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Abstract

Identifying genetic variations has an important role in human genetics. Single Nucleotide Polymor-

phisms (SNPs) are the most common genetic variations and haplotypes encode SNPs in a single

chromosome. Unfortunately, current technology cannot obtain directly the haplotypes. Instead,

genotypes, which represent the combined data of two haplotypes on homologous chromosomes, are

acquired. The haplotype inference problem consists in obtaining the haplotypes from the genotype

data. This problem is a key issue in genetics and a computational challenge.

This dissertation proposes two Boolean optimization methods for haplotype inference, one po-

pulation-based and another pedigree-based, which are competitive both in terms of accuracy and

efficiency. The proposed method for solving the haplotype inference by pure parsimony (HIPP)

approach is shown to be very robust, representing the state of the art HIPP method. The pedigree-

based method, which takes into consideration both family and population information, shows to be

more accurate than the existing methods for haplotype inference in pedigrees. Furthermore, this

dissertation contributes to better understanding the HIPP problem by providing a vast comparison

between HIPP methods.

Keywords: haplotype inference, Boolean satisfiability (SAT), pseudo-Boolean optimization (PBO),

maximum satisfiability (MaxSAT), pure parsimony (HIPP), minimum recombinant (MRHC).

i



ii



Sumário

A identificação de variações genéticas desempenha um papel fundamental no estudo da genética

humana. Os polimorfismos de nucleótido único (SNPs) correspondem às variações genéticas mais

comuns entre os seres humanos e os haplótipos codificam SNPs presentes num único cromossoma.

Actualmente, por limitações de ı́ndole tecnológica, a obtenção directa de haplótipos não é exeqúıvel.

Por outro lado, são obtidos os genótipos, que correspondem à informação conjunta do par de cro-

mossomas homólogos. O problema da inferência de haplótipos consiste na obtenção de haplótipos

a partir de genótipos. Este paradigma representa um aspecto fundamental em genética e também

um interessante desafio computacional.

Esta dissertação propõe dois métodos de optimização Booleana para inferência de haplótipos,

um populacional e outro em linhagens genealógicas, cujo desempenho é assinalável em eficiência

e precisão. O método para inferência de haplótipos por parcimónia pura (HIPP) em populações

mostra-se muito robusto e representa o estado da arte entre os modelos HIPP. O modelo proposto

para inferência de haplótipos em linhagens genealógicas, que combina informação familiar e popula-

cional, representa um método mais preciso que os congeneres. Ademais, esta dissertação representa

um contributo relevante na compreensão do problema HIPP, fornecendo uma extensa comparação

entre métodos.

Palavras chave: inferência de haplótipos, satisfação Booleana (SAT), optimização pseudo-Booleana

(PBO), satisfação máxima (MaxSAT), parcimónia pura (HIPP), recombinação mı́nima (MRHC).
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Introduction

“Reason is the pace; increase of science, the way; and the benefit of mankind, the end.”

Thomas Hobbes

Recent advances in sequencing technologies have enabled decoding the genome of thousands

of individuals efficiently and inexpensively. Such information has offered investigators new op-

portunities of understanding the genetic differences between human beings, and afterward map-

ping such differences to common human diseases. The International HapMap Project 1 [153, 154,

155] and the 1000 Genomes Project 2 represent significant efforts to catalog the genetic variations

among human beings.

The DNA, deoxyribonucleic acid, is a long polymer whose structural units are the nucleotides:

adenine (A), thymine (T), guanine (G) and cytosine (C). Moreover, the DNA contains the genetic

information and is passed on from parents to offspring. Differences in the sequence of nucleotides

that constitutes the DNA explain the genetic variations that influence how people differ in their risk

of disease or their response to drugs.

At the forehead of human variation at genetic level are Single Nucleotide Polymorphisms, or

SNPs (pronounced snips). A SNP is a single DNA position where a mutation has occurred and one

nucleotide was replaced by a different one. For example, a SNP occurs when a sequence AGTTCG

is modified to AGATCG. Moreover, the least frequent nucleotide must be present in a significant

percentage of the population (e.g. 1%). SNPs are the most common genetic variations. The human

genome has millions of SNPs [155], which are cataloged in dbSNP 3, the public repository for DNA

1http://www.hapmap.org
2http://www.1000genomes.org
3http://www.ncbi.nlm.nih.gov/projects/SNP
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Figure 1.1: Human genome a

aFigure taken from http://www.genomenewsnetwork.org/resources/whats a genome/Chp1 2 1.shtml

variations [146].

What is the haplotype inference problem?

Humans are diploid organisms, which means that our genome is organized in pairs of homologous

chromosomes, representing the maternal and paternal chromosome. Figure 1.1 illustrates the 23

pairs of human chromosomes. Homologous chromosomes have the same gene sequences, each one

being inherited from one parent.

Haplotypes correspond to the sequence of correlated SNPs in a single chromosome. Therefore,

each individual has two haplotypes for a given stretch of the genome. Technological limitations pre-

vent geneticists from acquiring experimentally the data from a single chromosome, the haplotypes.

Instead, genotypes are obtained. Genotypes correspond to the mixed data of homologous haplotypes.

This means that, at each DNA position, it is not possible to know whether the individual has in-

herited the same nucleotide from both parents (homozygous position) or whether the individual has

inherited distinct nucleotides from each parent (heterozygous position). An example of a genotype,

with seven positions of which three are heterozygous positions, is T A/G C C/T G A C/T . The

problem of obtaining the haplotypes from the genotypes is known as haplotype inference, haplotyping

or phasing.

Figure 1.2 presents an example of the haplotype inference problem. Given the genotype g, the

haplotyping problem aims at choosing the pair of haplotypes, among the four possible solutions,

A-D, that originated genotype g.
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Figure 1.2: Example of the haplotype inference problem

genotype g T A/G C C/T G A C/T

Solution A haplotype ha T G C T G A C

haplotype hb T A C C G A T

Solution B haplotype ha T A C T G A T

haplotype hb T G C C G A C

Solution C haplotype ha T A C T G A C

haplotype hb T G C C G A T

Solution D haplotype ha T A C C G A C

haplotype hb T G C T G A T

Why is haplotype inference important?

Although a number of disease association studies can be performed using only single-locus alleles

or genotype frequencies, haplotype information is essential to the detailed analysis of the mechanisms

of a disease. The identification of haplotypes enables to perform haplotype-based association tests

with diseases. This is particularly important in genome-wide association studies. Indeed, haplotypic

association studies have found DNA positions associated with diseases that are not genome-wide

significant using single-marker tests [18]. Moreover, most imputation methods require haplotypic

data rather than genotypes [81].

Information about human haplotypes is significantly important in clinic medicine [30]. Hap-

lotypes are more informative than genotypes and, in some cases, can better predict the severity

of a disease or even be responsible for producing a specific phenotype. In some cases of medical

transplants, patients who closely match the donor haplotypes are predicted to have more success on

the transplant outcome [128]. Moreover, medical treatment can be customized, based on the genetic

information of the patient, because individual responses to drugs can be associated with a specific

haplotype [48]. Furthermore, haplotypes help inferring population demographic histories [112].
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Why a computer science dissertation in haplotype inference is of interest?

Computational biology is a research field in extensive expansion, where computer science and

mathematics knowledge is applied to biological problems.

Despite being an important biological problem, haplotype inference turned also to be a challeng-

ing mathematical problem, and, therefore, has deserved significant attention by the mathematical

and computer science communities. The mathematical approaches to haplotype inference can be sta-

tistical [151, 19] or combinatorial [26, 61, 62]. Within the combinatorial approaches, it is noteworthy

the haplotype inference by pure parsimony (HIPP) [62] and the minimum recombinant haplotype

configuration (MRHC) problems [64, 138]. Given a set of genotypes, the HIPP approach aims at

finding a haplotype inference solution that uses the smallest number of distinct haplotypes. Given

the set of genotypes from individuals of the same family, the MRHC approach searches the haplotype

inference solution that minimizes the number of recombination events. Both HIPP and MRHC are

challenging computational problems belonging to the complexity class of APX-hard problems [92,

110].

Since these problems are computationally hard, there has been significant effort towards produc-

ing efficient solvers, using distinct types of methodologies, including branch-and-bound [164], integer

linear programming (ILP) [62, 16, 17] and answer set programming (ASP) [39]. Also Boolean sat-

isfiability (SAT) has been successfully applied to haplotype inference [114, 130], producing very

competitive results when compared to alternative methods [116].

Why is this dissertation relevant?

This dissertation contributes with alternative approaches for solving the haplotype inference

problem, which are competitive both in terms of efficiency and accuracy. We explored the well-

known HIPP approach, suggesting an efficient method which addresses the state of the art for

solving the problem. In addition, an accurate family-based approach for haplotype inference is

proposed.

Alternative approaches to haplotype inference are important for complementing the existing

methods, because there exists no approach which can infer haplotypes without inaccuracies. More-

over, this dissertation contributes to better understanding the haplotype inference problem, in par-

ticular, the HIPP approach.

The next section outlines the main contributions of this thesis.
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1.1 Contributions

Several contributions were developed in the context of this thesis. All the contributions refer to

the haplotype inference problem.

• First, we propose a novel method, named RPoly, for solving the haplotype inference by pure

parsimony problem, with the goal of outperforming the efficiency of the existing methods.

Indeed, this goal has been achieved. The evaluation of exact HIPP solvers, in a consider-

able set of well-known instances, has shown that our method is, in general, faster than other

methods and, furthermore, that RPoly is able to solve a significantly larger set of instances,

in a reasonable amount of time. In addition, RPoly is able to deal with missing genotype

sites. A first version of this work has resulted in a publication in the Algebraic Biology 2007

conference [55], whereas an improved version of the model was published in the International

Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Tech-

niques in Constraint Programming 2008 [56]. This contribution also resulted in a publication

in the Annals of Operations Research [57].

• A second main contribution is a novel approach to haplotype inference in pedigrees, with the

main goal of obtaining an accurate method for solving this problem. The resulting haplotype

inference model, named PedRPoly, is shown to be quite competitive and more accurate than

the existing methods for haplotype inference in pedigrees. A preliminary version was presented

at the Workshop on Constraint Based Methods for Bioinformatics 2009 [51], whereas a further

improved version was published in the proceedings of the Algebraic and Numeric Biology 2010

conference [52].

• Third, we contributed to better understanding the haplotype inference by pure parsimony

problem, providing a complete study of the approach. This work resulted in three publica-

tions: a chapter in the book Mathematical Approaches to Polymer Sequence Analysis [54], a

survey in the Journal of Computational Biology [53] and an overview in the proceedings of the

International Conference on Tools with Artificial Intelligence [113].

In addition, an approximation and upper bound algorithm for haplotype inference by pure par-

simony was proposed in the context of this thesis [125].

Finally, the different haplotype inference models developed during this research work represent

challenging combinatorial optimization problems and provide an interesting new set of challenging
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Boolean optimization benchmarks, some of which cannot yet be solved by state of the art pseudo-

Boolean optimization and maximum satisfiability solvers. Also, these challenging instances have

inspired recent research work in the development of new solvers [124].

The work developed in the scope of this dissertation has already tens of citations by other

authors.

1.2 Thesis Outline

This dissertation has a total of nine chapters. The first chapter is the introduction and the last

chapter presents the conclusions and future work. Chapters 2, 3 and 4 describe the problems related

to the subject of this thesis. Chapters 5, 6, 7 and 8 present the main contributions of this thesis.

More precisely, this dissertation is organized as follows:

Chapter 2 reviews techniques used to solve discrete constraint problems, including integer lin-

ear programming, Boolean satisfiability, pseudo-Boolean optimization and maximum satisfiability.

These techniques will be used in the following chapters in order to solve haplotype inference models.

Chapter 3 provides a description of the haplotype inference problem and overviews the popu-

lation and pedigree-based approaches to tackle the haplotype inference problem.

Chapter 4 reviews related work in haplotype inference by pure parsimony, including prepro-

cessing techniques, exact and heuristic methods and complexity studies.

Chapter 5 describes our haplotype inference by pure parsimony model, named RPoly. The

new approach is a pseudo-Boolean optimization model based on previous models but with further

improvements. These improvements include eliminating key symmetries, reducing the size of the

model, integrating lower bounds and cardinality constraints. Moreover, RPoly is able to deal with

missing data.

Chapter 6 presents experimental results regarding the pure parsimony haplotyping. First, the

experimental data and setup is presented. Second, the performance of all existent HIPP solvers is

compared in terms of efficiency. We conclude that RPoly is the most efficient HIPP method. Third,

the tightness of lower and upper bounds is tested. Finally, the accuracy of the pure parsimony
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approach is compared with other haplotype inference methods.

Chapter 7 describes a new approach to haplotype inference in pedigrees. The new approach

is named minimum recombinant maximum parsimony (MRMP). A new Boolean constraint opti-

mization model for solving the MRMP problem, named PedRPoly, is proposed, including the use

of advanced modeling techniques and an adequate constraint solver, which results in an efficient

haplotype inference tool.

Chapter 8 presents the experimental results regarding haplotype inference in pedigrees. We

conclude that PedRPoly has better accuracy than existing haplotype inference methods for pedi-

grees.

Chapter 9 concludes the dissertation and suggests future research directions.
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2

Discrete Constraint Solving

This chapter introduces a number of existent mathematical formalisms for solving discrete con-

straint problems, with special focus on Boolean constraint problems. These formalisms will be

relevant later in this dissertation for modeling the haplotype inference problem.

The following sections aim at being an introduction to integer linear programming (ILP), Boolean

satisfiability (SAT), pseudo-Boolean optimization (PBO) and maximum satisfiability (MaxSAT). All

these problems are solved by satisfying a number of constraints. Moreover, the problems can include

a cost function which must be optimized. There are other discrete constraint solving approaches,

such as constraint programming (CP) and approximation methods (e.g. local search), but they are

out of the scope of this thesis.

2.1 Integer Linear Programming (ILP)

Linear programming (LP) is a well-known methodology for solving constraint optimization prob-

lems, first proposed by Kantorovich, in 1939 [83]. LP is a field of research rather studied and with

several important results. In this dissertation, we only provide a brief introduction to the subject.

2.1.1 Preliminaries

Many practical optimization problems can be expressed using linear programming formulations.

The goal of linear programming is to find an assignment of values to a set of variables, x1, . . . , xn,

which optimizes (minimizes or maximizes) a linear function f ,

f(x1, . . . , xn) =
n
∑

j=1

cjxj , (2.1)
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subject to a set of m linear constraints (equalities or inequalities),

n
∑

j=1

ai jxj ≥ bi, (2.2)

where cj , ai j , bi ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n and n,m ∈ N.

Function f is known as the objective function or cost function, derived from the importance of LP

in microeconomics and business management. A standard example of an LP application consists in

maximizing the business profit of a company subject to constraints evolving the cost of production

schemes.

In 1947, Dantzig developed the simplex method to solve LP problems. Although the complexity

of simplex is exponential in the worst case, this algorithm is efficient in most cases and is very

useful in practice. In 1980, the LP problem was proved to be solvable in polynomial time [86]

and some polynomial methods have been presented. Nonetheless, simplex is still widely used.

CPLEX [76] 1 is the most well-known commercial tool used to solve the LP problem applying the

simplex procedure. Indeed, CPLEX is able to solve various problems, including linear programming,

quadratic programming, quadratically constrained programming and mixed integer programming

problems.

