik +u; =1, 1<i<n (5.8)
wi () EW
T > Wi k) 1 <@ < mywgr € Wi (5.9)
Ty > Wi (k) 1 <i<mywigr € Wik # (5.10)
0 if glk]=0
Yoi—ie T Y2k =14 2 if glk]=1, I1<i<ml<k<m (5.11)
1 if glk] =2
dij 2 Yik — Yjks 1<i<j<2m1l<k<m 5.12

dij > Yik — Yik

Yik < d;; if hi[k] =0,
L=y <y T HIE = 1
d;',gifl > Uy,

d;‘,Qi Z U,
i1 < 1 — Wik,
Ao < 1 — wi gk,

5,21

K 1—1
2> 2 (K +i)+ ) dj;+ > dj;

7j=1 7=1

! !
Tiy Tiy Yik di gy di > Wi (G k), Ui € {0, 1},

1<i<i<2m1<k<m
I1<i<|H[;1<j<2m1<k<m
1<i<[H[;1<j<2m1<k<m
1<j<|H][;1<i<n
1<j<[H;1<i<n
1 <4 < nsuch that w;;x € W;

1<i<2n (5.20)

for all 4,7 and &
(5.21)

In the HybridIP formulation, we expand only some explaining parents, choosing a set

H, of K possible explaining haplotypes. Each genotype g; can be explained by zero, one
or two haplotypes from H,. For every (h;, hy) haplotype pair that explains genotype g;:
if both h; and hy are in H,, then we create a variable w; (;x); if only h; (respectively, hy)
is in H., then w; (. (respectively, w; ) is created; otherwise, neither haplotype is in
H, and we create a variable u;. Each of these variables will be set to 1 if the respective
haplotype pair is the one chosen to explain g;.
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Constraint (5.8) guarantees that, for each genotype, exactly one of these variables is
set to one because we require one and only one explaining pair for each genotype.

As in RTIP, we have a variable acg that should be set to 1 when haplotype h; € H, is
chosen to explain any genotype (constraints (5.9) and (5.10)).

On the other hand, we have constraints similar to those in PolyIP: constraint (5.11)
ensures that the haplotype pair chosen to explain g; really explains it (remember that
yix is valued to 1 (respectively, to 0) when h;[k] = 1 (respectively, h;[k] = 0)); constraint
(5.12) and constraint (5.13) introduce variables d, ; that are set to 1 when h; and h; are
distinct.

Variables dg,j are introduced to set the differences between haplotypes chosen and
haplotypes in He. Then, d; ; should be 1 when the selected haplotype is different from
all haplotypes in H, (constraints (5.14) and (5.15)). If we choose an explaining pair
where neither haplotype is in H,, then we must also mark this difference setting d;’j to 1
(constraints (5.16) and (5.17)). However, if the pair has haplotypes in H,, then d; ; must
be set to 0 (constraints (5.18) and (5.19)).

Finally, create variables z; for each haplotype in the solution, as in the PolyIP, that
mark the difference between a haplotype and the previous (constraint (5.20)).

The objective function is to minimize the number of distinct haplotypes used that are
in or out H,.

If the number of haplotypes in set H,, K, is constant, then HybridIP is a polynomial-
sized model. In particular, if K = 0, i.e. we do not explicitly expand any haplotype,
then this formulation is essentially PolyIP. On the other hand, if we expand all possible
parents, then we get a formulation behaving like RTIP. Some experiments were made in [3]
in order to choose the best value for the parameter K. Indeed, HybridIP seems to be very
sensitive to that choice. Although the authors could not find a clear best choice for the K
parameter, the value of 24 was chosen, as being the smallest value that performed well in
their tests. However, how should we choose this set H, of K haplotypes? The best answer
to this question seems to be: expand haplotypes that partially explain genotypes with less
heterozygous sites until you reach the cutoff K. In fact, this implies that the expanded
set is guaranteed to contain many of the haplotypes found in the optimal solution.

All the valid cuts and modifications applied to PolyIP were also applied to HybridIP
in order to improve the speed of solving the HIPP problem using integer programming.

5.1.4 Structural Simplifications

Several simplifications could be done to the set of genotypes without loss of information.
These simplifications consist in using the structural properties of genotypes with the
purpose of reducing the search space [3].

If in the original instance, we have two equal genotypes, clearly one could be discarded
assuming that the two genotypes will be explained identically. If for a given site all
genotypes have the same homozygous value, then this site can also be discarded, because
we already know that all haplotypes must have this value at the same position. Moreover,
for pairs of sites with complemented values (i.e. whenever one site has value 1, the other
has value 0 and vice versa) in each genotype, one of the sites can also be discarded,
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because one can reproduces the eliminated site from the other site.

If one keeps the information of which sites were discarded and why, it is straightforward
to construct the solution to the problem, once discovered one solution to the simplified
set.

These structural simplifications were first proposed by Brown and Harrower [3], who
apply them to the IP HIPP solvers. They were also used by the SHIPs model [19].

5.2 HAPAR

HAPAR was proposed by Wang and Xu in 2003 [31]. HAPAR is a branch-and-bound
algorithm, different from the previous integer linear programming approaches, but also
designed to find a parsimony solution.

Let the coverage of a haplotype be the number of genotypes in the sample that the
haplotype can resolve, and the coverage of a resolution be the sum of the coverage of an
explaining pair of haplotypes. The efficiency of any branch-and-bound algorithm depends
on the quality of the initial solution. To create an initial solution to this branch-and-
bound algorithm, the authors suggest a greedy algorithm that for each genotype gives the
explaining pair with maximum coverage. The solution of this greedy algorithm is often
close to the optimum solution. The branch and bound algorithm sketched in Algorithm 2
receives a set of n genotypes and outputs the solution to the HIPP problem. Basically,
this algorithm searches all possible solutions and finds the best one cutting off the pruning
space.

