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Abstract. Haplotype inference has relevant biological applications, and repre-
sents a challenging computational problem. Among others, pure parsimony pro-
vides a viable modeling approach for haplotype inference and provides a sim-
ple optimization criterion. Alternative approaches have been proposed for hap-
lotype inference by pure parsimony (HIPP), including branch and bound, integer
programming and, more recently, propositional satisfiability and pseudo-Boolean
optimization (PBO). Among these, the currently best performing HIPP approach
is based on PBO. This paper proposes a number of effective improvements to
PBO-based HIPP, including the use of lower bounding and pruning techniques
effective with other approaches. The new PBO-based HIPP approach reduces by
50% the number of instances that remain unsolvable by HIPP based approaches.

1 Introduction

Haplotype inference is a challenging computational problem, with a significant number
of applications in genetics. Current DNA sequencing technology is not able to sequence
independently the two copies of each chromosome which define the genetic inheritance
of each diploid organism, such as humans. However, diagnosis and prevention of ge-
netically related diseases requires, in many cases, the identification of the exact DNA
sequences of each chromosome. This leads to the development of computational meth-
ods that can infer the haplotypes from the now easily obtained genotype information.

Over the last few years, Boolean satisfiability (SAT) and pseudo-Boolean optimiza-
tion (PBO) techniques have been used to speed up one particular haplotype inference
approach, based on pure parsimony [4]. Despite the success, the haplotype inference
by pure parsimony (HIPP) problem is computationally hard, and there are several test
cases that no HIPP solver is able to tackle. As a result, either alternative criteria or ap-
proximate algorithms are commonly used. With the objective of generalizing the use of
HIPP solvers in haplotyping, it is important to increase the robustness of HIPP solvers,
by increasing the number of instances HIPP solvers can solve efficiently. This paper
pursues this objective, and combines CP and OR techniques that further reduce the
search space, thus being able to solve some of the most difficult problem instances.

The paper is organized as follows. Section 2 introduces the HIPP problem. Section 3
describes the PBO-based HIPP approach, RPoly, and section 4 introduces the new tech-
niques for improving the RPoly model. Afterwards, experimental results show that the
new PBO model is able to solve a larger number of problem instances.
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2 Haplotype Inference by Pure Parsimony (HIPP)

A haplotype is as a sequence of single nucleotide polymorphisms (SNPs) within a single
chromosome. SNPs correspond to DNA nucleotides where mutations have occurred.
Hence, for sites in the chromosome corresponding to SNPs we may either have the wild
type (represented by 0) or the mutant type (represented by 1). Genotypes represent the
conflated data contained in haplotypes. Each genotype is explained by two haplotypes.
Unlike haplotypes, genotypes may be obtained using sequencing techniques.

Haplotype inference is the problem of identifying a set of haplotypes that may ex-
plain a given set of genotypes. A formal definition follows.

Definition 1. Given a set of � genotypes
�

, each genotype ��� � is represented by
a string of size 	 over the alphabet 
���������� . The ����� element of the ����� genotype is
referred to as ����� with � �!�"�!� and �#�$�%�!	 . Genotype ��� is heterozygous at site� if �&���(')� and is homozygous if ���*�('�� or �&���+',� . The haplotype inference problem
consists in identifying a set of � pairs of haplotypes - , not necessarily disjoint, with
each haplotype . being represented by a string of size 	 over the alphabet 
��/0�1� , such
that each pair of haplotypes explains a given genotype. A pair of haplotypes 23.54� �.76��8 is
said to explain a genotype � � ( � � '�.74�"9 .76� ) if the following holds (with �:�;�<�$	 ):

.=4��� ').76�*� '!�� if � ��� '!��>
.=4��� ').76�*� ',�� if �&���(',��>
. 4��� '?�"@;. 6���  if � ��� '��/A

It is clear that there is some freedom when selecting pairs of haplotypes for explain-
ing genotypes with more than one site with value 2. For example, genotype �B�&� may
be explained either by the pair of haplotypes (001,010) or by the pair of haplotypes
(000,011). However, there is a biological motivation for selecting among the possible
solutions to a set of genotypes the one with the smallest number of distinct haplotypes.
Given that individuals from the same population have common ancestors and that muta-
tions do not occur often, it is expected that individuals from the same population share
a significant percentage of haplotypes.