Although many problems can be naturally formulated in linear programming, there are other

problems which require further restrictions. Integer linear programming (ILP) is a special case of

linear programming (LP) with the additional constraint that variables must take on integral values.

This restriction to a discrete domain is sufficient to increase the complexity of the problem to

NP-complete [135].

2.1.2 ILP Algorithms

Despite the complexity of ILP, several techniques have been studied in order to solve ILP prob-

lems using a reasonable amount of time, in several practical situations [49].

The usual method for solving ILP problems is branch-and-bound search. As the name indicates,

the process consists in branching the problem recursively in smaller subproblems. Several branching

heuristics have been studied, and its choice can have a relevant impact in the performance of the

search algorithm. Different choices on branching conduct to different parts of the search space that

must be explored.

1www.cplex.com
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Figure 2.1: Example of a valid cut, during a branch-and-cut search a

aFigure taken from http://mat.gsia.cmu.edu/orclass/integer/node14.html#figcut

Usually, to solve an ILP problem, the respective LP relaxation, which is obtained removing the

integrality constraints on the variables, is first considered, and next, an optimal integer solution,

close to the fractional solution, is searched. The solution of the LP relaxation must satisfy the

following properties. First, in a minimization problem, the LP relaxation provides a lower bound

on the optimal value of the ILP problem whereas in a maximization problem, the LP relaxation

provides an upper bound on the solution of the ILP problem. In addition, all integer solutions are

also solutions of the LP relaxation problem. Moreover, if the LP relaxation provides a solution with

integer variables, then the solution is also valid for the ILP problem.

Without loss of generality, consider a maximization problem. The LP relaxation provides an

upper bound on the value of the feasible solution. On each branch of the search tree, if the LP

solution is greater than the upper bound, then we can discard this branch and stop exploring it. In

this case, we say that the subproblem is discarded by a bounding argument.

The branch-and-bound search algorithm works as follows. First, the linear relaxation of the

problem is solved. If the solution is integer, then the algorithm terminates returning the solution.

Otherwise, new subproblems are created by branching on a fractional variable. If x is a variable

which could take n < +∞ distinct integer values, then one possible choice is to create n ILPs

obtained by setting x to each possible value. Let a subproblem be not active when any of the

following occurs: you used the subproblem to branch on, all variables in the solution are integer, the

subproblem is infeasible, or you can discard the subproblem by a bounding argument. Otherwise,

the subproblem is active. Hence, an active subproblem and a fractional variable are chosen to branch

on. The process should be repeated until there are no more active subproblems.
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An alternative to the general branch-and-bound algorithm is called branch-and-cut. A branch-

and-cut algorithm is a branch-and-bound procedure where, at each step, valid cuts are added to

improve the bounds. A valid cut is a constraint which every feasible integer solution must satisfy

and the current fractional solution should not satisfy. Figure 2.1 provides an example of a valid

cut. In general, branch-and-cut is an efficient method to solve ILP problems. Nonetheless, given the

NP-hardness of ILP, the branch-and-cut procedure has exponential complexity in the worst case.

2.2 Boolean Satisfiability (SAT)

The Boolean satisfiability (SAT) problem has many applications in several fields, among which

are electronic design automation [123], model checking [14], bioinformatics [115], software modeling

and verification [77]. Consequently, a great effort has been done to study the SAT theory and to

develop efficient SAT solvers.

2.2.1 Preliminaries

In Boolean logic (or propositional logic), each variable x may take one of two values, 1 (for true)

or 0 (for false). A propositional formula ϕ is said to be in conjunctive normal form (CNF) if it is the

conjunction (∧) of disjunctions (∨) of literals, i.e.
∧

i(
∨

j li j), where a literal l is either a variable,

x, or its complement, ¬x. A clause is a disjunction of literals, (
∨

j lj). Every propositional formula

ϕ can be converted to CNF, as explained in the next subsection.

A complete Boolean assignment maps each variable x to one of two values, either 0 or 1. For a

non-complemented literal, the value of the literal is the value of the variable. For a complemented

literal, the value of the literal is the complement of the value of the variable. The value of a clause

is the disjunction of the values of its literals. The value of a CNF formula is the conjunction of the

values of its clauses. A clause is satisfied if any of its literals is assigned value 1. A CNF formula ϕ

is satisfied if all of its clauses are satisfied.

Definition 2.1. Boolean Satisfiability

Given a propositional formula, ϕ, the Boolean SATisfiability (SAT) problem consists in deciding

whether there exists a Boolean assignment to the variables of ϕ, such that ϕ becomes satisfied and,

in that case, the satisfying assignment can be given.

For example, consider the CNF formula ϕ = ((x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3)), with three

variables and three clauses. A possible SAT solution to the formula ϕ assigns x1 = 1, x2 = 0 and
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x3 = 1.

The SAT problem was the first problem to be proved NP-complete, in 1971 [28].

2.2.2 CNF Encodings

Every propositional formula is equivalent to a CNF formula. Propositional logic formulae can be

transformed to CNF in several ways, but some encodings may be better than others. In particular,

some encodings keep structural information while others do not. Encodings which keep the structural

information tend to be preferred because it can be used to improve the performance of the search

procedure.

The most simple way to transform a propositional formula to CNF is by using the rules of Boolean

algebra: definitions of the connectives, commutativity, associativity, distributivity and idempotence

of ∧ and ∨, De Morgan’s laws, laws of absorption, complements, etc. For example, consider the

formula

ϕ = ((a ∧ b)⇒ (c ∧ d)).

By definition of the implication connective, the formula can be rewritten as

(¬(a ∧ b) ∨ (c ∧ d)),

and, using a De Morgan’s law, ϕ is equivalent to

(¬a ∨ ¬b ∨ (c ∧ d)).

Applying distributivity, the following CNF formula is achieved,

((¬a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ d)).

The main drawback of this method is that, in general, it yields to exponentially large formulae.

The most usual conversion to CNF is obtained by the Tseitin transformation [157]. Two formulas,

ϕ and ϕ′, are equisatisfiable if ϕ is satisfiable exactly when ϕ′ is satisfiable. The Tseitin encoding

transforms a propositional formula ϕ into an equisatisfiable CNF formula ϕ′ with a linear increase

in the number of clauses. This is obtained by adding a linear number of new variables. For example,

consider the formula ϕ = ((a ∧ b) ⇒ (c ∧ d)). Introduce a new variable f1 such that f1 ⇔ (a ∧ b),
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which is equivalent to the CNF formula

((¬f1 ∨ a) ∧ (¬f1 ∨ b)).

Moreover, introduce a new variable f2 such that f2 ⇔ (c∧d) which is equivalent to the CNF formula

((¬f2 ∨ c) ∧ (¬f2 ∨ d)).

Therefore, ϕ is equisatisfiable to f1 ⇒ f2, i.e.,

(¬f1 ∨ f2),

which means that the CNF formula obtained by the Tseitin transformation is

((¬f1 ∨ a) ∧ (¬f1 ∨ b) ∧ (¬f2 ∨ c) ∧ (¬f2 ∨ d) ∧ (¬f1 ∨ f2)).

2.2.3 SAT Algorithms

The first well-known SAT algorithm, which was proposed in 1960, is the Davis-Putman (DP)

algorithm [33] and was based on the resolution inference rule. This algorithm has the drawback of

its exponential space complexity, thus requiring exponentially large memory resources.

The algorithm that inspired almost all modern SAT solvers is the Davis-Putnam-Logemann-

Loveland (DPLL) algorithm [32], from 1962, which first introduces the notion of a search tree for

solving SAT.

SAT solving algorithms have significantly improved in the last years. SAT competitions 2 have

been held each year from 2002. These competitions establish every year the state of the art SAT

solvers in different categories and have contributed to rapid advances in the quality of SAT solvers.

Examples of well-known SAT solvers are MiniSat [37] 3, PicoSAT [13] 4 and SAT4J [11] 5.

2http://www.satcompetition.org
3http://minisat.se
4http://fmv.jku.at/picosat
5http://www.sat4j.org
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The DPLL Algorithm

TheDavis-Putnam-Logemann-Loveland (DPLL) algorithm, also known as DPLL backtrack search,

introduced the searching procedure exploring the nodes of a decision tree, using depth-first search.

In a decision tree, each node corresponds to a variable assignment, specified as a decision assign-

ment. A decision level is associated with each node according to its depth in the search tree, starting

from the first variable selection which corresponds to the decision level 1. Assignments during pre-

processing are associated with decision level 0. The search algorithm alternates between three main

processes: decision process, deduction process and diagnosis process, which are briefly described

in the following paragraphs. The DPLL algorithm eliminates the exponential memory problem of

the previous DP algorithm based on resolution. However, exponential time is still a problem and

developing efficient techniques are crucial for building an efficient SAT solver.

Decision Process

In the decision process a variable is selected and assigned, i.e. it is chosen a node in the search

tree and a branch to explore. The selected variable is referred to as decision variable. Choosing

different branches of the search tree can produce significantly different sized search trees and con-

sequently different running times may be necessary to solve the problem. Given the importance

of choosing a good branching variable and value, several heuristics have been studied to choose

the most appropriate decision variable and corresponding assignment. Early heuristics give pref-

erence to assignments that simplify the largest number of clauses [171, 79, 22], or directly satisfy

the maximum number of clauses [127]. The literal count heuristics [122] give more relevance to the

variables that appear more times in unsatisfied clauses. The VSIDS heuristic [129] keeps a score for

each variable assignment, which is increased when a variable appears in a learned clause (diagnosis

process).

Deduction Process

In the deduction process, the current assignment is extended by following the logical consequences

of the assignments made so far. Let a unit clause be a clause in which all literals except one are

assigned false. Then, in a unit clause, the unassigned literal must be assigned true in order to

satisfy the clause (unit clause rule) [33]. Boolean constraint propagation (BCP), also known as unit

propagation, is the procedure that iteratively applies the unit clause rule until there are no unit

clauses available or a conflict is found.
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In the BCP process, it is necessary to detect unit clauses and conflicting clauses after a variable

assignment. This mechanism can be very time consuming if some optimized techniques are not

considered. If each time a new variable is assigned, every clause needs to be visited to check

whether the clause has became unit, then the algorithm can be very slow. Therefore, to improve the

BCP engine some techniques have been suggested, using a counter-based BCP [127, 10]. During the

search, a clause is important only in two steps: when the clause goes from two non-falsified literals

to one non-falsified literal; or when the clause goes from one non-falsified literal to zero non-falsified

literals. In the former case, the clause becomes unit and the unit clause rule must be applied. In the

latter case, a conflict is reached and backtrack must be done (diagnosis process). So, in practice, it

is sufficient to keep a counter for each clause and, each time a literal is assigned false, the counter

of each clause which contains that literal is increased by one. For a clause with N literals, only

when the counter goes from N -2 to N -1 it is necessary to visit the clause, because it is the only case

where the clause may become unit.

Alternatively, a two watch-literal strategy [129] can be applied. For each clause, pick two literals

not yet assigned and watch them. Note that for a clause to be unit, it is required that at least one

of those literals be assigned value 0. Then, it is only necessary to visit a clause when one of those

literals takes value 0. In this case, one of two situations can happen. Either the clause becomes unit

and then, the other watched literal, which is the only one not yet assigned, must be true; or at least

two literals in the clause are not assigned to 0. In the latter case, one of the non-watched literals,

l, is not assigned to 0, and then, literal l should be chosen to replace the watch-literal just assigned

to value 0. The watch-literal BCP has the advantage that fewer clauses are visited when a literal is

assigned. Moreover, unassignment is done in constant time and frequent re-assignments of literals

are faster.

Diagnosis Process

A conflict occurs when all literals in a clause evaluate to false, resulting on an unsatisfiable

clause, also called conflicting clause. In this case, the conflicting assignment must be undone and

the subtree below the current node can be pruned. The mechanism of undoing an assignment and

going back to a lower level on the decision tree is called the backtracking process.

The original DPLL algorithm performs chronological backtracking which corresponds to back-

tracking to the highest decision level where the corresponding variable has not been tried with both

values. This procedure, proposed in the original DPLL algorithm, works well for randomly gen-

erated instances but, in general, performs poorly for instances coming from practical applications.
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Actually, chronological backtracking can waste too much time exploring a region of the search tree

with no satisfying assignments.

After a conflict, the BCP engine can do a learning process [127, 10], to ensure that the conflict-

ing assignment is not tried again in the future. Normally, only a subset of the assigned variables

are responsible for the conflict. During the diagnosis process, such subsets of variables must be

identified and clauses with information about the conflict, learned clauses, are added to the model.

Furthermore, learned clauses are used in non-chronological backtracking. Non-chronological back-

tracking [127] allows to jump some levels in the search tree when doing backtrack. This process

plays an important role in pruning the search space, in particular for structured problems.

The algorithm terminates successfully when all clauses became satisfied by a certain assignment

or unsuccessfully if all assignments have been tested, thus being an unsatisfiable formula.

2.3 Pseudo-Boolean Optimization (PBO)

A pseudo-Boolean optimization (PBO) problem consists in finding an assignment to a set of

Boolean variables which satisfy a given set of constraints, called PB-constraints, and optimize a

given PB objective function.

Pseudo-Boolean optimization problems have been studied since 1968 [67], in several contexts

including operations research, artificial intelligence and electronic design automation. In the last

years, extensive work has been published in the context of PBO.

2.3.1 Preliminaries

In this dissertation, we only consider linear constraints. Linear PBO problems can be seen as

a particular case of ILP problems, where all variables are Boolean and all coefficients are integers.

For this reason, PBO problems are also called 0-1 ILP problems.

A pseudo-Boolean constraint (PB-constraint) is a linear inequality with integer coefficients,

n
∑

j=1

aj lj ≥ b, (2.3)

with aj , b ∈ Z and lj ∈ {xj , x̄j}, and b is the right-hand-side (rhs) of the constraint. A term is an

expression aj lj , where aj ∈ Z is a coefficient and lj ∈ {xj , x̄j} is a literal, with x̄j = ¬xj . Hence,

constraint (2.3) has n terms.
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Definition 2.2. Pseudo-Boolean Optimization

A Pseudo-Boolean Optimization (PBO) problem consists in finding the values for a set of n binary

variables xj, 1 ≤ j ≤ n (i.e. a Boolean assignment), that minimizes a linear objective function

∑n
j=1 cjxj, subject to a set of m pseudo-Boolean constraints,

∑n
j=1 ai j lj ≥ bi, with 1 ≤ i ≤ m and

cj , ai j , bi ∈ Z.

PBO problems can be seen as a generalization of SAT problems. Clauses are particular cases

of PB-constraints. Moreover, PBO problems are enriched with an optimization function. Pseudo-

Boolean constraints have more expressive power than clauses, but PBO is close enough to SAT to

benefit from the recent advances in SAT. On the other hand, PBO is a particular case of ILP and,

therefore, can benefit from the large body of work in ILP.

PBO is a NP-hard problem, since it contains the SAT problem as a particular case [45].

Any PB-constraint can be written in the normal form. A PB-constraint is in the normal form

when it is expressed as
n
∑

j=1

aj lj ≥ b, with aj , b ∈ Z
+, (2.4)

where lj denotes either xj or x̄j . Clearly, every ≤-constraint can be transformed into a ≥-constraint

by negating all its constants. Furthermore, negative coefficients can be eliminated changing xj into

x̄j and updating rhs (note that x̄j is equivalent to 1− xj).