The complexity of the algorithm is O(2"™). However, this number is dependent of the
size of the lists of explaining haplotypes. In order to reduce the size of these lists, some
improvements were made. In practice, this approach has better performance than the IP
models described in the previous section. These results are described in Chapter 6.
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HAPAR algorithm is the following:

Algorithm 2 Illustration of the Branch-and-bound Algorithm: HAPAR
InplIt Mnxma
for each genotype g¢; do
List all possible explaining pairs of haplotypes on Array(i)
s; < length of Array(i)
end for
S < ¢; (S is the set of resolutions)
f(S) is the number of distinct haplotypes in S
Use the greedy algorithm to get a solution S* and set f*(.S) to be the size of the solution.
Search for an optimal solution as follows:
1.
for j; =1to s; do
S = Array(1)[j]
if £(S) > f*(S) then
go to 1 and try next j;
end if
2.
for jo =1 to sy do
S = {Array(1)[j:], Array(2)[jo]}-
if f(S) > f*(S) then
go to 2 and try next js;
end if

for j, =1to s, do
S = {Array(1)[j1], Array(2)[ja], - . ., Array(n)[j.]}
if f(S) < f*(S) then
fr(S) = F(S);
end if
end for
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5.3 SHIPs

SHIPs is a recent and very interesting contribution to the HIPP problem.

In February 2006, Lynce and Marques-Silva defined a new method for solving the
HIPP problem using Boolean satisfiability (SAT) [19] which is by far more efficient than
the IP models and branch-and-bound algorithm described in previous sections.

Given the set G of genotypes, the SAT-based HIPP model (SHIPs) searches for a set of
haplotypes H with cardinality r such that H explains G. The SHIPs algorithm considers
increasing values of r from a lower bound /b to an upper bound ub until all the equations
below become satisfied. Note that if  coincides with the number of necessary haplotypes,
then the equations described above must be satisfiable; otherwise, they are unsatisfiable.
Hence, when the program terminates we have a solution H with r haplotypes.

The HIPP solution is given by an assignment that satisfies the following CNF formulas,
where 7 is the smallest positive integer such that this assignment exists:

(mhig V —sis) A (Shig V —sy,) if g;[7] =0 (5.22)
(hij V —isg;) A (higg V —sby) if g;[j] =1 (5.23)
(955 V g%) A (=gl V —gly) if g;[j] = 2 (5.24)

(hij V —g3; V =spi) A (hig V gi; v =8k
(hkj \% _‘gfj \% _‘521') A (_‘hkj \% gzl')j \% _‘521) if g;[j] = 2 (5.25)

QO _shi=DAQ_shi=1) (5.26)
k=1 k=1
1<i<ml<j<ml<k<r

Suppose r is the smallest integer value for which there exists p, an assignment that
satisfies the formulas. Let n be the number of genotypes and m be the number of sites
on each genotype. First, we describe the propositional variables. For £ = 1,...,r and
j =1,...,m, let hy; represent the j site of haplotype k, i.e., p(hx;) = hi[j] (note that
hi[j] is either 0 or 1). The model also uses the so called selector variables, sf; and
st. (1 <k <r, 1< i< n), which, for each genotype g;, select two (possibly equal)
haplotypes to explain g;. Hence, g; is explained by hy, and hy, if and only if p(s} ;) =1
and p(sb ;) = 1.

Formula (5.22) ensures that if g;[j] = 0, then the haplotypes selected to explain g;
must have value 0 at this site, i.e. if hj represents one haplotype chosen to explain g;
then p(hx;) = 0. Similarly, if g;[j] = 1 and hy, is chosen, by s¢ or si;, to explain g; then
hi[j] must be assigned value 1 (Formula (5.23)). Otherwise, when g;[j] = 2, we require
the chosen haplotypes to have opposing values at site j (Formula (5.25)). This is done by
creating two boolean variables, gf;, g};, such that we must have p(g;) # p(gy;) (Formula
(5.24)). Last condition (Formula (5.26)), formalizes the idea that each genotype g; must
be explained by exactly one pair of haplotypes, and therefore, there exists one and only
one k; and one and only one k; such that p(s§ ;) =1 and p(s} ;) = 1.

In fact, this formulation has several symmetrical solutions that can be removed. For
instance, selector variables, s, and s¢,, can exchange roles; also variables hi; have some
symmetries. Some reductions on the number of g variables and some constraints affecting
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s variables described in [20] are other improvements that could be done to reduce the size
of SHIPs formulation.

The complexity of the SHIPs formulation is O(rnm). Since r = O(n), the creation of
the SAT-based model runs in O(n?m). Afterwards, MINISAT, SATZ or other SAT solver
can be applied to the formulation. Our experiments have been run using MINISAT which
has shown to be the best solver for these problems.

The lower bound represents an essential role in SHIPs’ performance. Indeed, tighter
lower bounds on the value of r improve significantly SHIPs efficiency. The lower bounds
applied by this SAT-based approach are the clique-based boundings of Section 3.3.1. In
fact, the SHIPs version evaluated in this project uses the lower bound from Proposi-
tion 3.3.7. However, SHIPs with the improved bound from Algorithm 1 is significantly
more efficient.
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5.4 Pseudo-Boolean Optimization Approaches

Two facts inspired the creation of this work. On each of the three integer programming
formulations (RTIP, PolyIP, HybridIP), variables can only take values in {0, 1}. Moreover,
all coefficients appearing on the constraints and on the cost function are integers. These
facts approximate the three formulations to SAT problems. Using a linear programming
solver, as CPLEX, we are not taking advantage of these facts. On the other hand, SHIPs
is a SAT-based approach, which performs very well in practice.

These results inspired the formulation of three Pseudo-Boolean Optimization mod-
els, similar to RTIP, PolyIP and HybridIP, which were we called RTPB, PolyPB and
HybridPB, respectively. However, instead of applying ILP solvers (CPLEX) to find a
solution to these formulations, we use modern Pseudo-Boolean solvers (MINISAT+ [8]
and Pueblo [27]), which apply SAT techniques to solve the pseudo-boolean optimization
problems.