Definition 2. The approach that restricts the solutions to the haplotype inference prob-
lem such that the required number of haplotypes is minimum is called pure parsi-
mony [4]. Finding a solution with a minimum number of haplotypes is a NP-hard
problem [5].

3 RPoly: A Pseudo-Boolean HIPP Model

The most well-known tools for solving the HIPP problem can be divided into four
categories: (i) RTIP [4], PolyIP [1] and HybridIP [1] are integer linear programming
(ILP) formulations, (ii) Hapar [8] is a branch and bound algorithm, (iii) SHIPs [6] is a
SAT-based model for the HIPP problem and (iv) RPoly [3] is a pseudo-Boolean model.

The pseudo-Boolean optimization model, referred to as Reduced Poly model (RPoly)
[3], is currently the best performing algorithm for the HIPP problem. RPoly is based on
the PBO model for PolyIP and further enhanced with key optimizations.
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The RPoly model associates two haplotypes, .C4� and .76� , with each genotype � � , and
these haplotypes are required to explain � � . Moreover, RPoly associates a variable D ���
with each heterozygous site � �*� , such that D ��� 'E� indicates that . 4�*� 'F� and . 6�*� 'G� ,
whereas D ��� 'H� indicates that .74��� 'H� and .76�*� 'I� . The values of .J4� and .76� at
homozygous sites are implicitly assumed.

Furthermore, let K/LJM�ON , with P5�QR�!
TS=VU�� and �W�YX[Z?�:�?� , be 1 if haplotype P
of genotype � � and haplotype Q of genotype � N are different. The conditions on the K�LCM�0N
variables are based on the values of variables D �*� and D N\� for heterozygous sites.

Moreover, two genotypes are said to be incompatible if there exists a site for which
the value of one genotype is 0 and the other is 1; otherwise they are compatible. Clearly,
candidate haplotypes for each genotype are related with candidate haplotypes for other
genotypes only if the two genotypes are compatible. Then, incompatible genotypes � �
and � N are guaranteed not to be explained by the same haplotype and so the value ofK]LJM�ON is 1 for the four possible combinations of P and Q .

In addition, the model uses variables ^ to denote whether one of the haplotypes,
associated with a given genotype, is different from all previous haplotypes. Hence, ^CL � ,
with P_�`
�S7�UT� and � ���a��� , is 1 if haplotype P of genotype �B� is different from all
previous haplotypes. Then, the conditions on the ^JL � variables are based on the condi-
tions for the K/LCM�ON variables, with �:�$XWZ$� and Q#�_
�S7�U�� .

Finally, the cost function minimizes the number of distinct haplotypes used, which
is given by the sum of variables ^7L � . The next section describes new improvements to
the RPoly model, which allow significant additional performance improvements.

4 Optimizations to the RPoly Model

This section describes optimizations to the RPoly model, the state of the art HIPP solver.
The resulting model is called New RPoly (NRPoly for short).

The first optimization consists in integrating the lower bounds of SHIPs [6, 7] in the
NRPoly model. SHIPs is a SAT-based HIPP approach that, starting from a lower bound
on the number of haplotypes, generates a SAT instance for each candidate number of
haplotypes. SHIPs most recent lower bound procedure [7] provides a list of genotypes
with an indication of the contribution of each genotype to the lower bound. Each geno-
type either contributes with +2, indicating that 2 new haplotypes will be required for
explaining this genotype, or with +1, indicating that 1 new haplotype will be required
for explaining this genotype.

In practice, for each genotype with an associated haplotype, the corresponding ^
variable, denoting whether a haplotype used for explaining a genotype is different from
the haplotypes considered so far, is assigned value � , and the clauses used for constrain-
ing the value of ^ need not be generated. The NRPoly model needs to be generated in
such a way that the first genotypes correspond to genotypes used in the lower bound.

Similarly to the advantages of using lower bounds in SHIPs, the integration of lower
bounds in NRPoly offers a few relevant advantages. First, several variables ^ become
fixed with value � , allowing the solver to focus on the remaining variables. Second, the
size of the generated PBO problem instances is significantly reduced. The integration
of lower bound information can reduce the generated PBO instances up to a factor of 3.
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The second optimization is based on a key simplification introduced in the RTIP
model [4], which consists in not considering all pairs of haplotypes that can explain a
genotype. If a genotype can be explained by a pair of haplotypes such that none of these
two haplotypes can explain any other genotype, then this pair of haplotypes needs not
be considered.