A particular but interesting case of pseudo-Boolean constraints are cardinality constraints, which

impose bounds on the number of literals with value 1.

Definition 2.3. Cardinality Constraint

A Boolean cardinality constraint, also known as counting constraint, is a PB-constraint
∑n

i=1 aili ≥ b,

with li ∈ {xi, x̄i}, where for every i, ai = 1.

Every CNF clause is equivalent to a PB-constraint. Indeed, a CNF clause l1 ∨ l2 ∨ . . .∨ ln, with

li ∈ {xi, x̄i} and 1 ≤ i ≤ n, is equivalent to the PB-constraint l1 + l2 + . . . + ln ≥ 1. However,

in general, a PB-constraint is not equivalent to a single clause. In fact, in some cases, a single

PB-constraint corresponds to an exponential number of CNF clauses. One simple example of an

exponential case is the cardinality constraint
∑n

i=1 li ≤ k, which is true when at most k literals

among l1, . . . , ln are true. This constraint translates to
(

n
k+1

)

clauses which correspond to all possible

clauses obtained by choosing k + 1 literals among {l1, . . . , ln}.

A binate covering problem [162] is a PBO problem where each constraint can be translated into

SAT using a single clause.
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Definition 2.4. Binate Covering Problem

A Binate Covering Problem is a PBO problem such that:

• aij ∈ {−1, 0, 1} for 1 ≤ j ≤ n and 1 ≤ i ≤ m; and

• bi = 1− |{aij = −1, 1 ≤ j ≤ n}| for 1 ≤ i ≤ n.

There are three types of PB-constraints. Clauses are particular cases of cardinality constraints,

which are particular cases of general pseudo-Boolean constraints. Examples of each type of con-

straints are

propositional clause x1 + x̄2 + x̄3 + x4 + x̄5 ≥ 1,

cardinality constraint x1 + x̄2 + x̄3 + x4 + x̄5 ≥ 4,

pseudo-Boolean constraint 3x1 + x̄2 + 5x̄3 + x4 + 2x̄5 ≥ 4.

2.3.2 PBO Algorithms

PBO algorithms can be based on techniques from the ILP domain and from the SAT domain.

The integration of both formalisms translates to a promising method for solving constraint problems.

Several approaches based on SAT techniques have emerged for solving PBO problems. Mainly,

one needs to think how to handle the objective function and how to solve the PB-constraints.

Dealing with the optimization function

There exist two main ideas to deal with the objective function. A branch-and-bound procedure

can be developed, pruning the search space with better estimates for the objective function value.

Alternatively, the objective function can be handled as a PB-constraint whose rhs is iteratively

modified optimizing its value. After determining the value of the current solution, a new constraint

is added to the formulation such that a new solution must improve the best solution found so far.

The process is iterated until an unsatisfiable formula is obtained, which means that the optimal

value of the objective function is the last one to be achieved.

Consider that the problem consists in minimizing a function f(x). In the linear search, an upper

bound, UB, on the optimal value of the function f(x) must be calculated, for example the maximum

of function f . Afterward, the PB-constraint f(x) < UB must be added to the problem formulation.

Each time a solution S is found, UB is set to f(S), so that the corresponding constraint imposes

finding a solution strictly better than S. The process is iterated until the set of PB-constraints
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becomes unsatisfiable. In that case, the last solution (if it exists) is the optimal solution.

Solving PBO using SAT techniques

There are two main approaches for using SAT techniques with PB-constraints. First, PB-

constraints can be directly translated to SAT. Alternatively, the SAT engine can be modified to

deal with PB-constraints directly.

There exist a few methods for translating PB-constraints to SAT [38, 8].

The most simple approach is to translate PB-constraints into a semantically equivalent set of

clauses, using the same variables. However, the number of clauses generated may be exponential.

Nonetheless, the size of the CNF can be reduced to linear using auxiliary variables. Practical

approaches are translation through binary decision diagrams (BDDs), sorter networks or adder

networks [38].

The translation of PB-constraints to clauses using BDDs is interesting in many cases. In order

to translate a BDD into a CNF formula, extra variables may be introduced. Otherwise, even

polynomial BDDs can have an exponential translation to clauses. Therefore, the goal of introducing

new variables is to produce a compact representation of PB-constraints. Nonetheless, in general,

translating PB-constraints into CNF using BDDs is a problem with exponential complexity [8].

Moreover, new variables also allow to preserve more implications between the literals of a PB-

constraint. When translating a PB-constraint to a CNF formula, if an assignment can be propagated

on the PB-constraint, then the same assignment should also be propagated, by unit propagation, on

the corresponding CNF formula. This concept, widely used on constraint programming, is called arc-

consistency. On the other hand, the introduction of variables can slow down the solver. Therefore,

one should choose a CNF encoding more likely to imply unit propagation, but without adding too

many variables. Assuming P 6= NP, which is vastly believed to be true, in general no encoding can

make all implications derivable without adding an exponential number of extra constraints, otherwise

there would be a polynomial algorithm for SAT. However, cardinality constraints can be translated

efficiently maintaining arc-consistency. Translating PB-constraints through BDDs maintains arc-

consistency. In general, conversion through adders or sorters does not maintain arc-consistency, but

in particular, sorters preserve arc-consistency for cardinality constraints.

Recent work proves that there exists a polynomial size CNF encoding of PB-constraints such

that generalized arc-consistency is maintained through unit propagation [9].
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PBO Solvers

Five PBO competitions 6 have been held since 2005, with the goal of assessing the state of the

art in the field of pseudo-Boolean solvers.

Three examples of PBO solvers which follow quite different approaches, still being competitive,

are MiniSat+, Pueblo and BSOLO.

MiniSat+ [38] 7 is a pseudo-Boolean solver which handles PB-constraints through translation

to SAT, without modifying the SAT procedure itself. To encode each individual PB-constraint, the

most appropriate representation (BDDs, adders or sorters) is chosen. In addition, the objective

function is satisfied by iteratively calling the SAT solver where for each new iteration the objective

function is updated until the problem is unsatisfiable.

Pueblo [145] is a PB-solver which handles directly PB-constraints, modifying the SAT engine

to apply propagation and learning to PB-constraints.

BSOLO [119] 8, that was first specially developed for binate covering problems, but afterward

generalized for all PBO problems, adapts techniques from the SAT domain into a branch-and-bound

algorithm.

2.4 Maximum Satisfiability (MaxSAT)

SAT solvers are clearly important in proving satisfiability and providing satisfiability assign-

ments. However, SAT solvers provide little information about unsatisfiable instances. In several

unsatisfiable real world problems, it would be desirable to find an assignment which maximizes the

number of satisfied constraints, or that satisfies all constraints from a given set and the maximum

number of constraints from another set. Therefore, some extensions of SAT have been considered.

MaxSAT and its variants have been used in a wide range of applications, namely scheduling [159],

electrical engineering [170], bioinformatics [152], among others.

2.4.1 Preliminaries

The maximum satisfiability problem is an extension of SAT, that aims at finding an assignment

which maximizes the number of satisfiable clauses.

6http://www.cril.univ-artois.fr/PB10
7http://minisat.se/MiniSat+.html
8http://sat.inesc-id.pt/ṽmm/research
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Definition 2.5. Maximum Satisfiability

Given a CNF formula, ϕ, the Maximum Satisfiability (MaxSAT) problem consists in finding a

Boolean assignment to the variables of ϕ, such that the maximum number of clauses in ϕ become

satisfied.

For example, consider the formula ϕ = (x1 ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)). ϕ is unsatisfiable but

a MaxSAT solver points out that the maximum number of satisfiable clauses is two, and a possible

solution is to satisfy the first two clauses by assigning x1 = 1 and x2 = 1.

MaxSAT is a NP-hard problem because SAT can be reduced to MaxSAT in polynomial time.

There are three important extensions of MaxSAT named weighted MaxSAT, partial MaxSAT and

weighted partial MaxSAT. For these extensions, consider that a weighted clause is a pair (Ci, wi),

where Ci is a clause and wi is a positive natural number (wi ∈ N
+). In this case, wi is named the

weight of clause Ci.

Definition 2.6. Weighted MaxSAT

Given a set of weighted clauses, the Weighted Maximum Satisfiability (Weighted MaxSAT) prob-

lem aims at finding a Boolean assignment that maximizes the sum of weights of satisfied clauses.

For example, consider the weighted formula {(x1, 1), ((¬x1 ∨ x2), 2), ((¬x1 ∨ ¬x2), 4)}. To max-

imize the sum of the weights of the satisfied clauses, the second and the third clauses must be

satisfied. This fact requires the assignment x1 = 0.

Another MaxSAT variant is the Partial MaxSAT problem, which can be described as follows.

Definition 2.7. Partial MaxSAT

Given a set of clauses, in which some clauses are declared hard clauses, CH , and some clauses

are declared soft clauses, CS, the Partial Maximum Satisfiability (Partial MaxSAT) problem aims

at finding a Boolean assignment that satisfies all the hard clauses and maximizes the number of

satisfied soft clauses.

For example, consider the formula containing the soft clauses CS = {(x1), (¬x1 ∨ x2)} and the

hard clauses CH = {(¬x1 ∨ ¬x2)}. Clauses in CH must be satisfied, and the number of satisfied

clauses in CS must be maximized. Hence, one possible solution is to assign x1 = 1 and x2 = 0, thus

satisfying clauses (x1) and (¬x1 ∨ ¬x2).

Definition 2.8. Partial Weighted MaxSAT

Given a set of hard clauses and a set of weighted soft clauses, the Partial Weighted Maximum

22



Satisfiability (Partial Weighted MaxSAT) problem aims at finding a Boolean assignment that satisfies

all the hard clauses and maximizes the sum of the weights of the satisfied soft clauses.

For example, consider the formula containing the soft clauses CS = {((x1), 1), ((¬x1 ∨ x2), 3)}

and the hard clauses CH = {(¬x1 ∨ ¬x2)}. In order to satisfy all hard clauses and maximize the

sum of the weight of the satisfied soft clauses, the solution must contain the assignment x1 = 0.

Note that the MaxSAT problem is a particular case of the partial weighted MaxSAT problem,

where all clauses are soft and have the same weight.

2.4.2 MaxSAT Algorithms

MaxSAT solvers have improved significantly in the last few years. In particular, the existence

of a MaxSAT evaluation 9, held annually since 2006, has contributed to the development of new

efficient MaxSAT solvers.

The first approach proposed to solve MaxSAT problems uses the branch-and-bound scheme

with lower bounding. In this approach, sophisticated lower bounds on the number of unsatisfiable

clauses are computed, using dedicated inference rules, unit propagation and inconsistent subsets.

The approach can be improved using good variable selection heuristics and suitable data struc-

tures. Solvers following the branch-and-bound approach include MaxSatz [98], IncMaxSatz [97],

WMaxSatz [6] and MiniMaxSAT [71].

A different approach is to convert MaxSAT into a different formalism. For example, MaxSAT

can be solved using pseudo-Boolean optimization solvers. SAT4J-MaxSAT 10 [11] applies

this translation procedure. Indeed, PBO and MaxSAT are equivalent formalisms and there are

algorithms to convert one problem into the other problem [3, 70].

An alternative method for solving the MaxSAT problem and its variants uses an unsatisfiability-

based approach. Unsatisfiability-based MaxSAT was first proposed by Fu&Malik [43], in 2006,

and recently, MSUnCore [126] has shown that the approach can actually be very competitive

and practical in real application domains. Other very recent unsatisfiability-based MaxSAT solvers

are WBO [120], WPM1 [5] and PM2 [5]. The unsatisfiability-based approach works as follows.

Iteratively, a conflict-driven clause learning SAT solver is used to identify unsatisfiable subformulae

(unsatisfiability cores) in the input formula. Each clause in each unsatisfiable subformula should be

relaxed by adding a fresh variable. Moreover, a new cardinality constraint is added to the formula

9http://www.maxsat.udl.cat
10http://www.sat4j.org
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requiring that exactly one relaxation variable should be assign true. The process is iterated until

there are no more unsatisfiable cores. The solution to the MaxSAT problem corresponds to the

number of clauses which do not need to be satisfied with the help of a relaxation variable. For

example, consider the formula ϕ = (x1 ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)). A conflict-driven SAT solver

would say that the unsatisfiability core includes all the three clauses. Indeed, note that you can

satisfy each pair of clauses, but you cannot satisfy the three of them. Therefore, each clause of the

formula should be relaxed with a new variable and a new cardinality constraint should be included

in the formulation ϕ′ = {((x1 ∨ b1) ∧ (¬x1 ∨ x2 ∨ b2) ∧ (¬x1 ∨ ¬x2 ∨ b3))}
⋃

{(
∑3

i=1 bi = 1)}. This

new formula is satisfiable and, therefore, the MaxSAT solution is 3-1=2 satisfied clauses.

Decomposition-based solvers use another alternative approach which has not been shown to

be competitive. Examples of decomposition-based MaxSAT algorithms include Clone [137] and

SR(w) [139].

2.5 Conclusions

This section describes four formalisms for solving discrete constraint problems, namely integer

linear programming (ILP), Boolean satisfiability (SAT), pseudo-Boolean optimization (PBO) and

maximum Satisfiability (MaxSAT). ILP, PBO and MaxSAT are optimization problems, whereas

SAT is a decision problem. All of these formalisms correspond to NP-complete problems.

ILP is a mature approach for solving linear programming problems with integer variables. In

particular, in 0-1 ILP problems, all variables must take Boolean values. ILP problems are normally

solved using branch-and-bound. CPLEX [76] is a well-known commercial tool for solving ILP

problems.

SAT aims at finding a Boolean assignment to the variables of a formula ϕ, such that ϕ becomes

satisfied. Every Boolean formula is equivalent to a formula in conjunctive normal form (CNF). The

Tseitin transformation [157] allows a conversion to CNF by adding a linear increase in the number

of clauses. The DPLL algorithm [32] aims at solving SAT using a search procedure which explores

the nodes of a decision tree using depth-first search. The search procedure alternates between three

main processes, namely decision, deduction and diagnosis. In the decision process, a variable is

selected and assigned to a Boolean value, using a heuristic decision. In the deduction process, the

current assignment is extended by following the logical consequences of the assignments made so

far, using Boolean constraint propagation. The third step, the diagnosis process, must occur after

a conflict has been reached. After a conflict, it is necessary to backtrack (chronologically or non-
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chronologically) and the learned clauses are added to the model [127, 10]. These three steps are

iterated until a solution is achieved or all branches of the search tree have been explored without

finding a solution, in which case the formula is unsatisfiable.

PBO aims at finding a Boolean assignment to a set of variables such that a set of PB-constraints

is satisfied and, in addition, a PB-function is optimized. PBO can be seen as a generalization of SAT

and a particularization of ILP. Therefore, PBO solvers can integrate techniques from both domains

of SAT and ILP, taking both advantage of the recent advances in SAT and the large experience in

the ILP field. Each PB-constraint can be translated to a CNF formula with a polynomial number

of clauses, only if new variables are added [8]. Moreover, it is important to maintain arc-consistency

through unit propagation during a translation of PB-constraints to a CNF formula. The simplest

case is the binate covering problem [162], in which each constraint can be translated into a single

clause. The cost function of the PBO approach can be handled by iteratively adding a new constraint

which requires a better solution to the model, or, alternatively, using a branch-and-bound search

procedure. The most well-known PBO solver is MiniSat+ [38].