The formulations T, RT, Poly and Hybrid were implemented in C' code. The output
of these four programs is a file with the respective cost function and constraints, in the
format accepted by PBO solvers accept.

5.4.1 RTPB

The RTPB formulation is identical to RTIP, which is described in Section 5.1.1. Re-
member the TIP formulation, where we have two types of variables: xj, representing
each distinct haplotype hx; and y; ;, representing each haplotype pair j which can explain
genotype g;. Variable z; is assigned value 1 when haplotype hy is selected to partially
explain any genotype. Otherwise, z;, is assigned value 0. Variable y; ; is set to 1 when the
respective pair is chosen to explain genotype g; and 0 otherwise.

|H|

minimize: i—1 Tk
subject to:
hi—1
Z?:l Yij = 1 (527)
Yij — Thiy, <0 (5.28)
Yij — Thy, <0 (5.29)

Tk, Yi; € {0,1}

1<i<ml<j<2hi=l] <k <2hil

As a result, all variables are 0-1 integers and, clearly, this formulation constitutes a
PBO problem. Moreover, all coefficients (either on constraints and on the cost function)
are not only integers but also binary integers. In fact, this formulation is not directly a
SAT problem only because there exists a cost function.

Although, the T formulation was implemented trivially from the mathematical model,
the implementation of RT was not so easy. The reduced formulation of TIP uses reduction
of discarding haplotypes that appear only once, which is very effective in practice. How-
ever, if this idea was not implemented in the best way, there would be no time/memory
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benefits. In order to solve this problem, two hashtables were used on the program: one
to store the pairs of haplotypes and the other to keep the distinct haplotypes.

Finally the result of this program is a file with the RT formulation (objective function
and constraints) that is given as input to the PBO solver (MINISAT+), which outputs
the variable attribution, i.e the solution of our problem. Joining the two steps, we obtain
RTPB. If we use Pueblo instead of MINISAT+, we obtain a formulation named RTPueblo.

5.4.2 PolyPB

PolyPB has a simpler formulation than PolyIP. Although the basic formulation is the
same, Brown and Harrower [3] implement several cuts and modifications in order to
strengthen the formulation so that it would increase the efficiency of the IP solver. These
modifications were required to solve LP relaxation efficiently. However, PolyPB does not
need relaxations because it uses solvers which only admit boolean variables. As a result,
modifications are not needed and the basic Poly formulation is sufficient.

Indeed, Poly is clearly a pseudo-boolean optimization problem. Note that, not only
all variables are boolean, but also all coefficients are integers. In fact, all coefficients on
the left-hand side have boolean values but some coefficients on the right-hand site may
take values in the set {0,1,...,7 — 2} (because of constraint (5.33)).

minimize: ZZQZ LT
subject to:
0 if gu[k]=0
Yoir—1 ke + Yo =< 2 if gulk] =1 (5.30)
1L if go[k] =2
dij 2 Yik = Yjk (5.31)
dij > Yik = Yik (5.32)
22— i+ Y dy (5.33)

Ti, Yik, dij € {0,1}

1</ <m1<k<ml1<i<j<2n
(5.34)

The PolyPB C-program directly encodes this formulation. The result of this program,
a file with the Poly formulation (objective function and constraints), is given as input to
a PBO solver, MINISAT+, which outputs the variable attribution, i.e the solution of our
problem. This procedure is called PolyPB. If we use Pueblo instead of MINISAT+, we
obtain PolyPueblo.

5.4.3 HybridPB

The HybridPB formulation is the same of HybridIP of page 33, except, again, that the
introduction of cuts and modifications that is because unnecessary on HybridPB.
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Again all variables of Hybrid take values on {0,1} and in all inequations coefficients are
integers. Moreover, only inequations (5.11) and (5.20) could have non-boolean coefficients.

We enumerate genotypes by increasing number of heterozygous sites. Then, we expand
haplotype parents of genotypes with less heterozygous sites, until we reach £ distinct
haplotypes. Let H, be the set of these k£ haplotypes. We tested k values equal to 24
and 32. The model seems to be sensitive to this parameter; in fact, expanding only 24
haplotypes, the solver is significantly faster. The value chosen by Brown and Harrower
was also k = 24. As a result, we have chosen to evaluate HybridPB with £ = 24 in all
experiments of Chapter 6.

After creating the Hybrid formulation, we apply it to MINISAT+ so we could get a
solution to the HIPP problem. Joining the two steps, we get HybridPB. We also test
Hybrid formulation with Pueblo, which has been called HybridPueblo.
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Chapter 6

Experimental Results

6.1 Implementation

All results shown were obtained on a 1.9 GHz AMD Athlon XP with 1GB of RAM running
RedHat Linux. To solve PBO instances, we use MiniSat v1.13+ BigNum version [8].
Unless otherwise stated, the default conversion from PB-constraints to clauses was used.
The Pueblo version 1.4 [27] is used. For the ILP-based HIPP solvers, the ILP package
used was CPLEX version 7.5.

6.2 Instances

Experimental results are obtained using both synthetic and real data. Problem instances
can be organized into four groups. Two of those are synthetic and were obtained by
simulation [3] and the other two are real biological data [3, 5, 6, 15, 16, 26]. Characteristics
of the four classes are synthesized in Table 6.1, where, for each class, the number of
instances, the minimum and maximum number of SNPs and the minimum and maximum
number of genotypes are discriminated.

Class #Inst minSNP  maaSNP  minGen mazGen
uniform 245 10 100 30 100
nonuniform 135 10 100 30 100
hapmap 24 30 75 7 68
biological 450 13 103 5 50
Total 854 10 103 5 100

Table 6.1: Classes of instances used

6.2.1 Synthetic Data

Synthetic instances were obtained from Brown and Harrower [3], and extended with addi-
tional, more complex problem instances, using Hudson’s program, ms [14]. This program
generates haplotype samples under a variety of assumptions about migration, recombina-
tion rate and population size. Then, randomly, those haplotypes are paired to generate

43
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genotypes, using two different methods. In one case, distinct haplotypes are uniformly
paired - uniform instances - so, all haplotypes are sampled with the same frequency. On
the other case, the collection of haplotypes generated by Hudson’s program are sampled
non-uniformly; in this collection haplotypes may not be unique, so some haplotypes have
higher probability of being chosen than others - nonuniform instances.