Inspired by the pruning in RTIP, new constraints can be added to the NRPoly model.
First, observe that each genotype that is not incompatible with all other genotypes must
be explained by at least one haplotype that also explains some other genotype. There-
fore, if a genotype � � is explained by a pair of haplotypes 23.J4� V.=6� 8 such that neither .74�
nor .76� have been used to explain a genotype with lower index, then at least one of the
haplotypes, . 4� or . 6� , must be used to explain one of the genotypes with higher index.

Consider genotypes compatible with at least one other genotype in
�

. Define the
predicate b52��V�X 8 to be true if � � and � N are compatible. Formally, for all �c�`�d�e� such
that � � is compatible with at least another genotype in

�
:

If ^ 4�gf ^ 6�  then h NTi7��j k1lm�nj Npo h L j MVqBr 4 j 6�s0t K]LJMN7� A (1)

Finally, an additional improvement consists in enriching the model with cardinal-
ity constraints on the K variables. For many combinatorial problems, adding new con-
straints to a model prunes the search and it is therefore likely to contribute to the solver
being more efficient at finding solutions.

Clearly, unless genotypes � � and � N are equal, they cannot be explained by the same
pair of haplotypes. Therefore, two different genotypes must be explained by at most one
common haplotype. In practice, this constraint is integrated in the model by adding car-
dinality constraints on the variables K which capture the number of distinct haplotypes
used to explain a pair of genotypes. Moreover, for incompatible pairs of genotypes, the
constraint on the K variables is automatically guaranteed. Hence, for each pair of distinct
non-homozygous compatible genotypes, at least three of their four pairwise haplotypes
must be different:

If bu2n�V�X 8 f � �wv'x� N f h ��j �\y 2n� �*� ')� f � ���\y ')� 8  then z
L j MpqBr 4 j 6{s

K]LCM�ONR|`} A (2)

5 Experimental Results

A comprehensive evaluation was performed, using a set of 1183 problem instances (de-
scribed in [3]), that include real and artificially generated problem instances. NRPoly
has been compared against the other HIPP solvers. NRPoly uses the PBO solver Min-
iSat+ [2]. For the models using ILP, CPLEX version 11 was used. All HIPP solvers were
run on a Intel Xeon 5160 server (3.0GHz, 1333Mhz, 4GB) running Red Hat Linux.

Figure 1 (left) provides a table with the number of aborted instances by NRPoly and
the other HIPP algorithms, including the approaches in which NRPoly has been directly
inspired: RTIP, SHIPs and RPoly. The total number of instances not solved within the
time limit of 1000 seconds is given for each solver. We should note, however, that for
RTIP many of the aborted instances exhausted the memory resources before the time
limit. For SHIPs, the most recent version [7], which includes the lower bound used
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Algorithms # Aborted
NRPoly 18
RPoly 36
SHIPs 67
RTIP 378
Hapar 603

HybridIP 708
PolyIP 709 ~p�1�]�

~V���

~V� �

~p� ��� ~p� � ~V� �

R
Po

ly
tim

e(
s)

NRPoly time(s)

Fig. 1. Instances aborted by HIPP solvers within 1000s and performance of RPoly vs NRPoly.

by NRPoly, was considered. As can be concluded, the HIPP algorithms based on SAT
or PBO are the most effective. NRPoly is the most robust algorithm aborting only 18
problem instances, thus reducing in half the number of instances aborted by RPoly.

Figure 1 (right) compares NRPoly with the best performing tool RPoly. For very
easy instances RPoly is clearly faster (mainly due to the additional constraints of NR-
Poly) but for difficult instances NRPoly is consistently faster. There is only one ex-
ception for one problem instance that RPoly is able to solve a few seconds before the
timeout and NRPoly is not. However, we have observed that NRPoly would be able to
solve the same instance if it was allowed a few more seconds. Overall, we may conclude
that NRPoly is more robust and more effective on solving the hardest instances.
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