MaxSAT aims at finding a Boolean assignment to the variables of a formula ϕ, such that the

maximum number of clauses of ϕ becomes satisfied. There are three extensions of the MaxSAT

problem. In the weighted MaxSAT problem, each clause has a weight, and the goal is to find an

assignment which maximizes the weight of the satisfied clauses. In the partial MaxSAT problem,

some clauses are declared hard and some clauses are declared soft, and the goal is to satisfy all

hard clauses and the maximum number of soft clauses. The partial weighted MaxSAT problem is

a variant of the partial MaxSAT where a weight is associated with each soft clause and the goal

is to satisfy all hard clauses and to maximize the sum of the weights of the soft clauses. MaxSAT

and its extensions can be solved using a branch-and-bound scheme with lower bounding [98, 97, 6,

71], translating the problem directly to PBO [11], using unsatisfiability-based algorithms [43, 126,

120, 5] or using decomposition-based solvers [137, 139]. The state of the art solvers, which have

shown to have a better performance in solving industrial instances, are the solvers based on the

identification of unsatisfiable cores [126].
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3

Haplotype Inference

Humans are diploid organisms, which mean that our genome is organized in pairs of homologous

chromosomes, each one inherited from one parent. Due to technological limitations, it is infeasible

to obtain the genetic data of each chromosome separately. Instead, the combined data of the

two homologous chromosomes is obtained. The genetic data of a single chromosome is called a

haplotype, whereas the mixed genetic data of both homologous chromosomes is called a genotype.

The haplotype inference problem aims at obtaining the haplotypic data based on the genotypic

information.

Haplotype inference is an important field of research, which has relevant impact in clinic medi-

cine [30]. Haplotypes are more informative than genotypes and, in some cases, can predict better

the severity of a disease or even be responsible for producing a specific phenotype.

This dissertation considers two types of haplotype inference approaches. Population-based meth-

ods apply to sets of unrelated individuals from the same population, whereas pedigree-based methods

apply to sets of individuals from the same family.

The first computational method for solving the haplotype inference problem was proposed in

1990 [26]. However, it was in the last decade that the haplotyping problem was devoted large effort

and attention from the scientific community. Several computational approaches have been devel-

oped to solve the haplotype inference problem, either combinatorial or statistical. The population-

based combinatorial approaches are the Clark’s method [26], the perfect phylogeny haplotyping [61]

and the pure parsimony approach [62]. The pedigree-based combinatorial approaches are the zero

recombinant [132, 173] and the minimum recombinant [99, 64, 138] haplotype configurations. The

statistical approaches can be subdivided in methods using expectation-maximization algorithms [41,

58, 1, 148] and methods using Bayesian algorithms [149, 131, 19, 34, 42, 88].
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There are two main criteria for evaluating the haplotype inference methods: accuracy and ef-

ficiency. The accuracy of the haplotyping methods is measured comparing the obtained solution

with the real one, which is typically obtained by simulation studies. Because haplotyping methods

are computationally very demanding, the efficiency of the methods is also an important additional

criterion, with is measured by the computer running time.

This chapter explains the haplotype inference problem, from the biological and mathematical

point of views. First, the concepts related with SNPs, haplotypes and genotypes are detailed and

the population-based and pedigree-based haplotype inference problems are explained. Follows a

resumed description of the major computational approaches, both combinatorial and statistical. A

final section resumes the chapter.

3.1 Preliminaries

3.1.1 SNPs, Haplotypes and Genotypes

The genome constitutes the hereditary data of an organism and is encoded in the DNA (de-

oxyribonucleic acid), where it is specified by the sequence of bases of nucleotides that it contains:

A (adenine), C (cytosine), T (thymine) and G (guanine).

The coding part of the genome is organized in DNA segments called genes. Each gene encodes

a specific protein and the variants of a single gene are named alleles. Despite the considerable

similarity between our genes, no two individuals have the same genome. The human genome has

roughly three billion nucleotides but about 99.9% of them are the same for all human beings. On

average, the sequence of bases of two individuals differ one in every 1200 bases, but the variations are

not uniformly distributed along all the DNA. Variations in the DNA define the differences between

human beings and, in particular, influence their susceptibility to diseases. Consequently, a critical

step in genetics is the understanding of the differences between the genetic code of human beings.

Single Nucleotide Polymorphisms, or SNPs (pronounced snips) correspond to differences in a single

position of the DNA where mutations have occurred, and that present a minor allele frequency which

is equal to or greater than a given value (e.g. 1%). For example, a SNP occurs when a sequence

AGTTCG is modified to AGATCG.

SNPs which are close in the genome tend to be inherited together in blocks. Hence, SNPs within

a block are statistically associated. These blocks of SNPs are known as haplotypes. Therefore,

haplotypes are sequences of correlated SNPs, in a single chromosome, as illustrated in Figure 3.1.

Haplotype blocks exist because the crossing-over phenomenons do not occur randomly along the
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Figure 3.1: Identifying SNPs and haplotypes

Chromosome 3          ..... A T A A G A C ..... C C A A G T T ..... G A A C G C C .....

Chromosome 4          ..... A T A A G A C ..... C C A A G T T ..... G A A T G C C .....

Haplotype 1          ..... G A C .....

Haplotype 2          ..... G T C .....

Haplotype 4          ..... A A T .....

SNP 1                     SNP 2                     SNP 3

Chromosome 1          ..... A T A G G A C ..... C C A A G T T ..... G A A C G C C .....

Chromosome 2          ..... A T A G G A C ..... C C A T G T T ..... G A A C G C C ..... 

Haplotype 3          ..... A A C .....

DNA, but instead are rather concentrated in small regions called recombination hotspots. Recombi-

nation does not occur in every hotspot at every generation and, consequently, individuals within the

same population tend to have large haplotype blocks in common. Furthermore, due to the associa-

tion of SNPs, it is often possible to identify a small subset of SNPs which represent all the remaining

SNPs within the haplotype. For this reason, the SNPs of this subset are called tagSNPs [80].

The human genome is organized into 23 pairs of homologous chromosomes, each chromosome

being inherited from one parent. There are a few methods for sequencing separately homologous

chromosomes, named allele specific polymerase chain reaction (AS-PCR) and somatic cell hybrids.

Nonetheless, these methods are very expensive and time consuming [21], and consequently, it is

infeasible to obtain experimentally haplotypes, which correspond to genetic data at a single chro-

mosome, for large regions.

Instead, genotypes, which correspond to the conflated data of two haplotypes on homologous

chromosomes, are obtained. In general, the genotype data does not make it possible to distin-

guish between the alleles inherited from each one of the parents. The haplotype inference problem

corresponds to finding the set of haplotypes which originate a given set of genotypes.

Almost all human SNPs are biallelic, which means that only two different alleles are allowed for

each position. SNPs with more than two different alleles are called polyallelic. In what follows, we

will only consider biallelic SNPs, with two possible alleles. The wild type nucleotide corresponds to

the most common allele, and the mutant type nucleotide corresponds to the least frequent allele.
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3.1.2 Haplotyping

Formally, a haplotype can be described as a binary string, where the value 0 represents the wild

type nucleotide and the value 1 represents the mutant type nucleotide. Genotypes can be described

as strings over the alphabet {0, 1, 2}. Each SNP (also called site or position) in a genotype gi of size

m is represented by gi j , with 1 ≤ j ≤ m. A site gi j is homozygous if gi j = 0 or gi j = 1. Otherwise,

when gi j = 2, the site is heterozygous. A homozygous genotype is a genotype gi such that every site

in gi is homozygous, i.e.

∀j: 1≤j≤m (gi j = 0 ∨ gi j = 1). (3.1)

A genotype gi is explained (also called resolved) by a non-ordered pair of haplotypes (ha
i , h

b
i ) of the

same size, which is represented by gi = ha
i ⊕ hb

i , if

gi j =











ha
i j if ha

i j = hb
i j

2 if ha
i j 6= hb

i j

. (3.2)

If gi = ha
i ⊕ hb

i , then haplotypes ha
i and hb

i are declared conjugates with respect to gi.

The concept of (in)compatible genotypes is important in the following chapters.

Definition 3.1. Compatible Genotypes

Two genotypes gi, gk ∈ G are compatible if ∀j: 1≤j≤m gi j + gk j 6= 1. Otherwise, the genotypes are

incompatible.

Clearly, incompatible genotypes cannot have haplotypes in common in their explanation.

In general, if a genotype gi has ri heterozygous sites, then the potential number of non-ordered

haplotype pairs that explain gi is ci, where

ci =











2ri−1 if ri > 0

1 if ri = 0
. (3.3)

Therefore, homozygous genotypes or genotypes with only one heterozygous site are explained by

only one pair of haplotypes and, therefore, are called unambiguous. Genotypes with more than one

heterozygous position are called ambiguous genotypes.

Definition 3.2. Haplotype Inference

Given a set with n genotypes, G, each with size m, the haplotype inference problem consists in

obtaining the set of haplotypes, H, which explain the genotypes in G and associating a pair of
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Figure 3.2: Mutations within a population

A C C T A T A T G C

A G T T C T A A G C

A G T T C T A A G C

A G T T A T A A G C

A G T T A T A A G C

A C T T A T A A C C

A C T T A T A A C C

A C T T A T A A C C

C T

G

C

C

T
A G T T A T T A G C

haplotypes (ha
i , hb

i ), with ha
i , h

b
i ∈ H, to each genotype gi ∈ G, such that gi = ha

i ⊕ hb
i .

Example 3.3. (Haplotype Inference) Consider genotype 02212 having 5 sites, of which one site

is homozygous with value 0, one site is homozygous with value 1 and the remaining three sites

correspond to heterozygous sites. There are four different possible explanations for this genotype:

(00010, 01111), (00110, 01011), (00111, 01010) and (00011, 01110).

There are several approaches to solve the haplotype inference problem, usually directly or indi-

rectly related with the coalescent model [74]. The coalescent model assumes that, within a popula-

tion, all haplotypes come from a single ancestor and, therefore, haplotypes tend to be arranged in

groups according to the mutations that have occurred. Figure 3.2 illustrates a coalescent tree of a

population, where mutations originate groups of similar haplotypes. Each leaf node corresponds to

a haplotype and each branch represents one or more mutations.

There are two major computational approaches to solve the haplotype inference problem, which

can be classified as combinatorial or statistical. Section 3.2 describes these haplotype inference

approaches.

3.1.3 Pedigrees

Incorporating genotypes of related individuals in the haplotype inference problem input brings

a number of relevant advantages. Pedigree information provides new valuable knowledge to the

haplotype inference problem. A pedigree can be defined formally as follows.

Definition 3.4. Pedigree
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A pedigree is a directed acyclic graph G = (V,E), where V = M ∪ F and M stands for male nodes

and F stands for female nodes. The in-degree of each node is 0 or 2. Nodes with in-degree 0 are

called founders, whereas nodes with in-degree 2 are called non-founders. In non-founder nodes, one

incoming edge must start at a male node (called father) and the other incoming edge must start at a

female node (called mother) and the node itself is called a child of its parents (mother and father).

A subgraph constituted by a mother, a father and a respective child is a trio. A pedigree has a

mating loop if there are two different paths from a node x to a node y.

According to the Mendelian laws of inheritance, every site in a single haplotype is inherited from

the same parent, assuming no mutations within a pedigree. Hence, one chromosome comes from

the mother, whereas the other chromosome comes from the father.

Definition 3.5. Haplotype Inference in Pedigrees

Given a set of n genotypes, G, each with size m, organized in p pedigrees, the haplotype inference

problem consists in obtaining the set of haplotypes, H, which explain the genotypes in G and associ-

ating a pair of haplotypes (ha
i , hb

i ), with ha
i , h

b
i ∈ H, to each genotype gi ∈ G, such that gi = ha

i ⊕hb
i ,

satisfying the Mendelian laws of inheritance and assuming no mutations within pedigrees.

We assume that haplotype ha is inherited from the father and hb is inherited from the mother.

However, a recombination may occur, where the two haplotypes of a parent get shuffled and the

shuffled haplotype is passed on to the child. For example, suppose a father has the haplotype pair

(011, 100) and the haplotype that he passed on to his child is 111. Hence one recombination event

must have occurred: haplotypes 011 and 100 have mixed together and originated a new haplotype

h = 111. Although every site of the child’s haplotype h was inherited from the father, the first

site came from the paternal grandmother, while the second and third sites came from the paternal

grandfather.

Approaches to solve pedigree-based haplotype inference can be grouped as combinatorial and

statistical. These approaches are introduced in Section 3.3.

3.2 Population-based Haplotype Inference

There is a rich and growing literature methods for solving the haplotype inference problem. This

section overviews the methods for haplotype inference in unrelated individuals. The methods can

be grouped in combinatorial and statistical approaches.
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3.2.1 Combinatorial Approaches

The combinatorial approaches to solve the haplotype inference problem can be subgrouped in

Clark’s method, the perfect phylogeny haplotyping and the pure parsimony approach.

Clark’s Method

Clark’s method [26] is the first computational algorithm for haplotyping. The method is non-

deterministic and its performance depends on the algorithmic choices.

The Clark’s algorithm is as follows. Unambiguous genotypes, i.e. homozygous genotypes and

genotypes with only one heterozygous site, can be explained in only one way. Consequently, the

haplotypes that explain these genotypes must be in the final solution H. Then, iteratively, the other

genotypes are explained using one haplotype already used, i.e. from H, and another one which must

be included in H. This is called the Clark’s inference rule.

Definition 3.6. Clark’s Inference Rule

Let NR represent the set of unresolved genotypes and H be the set of haplotypes already in the

solution. If a genotype g ∈ NR can be resolved using haplotypes ha and hb (g = ha ⊕ hb), such

that ha ∈ H and hb is the conjugate of ha with respect to g, then consider g to be resolved by pair

(ha, hb), add hb to H (i.e. H = H∪ {hb}) and remove g from the set of unresolved haplotypes (i.e.

NR = NR− {g}).

The algorithm terminates when all genotypes have been explained or no further genotypes can

be explained using one haplotype from H. The genotypes that remain unresolved are called orphans.

Algorithm 1 resumes the Clark’s method. The InitialSetResolvedGenotypes represents the

set of unambiguous genotypes and the InitialSetHaplotypes is the set of haplotypes that explain

genotypes in the InitialSetResolvedGenotypes.

Example 3.7. (Clark’s Method) Consider the set of genotypes G = {1010, 0002, 2211, 2222}. G

has two unambiguous genotypes, 1010 and 0002. Therefore, the initial set of resolved genotypes is

InitialSetResolvedGenotypes = {1010, 0002}, the initial set of selected haplotypes is InitialSet-

Haplotypes = {1010, 0000, 0001} and, initially, NR = {2211, 2222}. Genotype 2222 ∈ NR can

be explained using haplotype 1010 ∈ InitialSetHaplotypes and another haplotype 0101. Therefore,

H = {1010, 0000, 0001, 0101} and NR′ = {2211}. Since 2211 cannot be resolved using any

haplotype in H, it remains as an orphan.