6.2.2 Biological Data

Part of the real data (24 HapMap instances) is used in [3] and was obtained from the
HapMap project described in Chapter 2. Classes of instances from chromosomes 10 and
21 over all four HapMap populations (CEU, HCB, JPT, YRI) are considered. Sequences
of lengths 30, 50, and 75, having SNPs from regions with small amounts of recombination,
are used. Each of these 24 instances was reduced to contain a unique set of genotypes, so
the actual number of genotypes in each sample varies significantly, generally increasing
with sequence length (range from 7 to 68 genotypes).

Our Pseudo-Boolean approach is also tested in the biological data of some important
studied diseases. These instances are grouped in five sets of important genes: ABCD,
ACE, B3AR, CF and IBD.

The first data set is from the 74 kb gene ABCD, responsible for P-glycoprotein [16].
This data set came from the University of California-San Francisco membrane transporter
gene study, where 247 individuals were studied on 48 SNPs. In the samples we use,
different number of individuals were tested (from 5 to 50 genotypes) and only 27 SNPs were
considered. The maximum value for the number of haplotypes needed in this instances is
31, although this number is very unstable in general.

Angiotensin converting enzyme, also known as ACE [26], catalysis the conversion of
angiotensin I to the physiologically active peptide angiotensin II. Due to its key func-
tion in the renin-angiotensin system, many association studies have been performed with
DCP1. DCP1 is a gene encoding ACE and stretches over a genomic region of length 24
kb. The genomic sequences for this gene of 11 individuals were studied: 52 out of 78
SNPs were non-unique polymorphic sites and 13 distinct haplotypes were found. In this
project, several samples were used, with the size of the population varying between 5 and
50 individuals for these 52 SNPs. As the size of the population grows, the number of
haplotypes required by the pure parsimony approach increases. However, this number is
never bigger than 13.

The (By-adrenergic receptors (S2AR) are G protein-coupled receptors that mediate the
actions of catecholamines in multiple tissues [6]. Localization of SNPs and identification
of haplotypes of the S AR gene are described in Table 2.1 in Chapter 2. For S3AR gene,
we tested instances with the number of genotypes varying between 5 and 50, always for
the 13 SNPs.

The Cystic Fibrosis Gene [15], also known as CF, under some mutations, may confer
residual pancreatic exocrine function in a subgroup of patients who are pancreatic suffi-
cient. The ability to detect such mutations in the cystic fibrosis gene at the DNA level
has important implications for genetic diagnosis. For this gene we tested several samples
with a population varying between 5 and 50 individuals and in a total of 23 SNPs.

Finally, the most difficult data set from those five, IBD [5], is gene corresponding to an
inflammatory bowel disease studied in father-mother-child trios. IBD extends over 500 kb



6.3. EXPERIMENTS 45

of the genome sequence and contain 103 SNPs typed in 387 individuals. In this analysis,
we work with samples containing from 5 to 50 genotypes and 103 SNPs.

6.3 Experiments

6.3.1 Comparing Existing Approaches

First of all we will compare existing approaches to solve the HIPP problem. From Fig-
ure 6.1, we can derive some conclusions about state-of-the-art HIPP solvers. This graphic
compares the performance, on the universe of 854 instances (not simplified), in 1000
seconds, of RTIP [11], PolyIP [2], HybridIP [3], HAPAR [31] and SHIPs [20]. We can
conclude that IP approaches are very inefficient, solving only less than 50% of the in-
stances. The branch and bound algorithm, HAPAR, is a little better as it is able to
solve almost 60% of the problem instances. Finally, SHIPs shows to be a very efficient
approach for the HIPP problem. In fact, it solves around 97% of the instances tested and
is several orders of magnitude faster than integer linear programming and branch and
bound solutions. However, SHIPs is not capable of solving some biological instances and
further research should be done to improve this SAT-based technique.
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Figure 6.1: Relative performance of state-of-the-art HIPP solvers (1000s). For each solver,
instances are ordered by increasing degree of complexity.

6.3.2 Analysing Effects of Simplification

All instances used from now on in this thesis were previously submitted to structural
simplifications related in [3] and also used by SHIPs. The objective of this subsection is
to show that these simplifications improve solvers performance. Consequently, applying
simplifications before using any state-of-the-art solver improves efficiency and therefore it
makes no sense to evaluate instances without being simplified.
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As described in Section 5.1.4, page 34, these simplifications consist in removing du-
plicate genotypes, duplicate sites and complemented sites. It is straightforward to get a
solution to the original instance once one has a solution to the simplified instance and to
simplify an instance takes negligible time. Furthermore, note that the number of haplo-
types used to explain a simplified or not simplified instance is the same. All methods,
in general, perform better with simplified instances. Note that, in particular, the dimen-
sion of the problem decreases. In some solvers the efficiency improves very significantly.
Figure 6.2 provides a scatter plot with the run time for RTIP (from Gusfield) applied to
simplified instances and not simplified (original) instances, for a timeout of 1000 seconds.
Points in the 10% line represent problem instances which exceed 1000 seconds without
being solved. We could see that except for two instances, the performance of RTIP is
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Figure 6.2: Performance of RTIP using simplified vs original instances (1000s)

really better on simplified instances. Moreover, when we simplify instances, RTIP is able
to solve a larger number of instances. Indeed, in original instances, RTTP aborts in 487
out of 854 problem instances (about 57%) and in simplified instances RTIP aborts only 84
out of 854 instances (less than 10%), which is a significant difference. This big improve-
ment happens in special with RTTIP because of the reduction after TIP. Observe that the
formulation RTIP, described in Chapter 5, does not expand pairs where both haplotypes
do not partially explain any other genotype. The point is, that, in general, the number
of these cases increases significantly when simplifications are considered.

Figure 6.3 compares the results for the same instances but applying PolyIP. Although
it is not so evident as in RTIP, the performance, in general, improves with simplified
instances. In fact, in original instances, PolyIP aborts more than 75% of the problem in-
stances but in, simplified instances, PolyIP aborts less than 60%. The results of HybridIP
are similar for those of PolyIP.

6.3.3 Solving HIPP using PBO

In this section we will make a detailed evaluation of our three PBO approaches, RTPB,
PolyPB and HybridPB, described in Section 5.4, against state-of-the-art solvers: RTIP,
PolyIP, HybridIP, HAPAR and SHIPs. Experimental results show that although RTPB
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Figure 6.3: Performance of PolyIP using simplified vs original instances (1000s)

has a poor performance, PolyPB and HybridPB are two promising methods, being not
only much better than the existing PolyIP and HybridIP, but also competitive with SHIPs.
First we evaluate each PBO method against the correspondent IP model.

RTPB versus RTIP

Comparing RTPB with RTIP, we conclude that, the PBO approach is very fast on solving
small instances, but it is incapable of solving a large set of instances which RTIP is able
to solve. Figure 6.4 provides a scatter plot comparing the CPU time required by RTIP
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Figure 6.4: Performance of RTPB, using MiniSat+ option sorters, vs RTIP (1000s)

and RTPB (using MiniSat+, option sorters) for solving the 854 instances from Table 6.1,
for a timeout of 1000 seconds. Each point represents an instance. Points on the 10% lines
mean that the solvers are not able to solve the respective instance in 1000 seconds for one
of two different reasons: it can exceed 1000 seconds without giving any solution or it can
exceed available memory before 1000 CPU seconds. Note that when an instance exceeds
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the memory limit, we have a more serious problem because there is no hope for instance
will be solved by this solver in this machine. However, if the solver is still running after
1000 CPU seconds, we may wonder whether the instance would be solved with only one
more second. Apart from these differences, all these instances are represented as a dot on
the 102 lines. However, these CPU memory problems only happen with RTIP and RTPB
formulations due to their exponential size.

From this plot we conclude that, despite the good performance of RT'PB with the easier
instances, RTIP performs really better on more complicated benchmarks. Moreover, RTIP
can solve a bigger number of instances than RTPB. Comparing RTTIP with RTPB, we can
see that the PBO solver solves significantly less instances than RTIP. Indeed, RTIP is
able to solve 770 (about 90%) of the problem instances, while RTPB is capable of solving
only 706 instances (about 83%). In order to further understand the poor performance of

Table 6.2: Performance of RTPB (RT formulation using MiniSat+, option sorters) on
the different classes of benchmarks (timeout 1000s). F&R groups the instances which
are able to be formulated and resolved. F&NR (Time) and F&NR (Memory) group
instances that can be formulated but abort in the resolution due to time or memory
limitations, respectively. Finally, NF (Time/Memory) represents benchmarks which can
not be formulated, either by time or memory limitations.

Benchmarks F&R | F&NR(Time) | F&NR(Memory) | NF(Time/Memory) | Total
Uniform 242 0 3 0 245
Non-Uniform 135 0 0 0 135
Hapmap 17 0 5 2 24
Bio ABCD 90 0 0 0 90
ACE 69 0 21 0 90
B2AR 90 0 0 0 90
CF 52 21 17 0 90
IBD 11 0 7 72 90
TOTAL 706 21 53 74 854

RTPB, Table 6.2 describes the data in a more detailed way. In this table, benchmarks are
separated into the classes described before. The F&R column refers to the 706 instances
which can be solved by RTPB in less than 1000 seconds. The next two columns list
instances which can formulated as PBO instances but cannot be solved due to time
or memory limitations. Finally, the sixth column contains instances, which cannot be
formulated. The majority of the instances that are solved by RTIP and that RTPB is
not able to solve, have problems of memory. In fact, they were aborted by MINISAT+
before the time limit of 1000 seconds because they were exceeding the available machine
memory. As we can see in Table 6.2 we have 53 instances aborted by MINISAT+. In
fact, we use MINISAT+ with the option sorters because it performs better than other
options. We conclude that, for these instances, CPLEX manages memory space better
than MINISAT+.

If one uses Pueblo instead of MINISAT+, we get Figure 6.5. Again, we have effi-
ciency on small instances but troubles with small-sized /difficult instances. Indeed, RTIP
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is able to solve 575 (about 63%) of the problem instances, while RTPB is capable of
solving only 364 instances (about 43%), which is worst than the result obtained by MIN-
ISAT+. The advantage of Pueblo is that only one instance aborted because of memory
limitations. These results show that the PB approach is not promising when applied to
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Figure 6.5: Performance of RTPueblo vs RTIP (1000s)

the RT formulation. This, however, does not represent a serious drawback because this
exponential-sized formulation is not likely to be competitive in general.

PolyPB versus PolyIP
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Figure 6.6: Performance of PolyPB vs PolyIP (1000s)

Table 6.3 lists the number of instances solved by each method in less than 1000 seconds.
Note that PolyIP is able to solve 345 (out of 854) instances, i.e. about 40%. On the other
hand, PolyPB can solve 828 (out of the same 854) instances, that is more than 96%.
While the IP method has problems in every class of benchmarks, the PBO approach
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Table 6.3: Number of instances, divided by classes, solved by PolyIP and PolyPB (timeout
1000s)

Benchmarks PolyIP  PolyPB
Uniform 87/245 245/245
Nonuniform 19/135 135/135
HapMap 15/24  23/24

Biological ABCD | 31/90 90/90
ACE | 86/90  90/90
BAR | 52/90  90/90
CF | 28/90  87/90
IBD 27/90 67/90
TOTAL 345/854 828/854

cannot solve only one HapMap instance (which has 68 genotypes with 26 sites, after
simplification), three CF-instances (31,45 and 47 genotypes, each with 19 sites), and 23
IBD-instances (29-49 genotypes with 63-77 sites). Regarding the sintetic data, PolyIP
solves less than 28% while PolyPB solves 100%. PolyIP can solve less than 51% of the
real data, while PolyPB is able to solve more than 94%. As a result, we conclude that
not only the performance of PolyPB is better than PolyIP, but also that PolyPB is a
promising solution for the HIPP problem.