There are several different ways of applying the inference rule, since the order in which the

genotypes are chosen is relevant and also because, in general, for a single genotype g, there exist
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Algorithm 1 Clark’s method

ClarkMethod(G)

1 NR ← (G − InitialSetResolvedGenotypes)

2 H ← InitialSetHaplotypes

3 for each g ∈ NR

4 do if (∃ha∈H (g = ha ⊕ hb))

5 H ← H∪ hb

6 NR ← NR− {g}

7 return H

many choices for haplotypes in H that explain g. Clark suggested to run the algorithm several

times with different genotype orders and to choose the solution which resolves a larger number of

genotypes. However, usually only a small number of possibilities can be tried. Moreover, different

solutions resolving the same number of genotypes can be generated and it is not clear how to use the

obtained results. The Maximum Resolution (MR) problem aims at finding a solution to the Clark’s

method which leaves the minimum number of orphan genotypes. This problem is NP-hard as shown

by Gusfield [60], who also proposed an integer linear programming approach for solving the MR

problem. Additional heuristics [133] have been studied regarding the way in which the haplotype

list should be defined and the genotype list should be analyzed to produce a better solution.

Perfect Phylogeny

The perfect phylogeny haplotyping (PPH) is directly based on the coalescent model. Models for

PPH represent the evolutionary history of haplotypes as a direct, acyclic graph, where the lengths

of the edges represent the passage in time (in the number of mutations). Furthermore, the approach

is based on two biological assumptions: no recombination within long blocks and the infinite sites

model. Assuming no recombination in long blocks, each haplotype of an individual is a copy of one

of the haplotypes of his parents, and thus, the backwards history of a single haplotype is just a path.

The infinite sites assumption [87] states that the number of sites in a genome is so large that the

probability of occurring more than one mutation at a single site is infinitely small and, therefore, one

can assume that it has never occurred. Based on these assumptions, the set of haplotypes should

satisfy a perfect phylogeny. The definition of a perfect phylogeny is as follows.
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Figure 3.3: Binary matrix, H, and respective perfect phylogeny

Definition 3.8. Perfect Phylogeny

A perfect phylogeny for a binary matrix, H2n×m, with 2n rows and m columns, is a rooted tree, T ,

with the following properties:

• T has 2n leaves, each one labeled by exactly one of the 2n rows of H,

• each of the m columns of H labels exactly one edge of T ,

• every interior edge of T is labeled by at least one column of H,

• the columns of H that label the edges of the path from the root to the leaf i, specify the columns

of H that have value 1 in the row i, giving a compact representation of the row i.

Figure 3.3 presents an example of a perfect phylogeny for a binary matrix.

The perfect phylogeny haplotyping was first proposed by Gusfield, in 2002 [61]. Under the

previous assumptions, the evolutionary history of 2n haplotypes can be described as a perfect

phylogeny with 2n leaves, where the most ancestral haplotype labels the root of the tree, each SNP

labels an edge, and each of the 2n haplotypes labels a leaf. A label j in an edge represents the only

point in the history where a mutation has occurred at site j.

Definition 3.9. Perfect Phylogeny Haplotyping

The perfect phylogeny haplotyping (PPH) problem consists in finding a set of haplotypes H, which

explains a given set of genotypes G, and such that H satisfies a perfect phylogeny.

Example 3.10. (Perfect Phylogeny Haplotyping) Consider the set of genotypes G = {012, 201, 222}.

There exist four solutions which satisfy the haplotype inference problem but only one solution satisfies

a perfect phylogeny: H = {010, 011, 101, 001, 101, 010}.
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Given a binary matrix H, to test the existence of a perfect phylogeny and, in the affirmative

case, to construct the respective tree can be done in polynomial time [59]. The four-gamete test

states that a binary matrix H has a perfect phylogeny if and only if for each pair of columns, do

not exist four rows with 00, 01, 10 and 11 in those two columns. Moreover, in this case, the perfect

phylogeny is unique if and only if all columns of H are distinct.

It is interesting to note that the genotype matrix contains several informations about the paths

in the perfect phylogeny tree, allowing an efficient deduction of the tree structure. For example,

• If gi j = 1, then the edge labeled with j must be in the path from the root to both leaves

ha
i and hb

i . In other words, the set of positions with value 1 in the genotype gi defines the

unordered labels of the edges from the root to the most recent ancestor of haplotypes ha
i and

hb
i .

• If gi j = 2, then the edge labeled with j has to be in the path from the root to exactly one of

the leaves labeled with ha
i or hb

i .

• If gi j = 0, then the edge labeled with j must not be in the path from the root to leaves labeled

with ha
i and hb

i .

• Columns which label the same edge must be equal.

Several algorithms have been proposed for haplotype inference using perfect phylogeny. The first

algorithm for PPH is based on an explicit reduction from the PPH problem to the graph realization

problem 1 [61]. The algorithm is theoretically almost linear in the size of the matrix G.

A different contribution is the algorithm described in [40], which can be seen as a specialization

of the general graph realization method to the PPH case. This algorithm constructs a tree top-down

from the root. The complexity of this algorithm is O(nm2).

The algorithm proposed in [158] is based on the combinatorial structure of the PPH problem,

exploring the relations between columns, and relying in the standard four-gamete test. Since the

algorithm has to explore the relations between every pair of columns, the complexity of the method

is O(nm2). Some other algorithms use specific data structures to avoid the comparison between

every two columns, but being able to maintain the same information on the data structure. The

construction of such a structure allows the algorithms to be linear (O(nm)) [111, 35, 160, 161].

1The graph realization problem is defined as follows: given a family of paths, determine a tree where each of the

path sets is realized or determine that no such tree exists.

36



Although recombination events and recurrent mutations are rare, the perfect phylogeny assump-

tions are not realistic in general. A PPH relaxed method considers an imperfect phylogeny algo-

rithm [66]. This method is implemented in a haplotype inference tool called HAP 2. This approach

performs a partition of the given genotypes into blocks. For each block, the imperfect phylogeny

model finds a haplotype inference solution which fits the perfect phylogeny model for the common

haplotypes.

Pure Parsimony

A well-known combinatorial approach, which is indirectly related with the coalescent model, is

pure parsimony. This approach was first proposed by Gusfield in 2003 [62]. The haplotype inference

by pure parsimony (HIPP) approach aims at finding a minimum-cardinality set of haplotypes H

that can explain a given set of genotypes G.

The motivation for searching a haplotype inference solution with the smallest number of hap-

lotypes is biologically motivated by the fact that individuals from the same population have the

same ancestors and mutations do not occur often. In addition, it is a well-known fact that the

number of haplotypes in a population is much smaller than the number of genotypes. Moreover,

experimental results support that iterations of the Clark’s method return more accurate solutions

when the number of haplotypes is smaller [63].

Definition 3.11. Haplotype Inference by Pure Parsimony

The haplotype inference by pure parsimony (HIPP) problem consists in finding a minimum-size set

H of haplotypes that explain all genotypes in G.

Example 3.12. (Haplotype Inference by Pure Parsimony)Consider the set of genotypes G = {g1,

g2, g3} = {022, 221, 222}. There are solutions using 6 different haplotypes: H1 = {000, 001, 010,

011, 101, 111}, such that g1 = 001⊕ 010, g2 = 011⊕ 101 and g3 = 000⊕ 111. However, the HIPP

solution only requires 4 distinct haplotypes: H2 = {000, 011, 101, 111} such that g1 = 011 ⊕ 000,

g2 = 011⊕ 101 and g3 = 011⊕ 100.

In general, there may exist several solutions which satisfy the HIPP criterion.

Finding a solution to the HIPP problem is an APX-hard (and consequently, NP-hard) prob-

lem [92]. Extensive work has been developed in order to produce an efficient solver to the HIPP

problem. Some HIPP algorithms are described in Chapter 4 and the state of the art HIPP solver is

detailed in Chapter 5.

2http://research.calit2.net/hap
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3.2.2 Statistical Approaches

Generally, statistical methods for haplotype inference solve the problem by assuming that the

observed genotypes have been obtained by a random combination of haplotypes from an (unknown)

distribution. A crucial point of the statistic haplotype inference methods is to estimate that dis-

tribution, i.e. the frequencies of the haplotypes. After that, the pair of haplotypes which resolve

genotype g ∈ G and has higher probability is associated with g.

There are two main groups of statistical approaches for haplotype inference: expectation-maximi-

zation algorithms and Bayesian algorithms. Expectation-maximization methods proceed iteratively

estimating the haplotype frequencies and maximizing the probability of observing the given genotype

data. Bayesian methods incorporate assumptions or prior information as a guide to haplotype

inference.

Expectation-Maximization

The maximum likelihood estimation is a well-known method used to estimate unknown param-

eters that best fit the model in study. Roughly, for a given data and a given probability model,

the maximum likelihood estimation finds the parameters of the model which make the data “more

likely” to be observed.

Let G = {g1, g2, . . . , gn} be the set of (known) genotypes and H = {H1, H2, . . . , Hn} denote

the set of corresponding (unknown) haplotype pairs, with Hi = (ha
i , h

b
i ). Let F = {F1, F2, . . . , FM}

denote the set of (unknown) population haplotype frequencies and f = {f1, f2, . . . , fM} be the set of

(unknown) sample haplotype frequencies to estimate, where M is the number of possible haplotypes.

We first estimate population haplotype frequencies, F , and then use these frequencies to estimate

the sample frequencies, f .

Assuming random mating, the probability of observing a certain genotype, gi, is given by the

sum of the probabilities of all possible haplotype pairs that resolve gi. Therefore, let P (i) denote

the probability of observing a genotype gi, then

P (i) =

ci
∑

j=1

P (Hj), (3.4)

where ci is the number of haplotype pairs that explain gi and Hj , with 1 ≤ j ≤ ci, represent pairs

of haplotypes (hk, hl) which explain gi.
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Algorithm 2 Expectation-maximization algorithm

Expectation-Maximization(G)

1 Choose some initial values F
(0)
1 , F

(0)
2 , . . . , F

(0)
M for haplotype frequencies

� M is the number of haplotypes

2 t← 0

3 if (t > 0)

4 do

5 while (P (G|F̂ (t+1))− P (G|F̂ (t)) ≥ ε)

6 t← (t+ 1)

7 do

8 a) Probability of resolving each genotype by each haplotype pair

Pj(hk, hl)
(t) =

nj

n

P (hk,hl)
(t)

P (j)(t)

9 b) Estimated frequency of each haplotype

F̂
(t+1)
b = 1

2

∑N
i=1

∑ci
j=1 δibPj(Hj)

(t)

10 c) Vector of estimated frequencies

F̂ (t+1) = (F̂
(t+1)
1 , F̂

(t+1)
2 , . . . , F̂

(t+1)
M )

11 f̂ ← F̂ (t+1)

12 return f̂ (estimate of the haplotype frequencies)

The probability of a pair of haplotypes (hk, hl) is given by

P (hk, hl) =











F 2
k if k = l

2FkFl if k 6= l
, (3.5)

where Fk and Fl are the population haplotype frequencies (unknown) of the kth and lth haplotypes.

The Expectation-Maximization (EM) procedure for haplotype inference is described by Algo-

rithm 2. The EM algorithm is an iterative method used to calculate maximum-likelihood estimates

of the haplotype frequencies which maximize the sample probabilities [41].

The EM algorithm is initialized with some arbitrary values for the haplotype frequencies: F
(0)
1 ,

F
(0)
2 , . . . , F

(0)
M . In the expectation step the frequencies of the haplotype pairs, P (hk, hl), are esti-

mated.
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At each step, t, the estimated probability of resolving genotype gi with pair (hk, hl) is given by

Pi(hk, hl)
(t) =

ni

n

P (hk, hl)
(t)

P (i)(t)
(3.6)

where ni

n
is the frequency of genotypes gi in the sample, P (hk, hl) is given by equation (3.5) and

P (i) is given by equation (3.4).

In the maximization step, the haplotype frequencies at the following iteration are estimated

based on the expected frequencies,

F̂
(t+1)
b =

1

2

N
∑

i=1

ci
∑

j=1

δjbPj(Hj)
(t), (3.7)

where δjb is the number of times haplotype hb is in the haplotype pair Hj (0, 1 or 2).

The method progresses iteratively until convergence is reached, i.e. P (G|F̂ (t+1))−P (G|F̂ (t)) < ε,

for a small ε predefined.

The EM algorithm is limited by the number of heterozygous sites, since the number of haplotype

pairs, which probability must be calculated, is exponential in the number of heterozygous sites.

Moreover, one of the main drawbacks of the EM algorithm is that it can converge to a local optimum,

instead of converging to a global optimum.

Methods for haplotype inference following the EM algorithms are presented in [41, 69]. Another

statistical model which follows the EM approach is the FastPHASE model [143], which is based

on clusters of similar haplotypes. Actually, haplotypes tend to cluster into local groups of similar

haplotypes. In practice, haplotypes tend to be organized in local clusters, i.e. instead of associating

a cluster of origin to a haplotype, one should associate a cluster to each site (SNP) of the haplotype.

The cluster of origin of each SNP varies continuously along the haplotype, originating some local

patterns. A hidden Markov model is used to model this local clustering of haplotypes.

Bayesian Algorithms

Bayesian algorithms aim at estimating the posterior distribution of parameters given the observed

data, assuming some prior knowledge about the distribution of the parameters.

The posterior distribution can be estimated using, for example, Gibbs sampling techniques.

Gibbs sampling is a type of Markov chain Monte Carlo procedure. The goal is to draw samples from

a posterior distribution. Gibbs sampling constructs a Markov chain which stationary distribution

is the true joint distribution.
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Algorithm 3 Pseudo-Gibbs sampling algorithm

PHASE(G)

1 Take some initial values to the haplotype reconstruction H(0)

2 for t = 0 to y � y is the maximum number of iterations

3 do

4 a) Choose, uniformly and randomly, an ambiguous genotype gi from G

5 b) Sample H
(t+1)
i from P (Hi|G,H

(t)
−i)

6 c) H
(t+1)
j ← H

(t)
j for j = 1, . . . , n, j 6= i

7 return H

The main difference between the Gibbs sampling and the EM algorithm is that the Gibbs algo-

rithm samples from the conditional distribution while the goal of the EM approach is to maximize

conditional distributions.

The Pseudo-Gibbs Sampling (PGS) algorithm to haplotype inference [151] is implemented in

the well-known statistical haplotype inference solver named PHASE. The PGS algorithm obtains

an approximate haplotype sample from the posterior distribution P (H|G) using Gibbs sampling.

The PGS algorithm works as follows. Some initial haplotype reconstruction H(0) should be guessed.

Then, iteratively, for each iteration t ≥ 0 choose a genotype gi from G and calculate P (Hi|G,H
(t)
−i),

where H−i is the set of haplotype pairs excluding the pair for genotype gi. Then, let H
(t+1)
i be the

haplotype pair which maximizes the conditional distribution, i.e.

H
(t+1)
i = max

Hi

P (Hi|G,H
(t)
−i),

and H
(t+1)
j = H

(t)
j for each j 6= i. Algorithm 3 systematizes this idea.

The crucial point of the Gibbs sampling method is the computation of the conditional distribution

P (Hi|G,H−i) because this probability depends on a prior of population haplotype frequencies, as

well as knowledge of the genetic and demographic models, which are usually unknown.