1072
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Figure 6.7: Performance of PolyPueblo vs PolyIP (1000s)

Figure 6.7 shows the results obtained if one uses Pueblo instead of MINISAT+. The
performance of PolyPueblo is worse than PolyPB, but the point is that, in general, we
have better results also using this PBO solver than using CPLEX. Indeed, PolyPueblo
solves 87,7% of the problem instances, while PolyIP solves only about 40%. This makes it
clear that the PBO formulation is more suitable than the IP formulation in this problem.
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HybridPB versus HybridIP
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Figure 6.8: Performance of HybridPB vs HybridIP (1000s)

Table 6.4: Number of instances, divided by classes, solved by HybridIP and HybridPB
(timeout 1000s)

Benchmarks HybridIP HybridPB
Uniform 83/245 245/245
Nonuniform 15/135 135/135
HapMap 15/24 22/24

Biological ABCD | 31/90 83/90
ACE | 86/90  90/90
BAR | 53/90  90/90
CF | 29/90  80/90
IBD 27/90 75/90
TOTAL 339/854  820/354

Similarly to PolyPB, HybridPB also performs much better than the respective IP
approach. Figure 6.8 compares the performance of the two Hybrid approaches when
using up to 1000 seconds. As one can see HybridPB is faster than HybridIP solving all
instances, and in most of them, is orders of magnitude faster. Moreover, HybridPB is
able to solve 481 instances which HybridIP is not. Indeed, as Table 6.4 shows, the IP
approach can solve less than 40% of the problem instances (339 out of 854), while the
PBO method is capable of solving more than 96% (820 out of 854) instances. HybridIP
solves less than 26% of the synthetic instances and less than 51% of the real instances,
while HybridPB is able to solve all synthetic instances and more than 93% of the real
instances.

If Pueblo, instead of MINISAT+, is used, then we obtain the scatter plot of Figure 6.9,
for the 854 instances and a timeout of 1000 seconds.
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Figure 6.9: Performance of HybridPueblo vs HybridIP (10000s)

The performance of HybridPueblo is worse than HybridPB, but the point is that,
in general, we have better results also using a PBO solver than using CPLEX. Indeed,
HybridPueblo solves more than 82% of the problem instances, while HybridIP, as we have
already seen, solves only about 40%.

PolyPB vs HybridPB
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Figure 6.10: Performance of PolyPB vs HybridPB (10000s)

Here, we intend to compare the two promising approaches for the HIPP problem
developed in this work. As already mentioned, the Hybrid approach was created in order
to improve the Poly approach. However, the comparison is not so easy. Figure 6.10
compares the performance of PolyPB and HybridPB for the 854 instances, within 10000
seconds (we increase the time interval such that one can understand better the behavior of
the methods). Although for a big set of instances, which both methods solve in less than
10 seconds, PolyPB seems to perform better than HybridPB, for the difficult instances
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Table 6.5: Results: PolyPB vs HybridPB (timeout 10000s)

Benchmarks PolyPB HybridPB
Uniform 245/245  245/245
Nonuniform 135/135  135/135
HapMap 23/24 23/24

Biological ABCD | 90/90 88/90
ACE | 90/90  90/90
BAR | 90/90  90/90
CF | 90/90  88/90
IBD | 76/90  81/90
TOTAL 839/854  840/854

the two approaches seem to complement each other. Indeed, PolyPB performs better
than HybridPB on about 93% of the problem instances, HybridPB surpasses PolyPB on
less than 6% of the instances and none can solve 10 instances. Furthermore, PolyPB
is able to solve 4 instances that HybridPB is not (2 from ABCD and 2 from CF) but
HybridPB is capable of solving 5 instances (from IBD) which PolyPB cannot. Anyway,
as the two methods do not differ significantly, we will compare HAPAR and SHIPs only
with PolyPB. The results by comparing with HybridPB are similar.

PolyPB vs HAPAR
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Figure 6.11: Performance of PolyPB vs. HAPAR (10000s)

The results of the comparison between PolyPB and HAPAR [31], for a timeout of
10000 seconds, are shown in Figure 6.11 and Table 6.6. HAPAR is faster than PolyPB
on 377 instances out of 854 (about 44%), which both methods can solve in less than 10
seconds. In fact, almost all instances solved by HAPAR, are solved by PolyPB in less
than 10 seconds. Moreover, PolyPB is capable of solving 233 instances (about 27%) which
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Table 6.6: Number of instances, divided by classes, solved by PolyPB and HAPAR (time-
out 10000s)

Benchmarks HAPAR PolyPB
Uniform 214/245 245/245
Nonuniform 88/135 135/135
HapMap 19/24  23/24

Biological ABCD | 68/90 90/90
ACE | 89/90  90/90
BAR | 90/90  90/90
CF | 25/90  90/90
IBD 13/90 76/90
TOTAL 606/854 839/854

HAPAR is not. Indeed, HAPAR is not able to solve a big set of both real and synthetic
data, almost from all classes.

The comparison between HAPAR and HybridPB is similar. HAPAR is faster than
HybridPB on 400 instances (about 47%) but HybridPB can solve 234 instances that
HAPAR cannot (more than 27%). Indeed, HybridPB solves 840 instances, while HAPAR
only solves 606.