Stephens and Donnely [149] proposed an approximation to that distribution based on the co-

alescent, which corresponds to the probability of choosing one haplotype hα from H uniformly at

random and then applying a geometric number s of mutations, with parameter θ
r+θ

, according to a
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mutation matrix P , i.e.

π(h|H) =
∑

hα∈E

∞
∑

s=0

rhα

r
(

θ

r + θ
)s

r

r + θ
(P s)hαh (3.8)

where rhα
is the number of haplotypes hα in H, r is the total number of haplotypes in H, and θ is

the overall scaled mutation rate across sites.

With this distribution, each haplotype tends to be similar to the previous sampled haplotypes.

The similarity between haplotypes grows as the size of H, r, increases and the mutation rate, θ,

decreases.

The algorithm implemented in the software tool HAPLOTYPER [131] also follows the Gibbs

sampling techniques. The main difference between the PHASE and the HAPLOTYPER algorithms

regards the prior distribution. PHASE uses a prior approximating the coalescent model, whereas

HAPLOTYPER uses the Dirichlet prior.

The Gibbs sampling method for haplotype inference is impractical for a large number of haplo-

types. In order to handle this problem, a partition-ligation technique, which is an application of the

divide-conquer technique, is used to infer haplotypes in long SNP sequences [131]. This idea has

also been incorporated in PHASE version 2 and the EM algorithm.

Other statistical method, which is commonly used for genetic association studies, is implemented

in the BEAGLE tool [19]. The implemented method uses localized haplotype clustering and a hidden

Markov model.

A very recent contribution to haplotype inference is the algorithm Shape-IT [34]. This statistical

algorithm is based on PHASE version 2, i.e. Shape-IT follows the genetic model of coalescence

with recombination. The major algorithmic improvement of Shape-IT is the use of binary trees to

represent the set of candidate haplotypes for each individual. With this new representation, the

speed of the computations of PHASE can be improved.

3.3 Pedigree-based Haplotype Inference

In many studies, some individuals are closely related with each other and pedigree information is

available. When the considered individuals are organized in pedigrees, additional information may

be associated with the haplotype inference problem, and can be used to improve the results of the

inference methods.

A large number of methods has been proposed for solving haplotype inference problems within
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pedigrees. Among those, some are statistical approaches [1, 42, 166, 91, 90, 148, 88] and others are

combinatorial approaches [132, 173, 99, 168, 109, 118, 104, 103]. For a more complete survey of

haplotyping methods for pedigrees, we refer to [44].

3.3.1 Combinatorial Approaches

Combinatorial approaches for haplotype inference infer haplotypes using the Mendelian law

of inheritance and further optimize the solution based on some reasonable assumptions such as

minimizing the number of recombinant events or assuming no recombination over haplotypes within

a pedigree.

Zero Recombinant Haplotype Configuration (ZRHC)

Recombination events are rare in DNA regions with high linkage disequilibrium. Therefore, most

rule-based haplotype inference methods for pedigrees assume no recombination among SNPs within

each pedigree [167, 173, 102].

Definition 3.13. Zero Recombinant Haplotype Configuration

The zero recombinant haplotype configuration (ZRHC) problem searches for a solution allowing no

recombinations.

The ZRHC problem was first proposed by Wijsman [167] in 1987, who defined a set of twenty

logic rules necessary and sufficient to derive haplotypes in pedigrees, under the assumption of no

recombination. These rules are still the basis of many other combinatorial algorithms [173]. It can

be proved that the ZRHC problem with missing sites is a NP-hard problem [108].

Minimum Recombinant Haplotype Configuration (MRHC)

Although the assumption of no recombination is valid in many cases, this assumption can be

violated even for some dense markers [99]. Therefore, the problem of minimizing the number of

recombinations was suggested [64, 138, 100].

Definition 3.14. Minimum Recombinant Haplotype Configuration

The Minimum Recombinant Haplotype Configuration (MRHC) problem aims at finding a haplotype

inference solution for a pedigree which minimizes the number of required recombination events [64,

138].
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The MRHC problem is a well-known approach to solve the haplotype inference problem in

pedigrees and it has been shown to be a NP-hard [99, 110] problem. The PedPhase tool [100]

implements an integer linear programming model for MRHC with missing sites.

3.3.2 Statistical Approaches

Similar to the population-based haplotype inference, there are two main groups of statistical

approaches for haplotype inference: expectation-maximization and Bayesian algorithms.

Expectation-Maximization

Maximum likelihood [42] algorithms aim at finding a solution to the haplotype inference problem

which has maximum probability given the observed data on the pedigree.

Definition 3.15. Maximum Likelihood Haplotype Configuration

The maximum likelihood haplotype configuration (MLHC) problem aims at finding the haplotyping

solution for all members of the pedigree which maximizes the probability of observing the given

genotypes.

There are a number of methods which exactly solve the MLHC approach, among those Gene-

hunter [90], Allegro [58] and Merlin [1], and there are others which perform approximate algorithms,

for instance, SimWalk2 [148].

Bayesian Algorithms

Although there are more Bayesian algorithms [169], this section focuses in the Superlink [42] and

PhyloPed [88] methods.

Superlink [42] is also a statistical method for haplotype inference in pedigrees, that finds an

exact MLHC solution. Superlink uses Bayesian networks as the internal representation of pedigrees,

which enables to handle more complex pedigrees.

PhyloPed [88] is a recent statistical approach, and should be used in genome regions which shows

little evidence of recombination events. PhyloPed is based in a blocked Gibbs sampler algorithm.

Two cases may happen. If there is little evidence of ancestral recombination or recurrent mutations in

the founding haplotypes, then the perfect phylogeny model (see Section 3.2.1) is used. Contrariwise,

if there is evidence of ancestral recombinations, then founder haplotypes are not restricted to a

perfect phylogeny. The algorithm is polynomial in the former case, whereas it is exponential in the
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latter case. The PhyloPed method allows more accurate haplotype inference for small number of

SNPs.

3.4 Conclusions

Haplotype inference is an important biological problem and a computational challenge. Diploid

organisms, such as humans, have pairs of homologous chromosomes, each one inherited from one

parent. Although homologous chromosomes are very similar, they differ for some positions, in par-

ticular they can differ at sites named single nucleotide polymorphisms (SNPs). Whereas haplotypes

correspond to the set of SNPs in a single chromosome, genotypes represent the conflated data of

haplotypes in homologous chromosomes. Due to technological limitations, it is not practical to

obtain the haplotypes directly. Instead, genotypes are usually obtained. The haplotype inference

problem consists in inferring the set of haplotypes that originate a given set of genotypes.

The input data for the haplotype inference problem can be divided into two groups, thus originat-

ing two categories of haplotype inference methods: population-based methods and pedigree-based

methods. The population-based methods tackle genotypes from unrelated individuals of the same

population, whereas the pedigree-based methods tackle pedigree genotype data. Each category of

methods can be partitioned in combinatorial and statistical approaches.

Population-based combinatorial approaches include Clark’s method [26], the perfect phylogeny

haplotyping [61] and the pure parsimony approach [62].

Clark’s method [26] was the first computational approach proposed to solve the haplotype infer-

ence problem. The algorithm starts with the haplotypes which resolve unambiguous genotypes and

proceeds iteratively using an inference rule which aims at resolving each genotype using at least one

already used haplotype. The main drawbacks of this approach is that it can leave orphan genotypes

and, in addition, there are many ways in which the inference rule can be applied and it is not clear

which way produces more accurate results.

The perfect phylogeny haplotyping [61] is directly based on the coalescent model. Assuming the

infinite sites model and that there are no recombinations within haplotypes, the evolutionary history

of haplotypes can be described in a perfect phylogeny tree. Thus, the perfect phylogeny haplotyping

aims at explaining the given genotypes using a set of haplotypes which satisfies a perfect phylogeny.

The main drawback of this approach is that perfect phylogeny assumptions may not be realistic, in

general. The HAP software implements a relaxed approach which follows an imperfect phylogeny.

The pure parsimony approach [62] aims at finding the minimum number of haplotypes which
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can explain a given set of genotypes. This approach is also indirectly based in the coalescent model.

Indeed, due to the fact that mutation and recombination events do not occur often, the number of

haplotypes in a population tend to be small. This problem is NP-hard but efficient methods, which

will be described in the following chapters of this dissertation, have been developed to tackle the

problem.

Population-based statistical approaches include expectation-maximization and Bayesian methods.

The expectation-maximization algorithm [41] is used to calculate the maximum likelihood esti-

mates for the input data. Basically, the goal is to obtain the haplotype frequencies which maximize

the probability of observing the given genotype data. A drawback of this method is that it can

converge to a local optimum instead of converging to the global optimum. Moreover, the algorithm

can be impractical because the number of haplotypes is exponential with respect to the number of

heterozygous sites.

Bayesian approaches [149, 131, 19, 34] are popular methods for haplotype inference. The main

goal is to estimate the posterior distribution of haplotype frequencies given the observed geno-

types, assuming some prior knowledge about the haplotype frequencies. The Gibbs sampling

method is commonly used to obtain estimates of the posterior distribution of haplotype frequencies.

PHASE [149] is a well-known approach which uses a prior approximating the coalescent model, while

HAPLOTYPER uses the Dirichlet prior. Moreover, HAPLOTYPER [131] introduces a partition-

ligation technique which aims at improving the efficiency of the methods for long regions. More

recent Bayesian methods are implemented in the BEAGLE and Shape-IT software. BEAGLE [19]

implements localized haplotype clustering and hidden Markov models. Shape-IT [34] is very similar

to PHASE but an improvement in the data structures allows the algorithm to be more efficient.

Pedigree-based combinatorial approaches include the zero recombinant haplotype configuration

(ZRHC) and the minimum recombinant haplotype configuration (MRHC) problems. The ZRHC

problem aims at finding a haplotype inference solution allowing no recombination within the pedi-

gree. Examples of methods that solve the ZRHC are Zaplo [132] and HAPLORE [173]. The MRHC

problem aims at finding the haplotype inference solution which minimizes the number of recombi-

nation events within pedigrees. Examples of methods that solve the MRHC problem are MRH [138]

and PedPhase [100].

The pedigree-based statistical approaches can be grouped in methods that follow an expectation-

maximization algorithm and methods that follow Bayesian approaches. Examples of expectation-

maximization methods are Allegro [58], Merlin [1] and SimWalk2 [148]. Examples of Bayesian

methods are Superlink [42] and PhyloPed [88].
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4

Haplotype Inference by Pure Parsimony
(HIPP)

The Haplotype Inference by Pure Parsimony (HIPP) problem aims at finding a minimum-

cardinality set of haplotypes H that can explain a given family of genotypes G.

The motivation for chosing a HIPP solution to the haplotype inference problem is based on

the coalescent model [74] and the assumption that the mutation rate at each site is small and

recombination rates are low. Indeed, few haplotypes seem to be found in genome blocks with

small recombination rates. Practical experience confirm that the number of haplotypes in large

populations is typically very small, although genotypes exhibit a great diversity [63].

The HIPP problem is APX-hard [92]. Consequently, a significant effort has been made to

produce an efficient and exact method for solving the HIPP problem and a considerable number

of approaches have been proposed to solve the problem [62, 16, 17, 164, 114, 130, 39, 55, 56,

134]. In addition, several approaches propose heuristic algorithms for solving the HIPP problem [92,

93, 165, 72, 82, 105, 163, 46, 125, 12, 134]. Despite its APX-hardness, the HIPP problem is tractable

in some particular cases. Some works study the islands of tractability of the problem [93, 144].

This chapter is an overview of the work that has been developed to study and solve the pure

parsimony problem. The first section describes preprocessing techniques. These techniques include

structural simplifications which can be used to simplify the problem instance and can be applied

before using any HIPP method. Moreover, preprocessing techniques include the computation of

lower bounds and upper bounds on the number of haplotypes required, which are used by some HIPP

methods. Secondly, a considerable number of exact HIPP methods are detailed. These methods

include modulation of the problem with a wide variety of different constraint solving paradigms:

integer linear programming, branch-and-bound, Boolean satisfiability and answer set programming.
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Algorithm 4 Procedure for eliminating duplicated genotypes

RemoveDuplicatedGenotypes(Gn×m)

1 � Gn×m is the set of n genotypes with m sites

2 G′ ← Gn×m

3 for each gi ∈ G′

4 do for each gk ∈ G′, k > i

5 if (∀1≤j≤m gi j = gk j)

6 then G′ ← Gk � Gk: set G′ without row k

7 return G′

Some published work also overviews the HIPP methods [113, 24, 53]. Furthermore, we also describe

some techniques which are used to solve the complete HIPP problem. The complete HIPP problem

aims at finding all parsimonious solutions for a given haplotype inference problem. Follows a section

which summarizes the results regarding the complexity of the HIPP problem and its special cases,

and another section which overviews heuristic methods for HIPP. A final section concludes the

chapter.

4.1 Preprocessing Techniques

When solving the HIPP problem, there are a number of techniques that may be applied dur-

ing preprocessing. These techniques are inexpensive and empirical evidence shows that they can

significantly speed-up the performance of HIPP solvers.

4.1.1 Structural Simplifications

Structural simplifications on the set of genotypes can be performed on all HIPP solvers as a

preprocessing technique. These simplifications consist of using the structural properties of genotypes

with the purpose of reducing the search space [17, 116].

The set of genotypes given to HIPP solvers contains genotypes from individuals that belong to

the same population. Not surprisingly, these sets often contain repeated genotypes, even though

each of them refers to a different individual. Clearly, two equal genotypes can be explained by the

same pair of haplotypes, and consequently one of them can be discarded. Therefore, for each subset

of repeated genotypes only one of them needs to be kept. The procedure to remove duplicated

genotypes is described in Algorithm 4.

Moreover, other techniques for reducing the size of a problem instance entail removing sites of
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Algorithm 5 Procedure for eliminating duplicated sites

RemoveDuplicatedColumns(Gn×m)

1 � Gn×m is the set of n genotypes with m sites

2 G′ ← Gn×m

3 for j = 1 to m− 1

4 do for j′ = j + 1 to m

5 if (∀gi∈G′ gi j = gi j′ )

6 then G′ ← Gj′
� Gj′ : set G′ without site j′

7 return G′

Algorithm 6 Procedure for eliminating complemented sites

RemoveComplementedColumns(Gn×m)

1 � Gn×m is the set of n genotypes with m sites

2 G′ ← Gn×m

3 for j = 1 to m− 1

4 do for j′ = j + 1 to m

5 if (∀gi∈G′ (gi j = 2 ∧ gi j′ = 2) ∨ (gi j = 1− gi j′ ))

6 then G′ ← Gj′
� Gj′ : set G′ without site j′

7 return G

the genotypes. Indeed, duplicate sites can be discarded. If there are two sites with exactly the same

value for each genotype, then one of them can be removed. Algorithm 5 describes the procedure to

eliminate duplicated sites.

Furthermore, complemented sites can also be discarded. Two sites, gi j and gi j′ , are said to

be complemented if for each genotype the two sites are either homozygous with different values or

heterozygous, i.e.

∀gi∈G(gi j = 2 ∧ gi j′ = 2) ∨ (gi j = 1− gi j′). (4.1)

In this case, one of the sites, j or j, may be discarded. Algorithm 6 presents the procedure for

removing complemented sites.

Example 4.1. (Structural Simplifications) Consider the set of genotypes G = {10111, 10121, 21022,

10111, 12211}. By removing duplicated genotypes, the fourth genotype is removed and the set becomes

G′ = {10111, 10121, 21022, 12211}. This set is further reduced by removing duplicated sites, which

implies removing the fifth site for being equal to the first site, thus becoming G′′ = {1011, 1012,
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Algorithm 7 Lower bound procedure

LowerBound(G)

1 � G is the set of genotypes

2 (GLB , lb)← CliqueLowerBound(G)

3 (GLB , lb)← ImprovedLowerBound(G, GLB , lb)

4 (GLB , lb)← FurtherImprovedLowerBound(G, GLB , lb)

5 return lb

Algorithm 8 Clique lower bound

CliqueLowerBound(G)

1 � G is the set of genotypes

2 Create an incompatible graph I = (G,E)

• each vertex is a genotype

• set of edges is E = {(gi, gk) : gi, gk ∈ G ∧ ¬Compatible(gi, gk)}

3 Compute maximal clique of mutually incompatible genotypes: GC

• ∀gi,gk∈GC
gi 6= gk ⇒ ¬Compatible(gi, gk)

4 lb← (2×#GC − σ) � lb: lower bound obtained from GC

� σ = #{g ∈ GC : ¬Heterozygous(g)}

5 return (GC , lb)

2102, 1221}. Finally, we may remove the third site for being complemented with the second site,

thus getting the simplified set G′′′ = {101, 102, 212, 121}.

Assuming that information about the genotypes and sites discarded is kept, it is straightforward

to construct a solution for the original set of genotypes once a solution to the simplified set of

genotypes has been discovered.

4.1.2 Lower Bounds

A key issue in some HIPP approaches [114, 39] is to find tight lower bounds on the minimum

number of haplotypes required.

This section describes a method for computing lower bounds which integrates three different

techniques. The procedure is described in Algorithm 7, and consists of three routines: Clique-

LowerBound, ImprovedLowerBound and FurtherImprovedLowerBound, which are de-

scribed in the following paragraphs. The first two lower bounds have been proposed in the context

of the SHIPs approach [114]. The SHIPs algorithm will be explained in Section 4.4.1.
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Algorithm 9 Improved lower bound

ImprovedLowerBound(G, GC , lb)

1 � G: set of genotypes; GC : set of genotypes on the clique lower bound

2 � lb: lower bound obtained from GC

3 Sort GNC by increasing number of heterozygous sites � Optional step

4 GNC ← G−GC � GNC : set of non-clique genotypes

5 GLB ← GC � GLB : set of genotypes contributing to lower bound

6 GS ← GC � Working set of genotypes starts with GC

7 for each gi ∈ GNC � Analyze genotypes in (sorted) order

8 do S ← {cg ∈ GS : Compatible(g, cg)}

9 if (∃1≤j≤m (gi j = 2) ∧ ∃v∈{0,1} ∀sk∈S sk j = v)

10 then

11 lb← lb+ 1

12 � Set sites with differing values to 2 and update GS

13 ng ← MergeGenotypes(S, g)

14 GS ← (GS − S) ∪ {ng}

15 GLB ← GLB ∪ {g}

16 return (GLB , lb)

MergeGenotypes(S, g)

1 � S: set of genotypes; g: a genotype

2 ngi ← g

3 for each sk ∈ S

4 do for j = 1 to m

5 do if (sk j 6= ngi j)

6 then ngi j ← 2

7 return ng

The techniques for computing lower bounds rely on information regarding (in)compatible geno-

types. Two genotypes of the same length are compatible if there is no site such that one genotype

has value 0 and the other genotype has value 1 (see definition 3.1).

A lower bound can be computed from a maximal clique [114]. Clearly, for two incompatible

genotypes, gi and gl, the haplotypes that explain gi must be distinct from the haplotypes that

explain gl. Given the incompatibility relation we can create an incompatibility graph I, where each

vertex is a genotype, and two vertexes are connected with an edge if they are incompatible. Suppose

I has a clique of size k. Then the number of required haplotypes is at least 2k − σ, where σ is the

number of genotypes in the clique which do not have heterozygous sites. In theory, a maximal clique
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Algorithm 10 Further improved lower bound

FurtherImprovedLowerBound(G, GLB , lb)

1 � G is the set of genotypes

2 � GLB is the set of genotypes contributing to the lower bound

3 � lb is the lower bound obtained from GLB

4 GNLB ← G−GLB � GNLB : set of genotypes not in GLB

5 for each gi ∈ GNLB

6 do

7 for each j, j′, j′′ : 1 ≤ j < j′ < j′′ ≤ m

8 do

9 if (gi j = gi j′′ = gi j′′′ = 2)

10 then

11 S ← {cg ∈ GLB : Compatible(g, cg)}

12 if (∃c∈{0,1} ∀glk∈S ∃k1,k2∈{j,j′,j′′} (glk k1
= glk k2

= c))

13 then

14 lb← lb+ 1

15 GLB ← GLB ∪ {g}

16 GNLB ← GNLB − {g}

17 return (GLB , lb)

should be found, in order to provide a tighter lower bound. However, since the problem of computing

a maximal clique is NP-hard [45], we use the size of a clique computed using a simple greedy heuristic.

The genotype with the highest number of incompatible genotypes is first selected. At each step,

the selected genotype is one that is still incompatible with all the already selected genotypes, and

preference is given to the haplotype with the highest number of incompatible genotypes. Algorithm 8

illustrates the procedure CliqueLowerBound, which computes the clique-based lower bound.

Example 4.2. (Clique-based Lower Bounds) Consider the following set of genotypes: G = {110,

012, 102}. The three genotypes are incompatible, which is represented in the incompatibility graph in

Figure 4.1.2, along with each genotype contribution to the lower bound. Genotype 110 in homozygous

and thus contributes with 1 to the lower bound. Each one of the genotypes 012 and 102 contributes

with 2 for the lower bound. Hence, the number of required haplotypes is at least 5 (twice the clique

size less the number of genotypes with no heterozygous sites).

In addition, the analysis of the structure of the genotypes allows the lower bound to be further

increased, by identifying heterozygous sites which require at least one additional haplotype given a

set of previously chosen genotypes [116]. The procedure starts from the clique-based lower bound
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Figure 4.1: Clique lower bound

012 102

110

(2) (2)

(1)

and grows the lower bound by searching for heterozygous sites among genotypes not yet considered

for lower bounding purposes. For each genotype gi that is not in the clique, if the genotype has a

heterozygous site and all compatible genotypes have the same value at that site (either 0 or 1), then

gi is guaranteed to require one additional haplotype to be explained. Hence the lower bound can be

increased by 1. Algorithm 9 presents the pseudo-code of procedure ImprovedLowerBound for

calculating the improved lower bound.

Furthermore, another improvement to the lower bound consists in identifying genotypes with

triples of heterozygous sites, among the genotypes not used in the clique lower bound [113]. Algo-

rithm 10 presents the pseudo-code of the algorithm FurtherImprovedCliqueLowerBound for

calculating the lower bound based on the triples of heterozygous sites.

Example 4.3. (Improved Lower Bounds) Consider the following set of genotypes: G = {200, 020,

002, 222}. Given that there are no two incompatible genotypes, the clique-based lower bound would

give a lower bound of 2 corresponding to a unique vertex (e.g. with the first genotype). The analysis

of the structure of the remaining genotypes requires one additional haplotype for the second and the

third genotype, thus increasing the lower bound to 4 haplotypes. This lower bound can be further

improved by analyzing the fourth haplotype 222. Any of the haplotypes already included in the lower

bound requires at least two positions with value 0. But the pair of haplotypes explaining 222 will

require one haplotype with at most one position with value 0. Hence, the lower bound can be increased

to 5.

4.1.3 Upper Bounds

The computation of tight upper bounds on the HIPP solution is also an important issue on some

exact approaches [12, 39].
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In general, every heuristic method for the HIPP approach can be used to provide an upper

bound. This section focus on two heuristic methods used for computing upper bounds: the delayed

haplotype selection algorithm and the CollHaps approach. Both of these methods are based on the

Clark’s method, described in Section 3.2.1.

Delayed Selection

Clark’s method may be used to compute an upper bound to the HIPP problem. However, this

method is often too greedy, at each step seeking to explain each non-explained genotype with the

most recently chosen haplotype. The Delayed Selection (DS) [125] is an alternative algorithm whose

main motivation is to avoid the excessive greediness of Clark’s method in selecting new haplotypes.

The DS algorithm maintains two sets of haplotypes: the selected haplotypes, which represent

haplotypes that have been chosen to be included in the target solution, and the candidate haplotypes,

which represent haplotypes that can explain one or more genotypes not yet explained by a pair of

selected haplotypes.

Algorithm 11 presents the pseudo-code of the procedure to calculate the upper bound using

delayed selection. The initial set of selected haplotypes, HS , corresponds to all haplotypes which

are required to explain unambiguous genotypes, i.e. genotypes with no more than one heterozygous

site. The set of unexplained genotypes, G, is updated during the algorithm and genotypes which

can be totally explained by haplotypes in HS are removed.

The initial set of candidate haplotypes, HC , is then calculated. If a genotype g can be explained

by one selected haplotype hs, then the haplotype hc such that g = hs ⊕ hc is added to the set of

candidate haplotypes, HC .

At each step, the DS algorithm chooses the candidate haplotype hc which can explain the

largest number of genotypes. The chosen haplotype hc is then used to identify additional candidate

haplotypes. Moreover, hc is added to the set of selected haplotypes, and all genotypes which can be

explained by a pair of selected haplotypes are removed from the set of unexplained genotypes. The

algorithm terminates when all genotypes have been explained.

Each time the set of candidate haplotypes becomes empty, and there are still genotypes to be

explained, a new candidate haplotype is generated. The new haplotype is selected greedily as the

haplotype which can explain the largest number of genotypes not yet explained.

Observe that the proposed organization allows selecting haplotypes which will not be used in

the final solution. The last step of the algorithm is to remove from the set of selected haplotypes

all haplotypes which are not used for explaining any genotypes.
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Algorithm 11 Delayed haplotype selection

DelayedHaplotypeSelection(G)

1 � HS is the set of selected haplotypes; HC is the set of candidate haplotypes

2 HS ← CalcInitialHaplotypes(G)

3 G← RemoveExplainedGenotypes(G,HS)

4 for each hs ∈ HS

5 do for each g ∈ G

6 do if CanExplain(hs, g)

7 then hc ← CalcExplainPair(h, g)

8 HC ← HC ∪ {hc}

9 Associate hc with g

10 while (G 6= ∅)

11 do if (HC = ∅)

12 then

13 hc ← PickCandHaplotype(G)

14 HC ← {hc}

15 h← hc ∈ HC associated with largest number of genotypes

16 HC ← HC − {h}

17 HS ← HS ∪ {h}

18 G← RemoveExplainedGenotypes(G,HS)

19 for each g ∈ G

20 do if CanExplain(h, g)

21 then hc ← CalcExplainPair(h, g)

22 HC ← HC ∪ {hc}

23 Associate hc with g

24 HS ← RemoveNonUsedHaplotypes(HS)

25 return HS

Example 4.4. (Upper Bounds - Delayed Selection) Consider the set of genotypes G = {1010,

0002, 2211, 2222}. G has two genotypes with no more than one heterozygous site, 1010 and 0002.

Therefore, the initial set of selected haplotypes is HS = {1010, 0000, 0001}. Hence, the set of

unexplained genotypes is reduced to G′ = {2211, 2222}. Using HS to partially explain the genotypes,

a set of candidate haplotypes is defined HC = {0101, 1111, 1110}. The candidate haplotype hc ∈ HC

which explains the largest number of genotypes is selected, hc = 1111. The set of selected haplotypes

becomes H ′
S = {1010, 0000, 0001, 1111}, the new explained genotype is removed and the set of

unexplained genotypes becomes G′′ = {2211}. Finally, using the selected haplotype 1111, a new

candidate haplotype is selected, 0011, and H ′′
S = {1010, 0000, 0001, 1111, 0011}. At this point all
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genotypes have been explained and, therefore, the algorithm terminates. Hence, the upper bound

computed by the DS algorithm is 5.

The DS algorithm runs in polynomial time in the number of genotypes (n) and sites (m). A

straightforward analysis yields a run time complexity in O(n2 m).

CollHaps

CollHaps is an alternative approach [156] which can be used as a heuristic method for solving

the haplotype inference problem based on pure parsimony, but also as an upper bound algorithm for

HIPP solutions. Indeed, the CollHaps algorithm is used as a preprocessor to obtain upper bounds

by some exact HIPP solvers [12].

The main concept in which CollHaps relies is the collapse rule which is a generalization of the

Clark’s rule [26]. The CollHaps algorithm consists in the iterative application of collapse rules.

In practice, CollHaps associates two symbolic haplotypes, h2i−1 and h2i, with each genotype

gi ∈ G, defined by

h2i−1 j =























0 if gi j = 0

1 if gi j = 1

xµ(i,j) if gi j = 2

(4.2)

and

h2i j =























0 if gi j = 0

1 if gi j = 1

¬xµ(i,j) if gi j = 2

, (4.3)

where µ(i, j) is the bijective mapping that given a pair (i, j), such that gi j = 2, returns an integer

p, with 1 ≤ p ≤ r, where r is the number of heterozygous sites in G, with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The matrix H2n×m whose rows are the symbolic haplotypes hk, with 1 ≤ k ≤ 2n, is referred to as the

symbolic haplotype matrix. This matrix is continuously updated during the algorithm’s execution

until there are no more variables on the symbolic matrix. The pure parsimony criterion aims at

determining an assignment to the variables x which minimizes the number of distinct rows. The

CollHaps approach suggests an heuristic for the problem.

CollHaps is based on successive applications of the collapse rule to the rows of matrix H. Given

a pair of symbolic haplotypes, the collapse rule corresponds to the set of variable assignments,

which lead the two haplotypes to become identical, although requiring the minimum number of

assignments to constant values. Thus, it is important to note that some variables may be assigned
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to other variables. For example, consider two symbolic haplotypes hi = (1 x1 0 x2) and hk =

(1 x3 x4 x5). A collapse rule for haplotypes hi and hk will be the assignment ρi k such that

ρi k(x1) = x3, ρi k(x2) = x5 and ρi k(x4) = 0. Two symbolic haplotypes, hi and hk, are compatible

iff

∀j: 1≤j≤m (hi j 6= 0 ∨ hk j 6= 1) ∧ ∀p: 1≤p≤r (hi j 6= xp ∨ hk j 6= x̄p))

Clearly, only pairs of compatible symbolic haplotypes can be considered for collapsing. Moreover,

note that Clark’s rule is a special case of the collapse rule where one of the two haplotypes to be

collapsed is unambiguous. This rule implies, in general, a larger number of variables assigned to

constants.

In general, the same variable has multiple occurrences within H, and the assignment expressed

by a collapse rule has to be propagated to all occurrences of that variable. This process is named

the collapse step.

It can be proved that every pure parsimony solution can be obtained by a successive applications

of collapse steps [156]. However, it is clear that exhaustive exploration of all collapse sequences would

be infeasible. Hence, a heuristic strategy is required. The basic idea of the CollHaps heuristic is to

delay as much as possible the assignments of the variables to constants, in order to avoid increasing

the number of incompatibilities.