PolyPB vs SHIPs
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Figure 6.12: Performance of PolyPB vs SHIPs (10000s)

Finally, we compare PolyPB with SHIPs, a very efficient approach recently pro-
posed [20]. Taking a look at Figure 6.12, we can see that, for a big cloud of points,
SHIPs is faster than PolyPB. However, as the instance complexity increases, points be-
come sparse in the graphic suggesting that each method complements each other. Then,
analysing the points on the 10* seconds lines, we conclude that PolyPB are able to solve
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Table 6.7: Number of instances, divided by classes, solved by PolyPB and SHIPs (timeout
10000s)

Benchmarks SHIPs  PolyPB
Uniform 245/245 245/245
Nonuniform 135/135 135/135
HapMap 23/24  23/24

Biological ABCD | 90/90 90/90
ACE | 90/90  90/90
BAR | 90/90  90/90
CF | 90/90  90/90
IBD | 65/90  76/90
TOTAL 828/854 839/854

more instances than SHIPs. Indeed, SHIPs is faster than PolyPB on 563 instances (about
66%), but PolyPB is able to solve 12 instances in which SHIPs aborts. SHIPs is only
able to solve 1 instance that PolyPB is not. As a result, PolyPB solves 839 out of 854
instances, while SHIPs solves 828. Note that, both methods are able to solve all synthetic
data and all ABCD, ACE, ;AR and CF instances. However, none of them can solve one
HapMap instance (the same for both), and a different set of IBD instances.

Comparisons between SHIPs and HybridPB give similar results. In fact, SHIPs is
faster than HybridPB in 80% of the benchmarks. However, HybridPB aborts 14 instances
while SHIPs aborts 26.

From this analysis, we conclude that, although both SHIPS and PBO methods com-
plement each other, PolyPB and HybridPB seem to be more robust.

Since PolyPB uses MINISAT+, which converts problem instances into SAT, and SHIPs
also applies SAT, the most important conclusion of these results is that SAT-based meth-
ods are promising to solve the HIPP problem.

6.3.4 Other Experiments

Despite the good performance of PolyPB, some ideas came up to improve this HIPP
solver. However, these ideas have not improved the results. Motivated by SHIPs, we
tried to introduce some lower or upper bounds in PolyPB. Note that, if we know that
the minimum number of haplotypes needed to explain the set of genotypes is superior to
LB or inferior to UB, we can enrich the formulation adding the constraint f(x) > LB or
f(z) < UB, respectively. One would think that this process would make the solver faster,
as it prunes the search space. However, the experiments have shown that, in general,
imposing a lower bound brings no benefits and introducing an upper bound degrades the
performance of PolyPB.

A new model (Poly+) based on the Poly model was also tested. The difference of this
new model resides in the definition of the d;; and x; variables. In Poly+, d;; = 1 if and
only if haplotypes h; and h; are different, and z; = 1 if and only if A; is unique with
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respect to hy,...,h; 1. Remember that those definitions in Poly (see Section 5.1.2) are
implications and not equivalences. This modification was supposed to increase constraint
propagation in the PBO solver. However, maybe because the number of variables increases
(some auxiliary variables were needed), or maybe because it reduces the search space, this
modification proved unsuccessful.



Conclusions

Haplotyping has been a priority in human genomics and pure parsimony has been shown
to be an accurate method for solving haplotype inference. This thesis is, first of all, an
overview of the work developed in Haplotype Inference by Pure Parsimony, compiling
several different methods for solving the problem. None of those is sufficiently efficient for
solving all the instances of a set with biological interest, and consequently it is important
to pursue research on more capable techniques.

Inspired by the good performance of a SAT-based approach (SHIPs) and based in
three integer linear programming approaches (RTIP, PolyIP and HybridIP), three new
methods were proposed in this project (respectively, RTPB, PolyPB and HybridPB).
These approaches use formulations similar to the respective IP formulations. However,
unlike those, the new approaches apply modern pseudo-boolean solvers (based on SAT)
in order to find the required solution.

Our experiments show that although RTPB has no significant benefits, PolyPB and
HybridPB are very efficient methods to solve the parsimonious problem. RTPB solves
easy benchmarks very quickly, although this method leads to exponential-sized problems
and therefore it is not able to solve a large set of instances. PolyPB and HybridPB are not
only faster on solving all instances tested but also capable of solving a significant bigger
number of benchmarks in a reasonable time. Moreover, PolyPB and HybridPB solve
significantly more instances than HAPAR and are competitive with SHIPs, two state of
the art solutions to this problem. Furthermore, these two PBO approaches are capable of
solving several problem instances that no other available HIPP solver manages to solve.
From the comparison with SHIPs we are inclined to conclude that the good performance
of SHIPs can be explained by the efficiency of modern SAT-solvers. Indeed, SAT-based
PBO solvers obtain extremely good results with PolyPB and HybridPB, which are PBO
formulations that differ significantly from the SHIPs SAT-based approach.

o7



o8

CHAPTER 6. EXPERIMENTAL RESULTS



Glossary

Biology

Allele: The alternative forms of the genetic character found at a given locus on a
chromosome. [Source: Purves et al. Life: The Science of Biology]

Diploid: The chromosome complement consists of two copies (homologues) of each
chromosome. In humans, each chromosome pair is from a different origin (mother,
father). [Source: Purves et al. Life: The Science of Biology]

Genotype: An exact description of the genetic constitution of an individual, with
respect to a single trait or a larger set of traits. [Source: Purves et al. Life: The
Science of Biology]. The genetic constitution of an organism as revealed by genetic
or molecular analysis, i.e. the complete set of genes, both dominant and recessive,
possessed by a particular cell or organism.[Source: TUPAC Biotech]

Haplotype (haploid genotype): A combination of alleles of closely linked loci that are
found in a single chromosome and tend to be inherit together. The linear, ordered
arrangement of alleles on a chromosome. [Source: Purves et al. Life: The Science
of Biology]

Heterozygous: A diploid organism having different alleles of a given gene on both
homologous chromosomes. [Source: Purves et al. Life: The Science of Biology]

Homozygous: A diploid organism having identical alleles of a given gene on both
homologous chromosomes. [Source: Purves et al. Life: The Science of Biology]

Phenotype: The observable properties of an individual as they have developed under
the combined influences of the individual’s genotype and the effects of environmental
factors. [Source: Purves et al. Life: The Science of Biology]

29



60

CHAPTER 6. EXPERIMENTAL RESULTS



Bibliography

[1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

Oswald T. Avery, Colin M. MacLeod, and Maclyn McCarty. Studies on the chemical
nature of the substance inducing transformation of the pneumococcal types. The
Journal of Experimental Medicine, 79(2):137-158, 1944.

D. Brown and I. Harrower. A new integer programming formulation for the pure par-
simony problem in haplotype analysis. In Workshop on Algorithms in Bioinformatics
(WABI’04), pages 254-265.

D. Brown and I. Harrower. Integer programming approaches to haplotype infer-
ence by pure parsimony. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 3(2):141-154, April-June 2006.

A. G. Clark. Inference of haplotypes from PCR-amplified samples of diploid popu-
lations. Molecular Biology and Evolution, 7(2):111-122, 1990.

M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S. Lander. High-
resolution haplotype structure in the human genome. Nature Genetics, 29:229-232,
2001.

C. M. Drysdale, D. W. McGraw, C. B. Stack, J. C. Stephens, R. S. Judson, K. Nand-
abalan, K. Arnold, G. Ruano, and S. B. Liggett. Complex promoter and coding re-
gion fy-adrenergic receptor haplotypes alter receptor expression and predict in vivo
responsiveness. In National Academy of Sciences, volume 97, pages 1048310488,
September 2000.

N. Eén and N. Sérensson. An extensible SAT-solver. In International Conference on
Theory and Applications of Satisfiability Testing (SAT), pages 502-518, 2003.

N. Eén and N. Sérensson. Translating pseudo-Boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2:1-26, 2006.

D. Gusfield. Inference of haplotypes from samples of diploid populations: complexity
and algorithms. Journal of Computational Biology, 8(3):305-324, August 2001.

D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework and efficient
solutions. In RECOMB, pages 166-175, 2002.

D. Gusfield. Haplotype inference by pure parsimony. In 1/th Annual Symposium on
Combinatorial Pattern Matching (CPM’03), pages 144-155, 2003.

61



62 BIBLIOGRAPHY

[12] E. Hubbell, 2000. Personal Communication to Dan Gusfield.

[13] R. Hudson. Gene genealogies and the coalescent process. Ozford Survey of Evolu-
tionary Biology, 7:1-44, 1990.

[14] R. R. Hudson. Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18(2):337-338, February 2002.

[15] B. Kerem, J. Rommens, J. Buchanan, D. Markiewicz, T. Cox, A. Chakravarti,
M. Buchwald, and L. C. Tsui. Identification of the cystic fibrosis gene: Genetic
analysis. Science, 245:1073-1080, 1989.

[16] D. L. Kroetz, C. Pauli-Magnus, L. M. Hodges, C. C. Huang, M. Kawamoto, S. J.
Johns, D. Stryke, T. E. Ferrin, J. DeYoung, T. Taylor, E. J. Carlson, I. Herskowitz,
K. M. Giacomini, and A. G. Clark. Sequence diversity and haplotype structure in

the human ABCD1 (MDR1, multidrug resistance transporter). Pharmacogenetics,
13:481-494, 2003.

[17] G. Lancia, C. M. Pinotti, and R. Rizzi. Haplotyping populations by pure parsi-
mony: complexity of exact and approximation algorithms. INFORMS Journal on
Computing, 16(4):348-359, 2004.

[18] C. M. Li and Anbulagan. Look-ahead versus look-back for satisfiability problems.
In International Conference on Principles and Practice of Constraint Programming
(CP), pages 341-355, October 1997.

[19] I. Lynce and J. Marques-Silva. Efficient haplotype inference with Boolean satisfia-
bility. In National Conference on Artificial Intelligence (AAAI), July 2006.

[20] I. Lynce and J. Marques-Silva. SAT in bioinformatics: Making the case with haplo-
type inference. In International Conference on Theory and Applications of Satisfia-
bility Testing (SAT), pages 136-141, 2006.

[21] V. Manquinho and O. Roussel. The first evaluation of Pseudo-boolean solvers
(PB’05). Journal on Satisfiability, Boolean Modeling and Computation, 2:103-143,
2006.

[22] J. P. Marques-Silva and K. A. Sakallah. Grasp: A new search algorithm for satisfi-
ability. In ACM/IEEE International Conference on Computer-Aided Design, pages
220-227, November 1996.

[23] T. Niu, Z. Qin, X. Xu, and J. Liu. Bayesian haplotype inference for multiple linked
single-nucleotide polymorphisms. American Journal of Human Genetics, 70:157-169,
2002.

[24] S. H. Orzack, D. Gusfield, J. Olson, S. Nesbitt, L. Subrahmanyan, and V. P. Stanton.
Analysis and exploration of the use of rule-based algorithms and consensus methods
for the inferral of haplotypes. Genetics, 165:915-928, 2003.

[25] P.W. Purdom and C.A. Brown. The pure literal rule and polynomial average time.
SIAM J. Computing, 14:943-953, 1985.



BIBLIOGRAPHY 63
[26] M. J. Rieder, S. T. Taylor, A. G. Clark, and D. A. Nickerson. Sequence variation in
the human angiotensin converting enzyme. Nature Genetics, 22:481-494, 2001.

[27] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation, 2:165-189, 2006.

[28] M. Stephens, N. Smith, and P. Donelly. A new statistical method for haplotype
reconstruction. American Journal of Human Genetics, 68:978-989, 2001.

[29] S. Tavare. Calibrating the clock: Using stochastic processes to measure the rate of
evolution. Calculating the Secrets of Life. National Academy Press, 1995.

[30] The International HapMap Consortium. A haplotype map of the human genome.
Nature, 437:1299-1320, 27 October 2005.

[31] L. Wang and Y. Xu. Haplotype inference by maximum parsimony. Bioinformatics,
19(14):1773-1780, 2003.

[32] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids. Nature,
171:737-738, 1953.