CollHaps opts by a randomized quasi-greedy choice of the haplotypes to be collapsed. Let the

distance between two haplotypes, hi and hk, be the number of variables that must be assigned to

constants to collapse hi and hk. Pairs of haplotypes at a lower distance have a higher probability

of being randomly chosen than those pairs at higher distance.

After applying the sequence of collapsing steps, a set of haplotypes H is obtained. Afterward, a

simple greedy technique is used to further reduce the number of haplotypes used. Note that some

genotypes g ∈ G may be explained by more than one pair of haplotypes in H. Hence, for each

genotype, the “most useful” pair of haplotypes, i.e. the pair whose haplotypes can explain more

genotypes, is chosen.

Example 4.5. (Upper Bounds - CollHaps) Consider the same set of genotypes of example 4.4, i.e.

G = {1010, 0002, 2211, 2222}. One possible sequence of collapse rules is ρ5,7 and ρ3,8, such that

ρ5,7(x2) = x4, ρ5,7(x3) = x5, ρ5,7(x6) = 1, ρ5,7(x7) = 1 and ρ3,8(x1) = 0, ρ3,8(x4) = 1, ρ3,8(x5) = 1.
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The sequence of corresponding symbolic haplotype matrices is















































h1

h2

h3

h4

h5

h6

h7

h8















































=















































1 0 1 0

1 0 1 0

0 0 0 x1

0 0 0 x̄1

x2 x3 1 1

x̄2 x̄3 1 1

x4 x5 x6 x7

x̄4 x̄5 x̄6 x̄7















































ρ5,7
−→















































1 0 1 0

1 0 1 0

0 0 0 x1

0 0 0 x̄1

x4 x5 1 1

x̄4 x̄5 1 1

x4 x5 1 1

x̄4 x̄5 0 0















































ρ3,8
−→















































1 0 1 0

1 0 1 0

0 0 0 0

0 0 0 1

1 1 1 1

0 0 1 1

1 1 1 1

0 0 0 0















































.

Therefore, the upper bound calculated by the CollHaps algorithm is 5.

Finally, note also that some haplotypes in H may still be symbolic, i.e, containing one or more

variables. A final step makes the assignment for these variables. All assignments originate solutions

with the same number of distinct haplotypes. Hence, the strategy aims at improving the accuracy

of the method and is based on the coalescent model. For each symbolic haplotype hs ∈ H, the

variable-free haplotype hv ∈ H requiring the fewest SNP switches to be transformed into hs is

searched. The variables in hs are then assigned according to the constant values in hv.

4.2 Integer Linear Programming Models

4.2.1 RTIP

The first proposed approach to solve the HIPP problem is an exponential integer linear pro-

gramming (ILP) model called RTIP [62]. For each genotype gi ∈ G, the conceptual formulation

enumerates all pairs of haplotypes which can explain gi. Note that if the genotype gi has ri het-

erozygous sites, then the number of explaining pairs is 2ri−1. Consequently, the space complexity of

the model is O(2m), where m is the number of sites of each genotype, which represents the maximum

number of heterozygous sites per genotype.

In practice, a Boolean variable yi j is associated with each haplotype pair capable of explaining

genotype gi, with 1 ≤ i ≤ n and 1 ≤ j ≤ 2ri−1. Moreover a Boolean variable xk is associated with

each distinct haplotype hk ∈ H, where H is the set of different haplotypes in this expansion. A

variable has value 1 when the respective pair/haplotype is chosen to be in the solution.

The objective function ensures that the number of xk variables assigned value 1 is the minimum
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Table 4.1: The RTIP formulation

minimize:
∑|H|

k=1 xk (4.4)

subject to:

∑2ri−1

j=1 yi j = 1, ∀i: 1≤i≤n (4.5)

yi j − xki j1
≤ 0, ∀i: 1≤i≤n, ∀j :1≤j≤m (4.6)

yi j − xki j2
≤ 0, ∀i: 1≤i≤n, ∀j: 1≤j≤m (4.7)

possible, implying that the minimum number of distinct haplotypes is selected,

min

|H|
∑

k=1

xk, (4.4)

where |H| is the cardinality of set H. The constraints are as follows. Each genotype gi must be

explained by exactly one pair of haplotypes, i.e.

2ri−1
∑

j=1

yi j = 1. (4.5)

In addition, the utilization of a specific pair of haplotypes implies the selection of the associated

haplotypes, i.e.

yi j − xki j1
≤ 0 (4.6)

yi j − xki j2
≤ 0, (4.7)

where xki j1
and xki j2

represent the two haplotypes (not necessarily distinct) which belong to pair

yi j . The RTIP formulation is summarized in Table 4.1.

As stated previously, this formulation, and thus the running time required to create it, increases

exponentially with the problem size, and therefore it is impractical to use without additional im-

provements. For this reason, RTIP considers only haplotype pairs where at least one haplotype

could partly explain more than one genotype. This simplification reduces significantly the size of

the formulation, specially when the value of recombinations are higher. As the level of recombina-

tion rises, haplotypes become more differentiated and there are more pairs that can be discarded in

the RTIP approach, and a smaller model is produced. Anyway, RTIP remains an exponential-sized

model in the worst case and, consequently, requires significant computational memory resources.
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Table 4.2: The PolyIP formulation

minimize:
∑2n

i=1 ui (4.8)

subject to:

t2i−1 j + t2i j =































0 if gi j = 0

2 if gi j = 1

1 if gi j = 2

∀i: 1≤i≤n, ∀j: 1≤j≤m (4.9)

xi k ≥ ti j − tk j ∀i,k: 1≤i<k≤2n, ∀j: 1≤j≤m (4.10)

xi k ≥ tk j − ti j ∀i,k: 1≤k<i≤2n, ∀j: 1≤j≤m (4.11)

ui ≥ 2− i+
∑i−1

k=1 xi k ∀i: 1≤i≤2n (4.12)

4.2.2 PolyIP

PolyIP [16] is an ILP approach to solve the HIPP problem which uses a formulation that is

polynomial on the number of genotypes and sites.

Different authors independently and almost simultaneously suggest similar models for HIPP [65,

92]. Despite the similarities between the models, here we focus on the PolyIP formulation from [16]

which, to the best of our knowledge, was the only one which was implemented and tested in practice

by the authors.

The PolyIP model is as follows. PolyIP associates two haplotypes, h2i−1 and h2i, with each

genotype gi ∈ G. A variable is associated with each site of h2i−1 and h2i. A Boolean variable tk j

represents site j of haplotype hk (1 ≤ k ≤ 2n, 1 ≤ j ≤ m), where n is the number of genotypes

on set G. Moreover, each haplotype is associated with a Boolean variable ui (1 ≤ i ≤ 2n) which

has value 1 when haplotype hi is different from all haplotypes used to explain genotypes with lower

index.

The objective function consists in minimizing the number of distinct haplotypes used, i.e. mini-

mize the number of variables ui assigned value 1,

min

2n
∑

i=1

ui. (4.8)
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Constraints should ensure that h2i−1 and h2i really explain gi (1 ≤ i ≤ n),

t2i−1 j + t2i j =























0 if gi j = 0

2 if gi j = 1

1 if gi j = 2

. (4.9)

In order to count the number of different haplotypes used, Boolean variables xi k (1 ≤ k < i ≤ 2n)

are introduced, such that xi k has value 1 when hi is different from haplotype hk. If hi is different

from hk, there must exist a site j (1 ≤ j ≤ m) such that ti j 6= tk j . Hence the constraints on

variables xi k are

xi k ≥ ti j − tk j , (4.10)

xi k ≥ tk j − ti j . (4.11)

In addition, variable ui (1 ≤ i ≤ 2n) must have value 1 when haplotype hi is different from all

haplotypes used to explain genotypes with lower index,

ui ≥ 2− i+

i−1
∑

k=1

xi k. (4.12)

Observe that
∑i−1

k=1 xi k = i − 1 if hi is distinct from all previous haplotypes, by the definition of

xi k.

The PolyIP formulation is summarized in Table 4.2. The number of constraints and variables of

the PolyIP model are, respectively, in Θ(n2m) and Θ(n2 + nm).

4.2.3 HybridIP

The same authors of PolyIP [16] also suggest an alternative polynomial-size ILP model, named

HybridIP [17], which represents a hybrid between the RTIP and the PolyIP models. Although

being an exponential model, RTIP is, in general, faster than the polynomial model for solving small

instances. HybridIP was formulated to join the strength of RTIP and PolyIP, in an approach with

both practical size and able to run within reasonable run times. Nonetheless, experimental results,

to be given in Section 6, show that no significant improvements were achieved by this new model,

when compared with PolyIP.
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Table 4.3: The HaploPPH formulation

minimize:
∑2n

i=1 ui (4.13)

subject to:

u2i+1 ≤ u2i ∀i: 1≤i≤n (4.14)

∑2n
i=1

∑2n
i′=i

yk
i i′ ≥ 1 ∀k: 1≤k≤n (4.15)

∑n

i′=i
yk
i i′ +

∑i−1
i′=1 y

k
i′ i ≤ ui ∀k: 1≤k≤n, ∀i: 1≤i≤2n (4.16)

yi
2i 2i+1 ≤ u2i+1 ∀i: 1≤i≤n (4.17)

t2k−1 j + t2k j =































0

2

1

if

if

if

gk j = 0

gk j = 1

gk j = 2

∀k: 1≤k≤n, ∀j: 1≤j≤m (4.18)

1−
∑n

i′=i
yk
i i′ −

∑i−1
i′=1 y

k
i′ i ≥ ti j if gk j = 0 ∀i: 1≤i≤n, ∀j: 1≤j≤m (4.19)

∑n

i′=i
yk
i i′ +

∑i−1
i′=1 y

k
i′ i ≤ ti j if gk j = 1 ∀k: 1≤k≤n, ∀i,i′: 1≤i≤i′≤2n, ∀j: 1≤j≤m (4.20)

ti j + ti′ j ≥ yk
i i′ if gk j = 2 ∀k: 1≤k≤n, ∀i,i′: 1≤i≤i′≤2n, ∀j: 1≤j≤m (4.21)

ti j + ti′ j ≤ 2− yk
i i′ if gk j = 2 ∀k: 1≤k≤n, ∀i,i′: 1≤i≤i′≤2n, ∀j: 1≤j≤m (4.22)

4.2.4 HaploPPH

A more recent ILP polynomial model to the HIPP problem is the HaploPPH model [23].

This model is based on the following idea. Each HIPP solution can be represented by a bipartite

graph between genotypes and haplotypes [15]. There is an edge between haplotype h and genotype

g if h is chosen to explain g. Hence, each heterozygous genotype g has exactly degree two, corre-

sponding to the two haplotypes which explain g. Each haplotype h in the final solution has degree

at least one because h must explain at least one genotype. Moreover, genotypes can be grouped into

classes. Each class S is induced by a haplotype h. Therefore, each class S contains the genotypes

that are explained by haplotype h.

An index is associated with each subset S of genotypes induced by a haplotype h. Specifically,

let i be the smallest index associated with a genotype in S, i.e. i = min{k : gk ∈ S, 1 ≤ k ≤ n}.

However, note that each genotype g can belong to two classes and it may happen that g is the

genotype with the smallest index in both subsets. Hence, 2i is associated with S if S2i is still not

defined; otherwise, 2i + 1 is associated with S. The maximum number of classes is 2n because at

most 2n haplotypes are used to explain a set with n genotypes.

62



The HaploPPH model is defined as follows. Firstly, 2n symbolic haplotypes are created. A

variable ui (1 ≤ i ≤ 2n) is associated with each set Si such that ui is assigned value 1 when there

exists a haplotype inducing class Si. The HIPP approach searches for the minimum number of

haplotypes which induce classes. Therefore, the objective function of the model is

min

2n
∑

i=1

ui, (4.13)

such that

u2i+1 ≤ u2i, (4.14)

because class S2i+1 can only be defined after class S2i is defined. Moreover, a variable yki i′ is

associated with each genotype gk and two classes Si and Si′ , with i < i′. Variable yki i′ is assigned

value 1 when genotype gk belongs both to class Si and class Si′ . Every genotype gk must belong

exactly to two classes, and therefore,

2n
∑

i=1

2n
∑

i′=i

yki i′ ≥ 1, (4.15)

for each k, with 1 ≤ k ≤ n.

If a genotype gk belongs to a class Si, the value of ui (representing whether class Si is defined)

must be taken into account,
n
∑

i′=i

yki i′ +
i−1
∑

i′=1

yki′ i ≤ ui (4.16)

When a genotype gi belongs to both S2i and S2i+1, then u2i+1 must be assigned 1,

yi2i 2i+1 ≤ u2i+1. (4.17)

Moreover, the model includes variables ti j associated with the jth site of the haplotype which induces

set Si, with 1 ≤ i ≤ 2n and 1 ≤ j ≤ m. Therefore, it must be imposed that the haplotypes explain

the genotypes,

t2k−1 j + t2k j =























0 if gk j = 0

2 if gk j = 1

1 if gk j = 2

, (4.18)

for 1 ≤ k ≤ n and 1 ≤ j ≤ m. Furthermore, if the haplotype h inducing set Si explains a genotype
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gk belonging to Si, then h must be such that, for 1 ≤ j ≤ m, if gk j = 0 then hi j = 0 and if gk j = 1

then hi j = 1:

1−
n
∑

i′=i

yki i′ −
i−1
∑

i′=1

yki′ i ≥ ti j if gk j = 0, (4.19)

n
∑

i′=i

yki i′ +
i−1
∑

i′=1

yki′ i ≤ ti j if gk j = 1. (4.20)

Finally, if gk belongs to class Si ∩ Si′ and gk j = 2 then exactly one of the haplotypes inducing sets

Si and Si′ must be 1 at site j,

ti j + ti′ j ≥ yki i′ , (4.21)

ti j + ti′ j ≤ 2− yki i′ . (4.22)

The HaploPPH formulation is summarized in Table 4.3. All variables of this formulation are Boolean.

The number of variables is Θ(n3 + nm) and the number of constraints is Θ(n2m).

The presented formulation corresponds to the basic model. The original model was reduced

noting that a significant number of variables yki i′ are actually redundant. Moreover, also the value

of variables ti j associated with homozygous sites can be fixed. Finally, some inequalities are added

to the formulation in order to strengthen the model.

4.2.5 P
UB
max

A new polynomial ILP formulation is referred to as PUB
max [12]. The main characteristic of this

approach is that the HIPP problem is turned into a maximization problem. Starting from an upper

bound UB on the number of haplotypes, the formulation aims at finding the maximum number of

genotypes which can be explained using r = UB − 1 haplotypes. If the solution for the formulation

is n = |G|, i.e. the total number of genotypes of the problem, then the value of the upper bound

is decremented, UB = UB − 1, and the procedure is repeated. Otherwise, if the solution for the

formulation is lower than n then the number of haplotypes required by the parsimony problem is

s = UB.

The upper bound UB on the optimal solution is provided by the heuristic approach Coll-

Haps [156], described in Section 4.1.3.

At each iteration, considering r = UB − 1 haplotypes, the problem is modeled by an ILP

formulation. The PUB
max model only uses two types of binary variables. Similarly to RTIP, the model
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Table 4.4: The PUB
max formulation (considering r haplotypes)

maximize:
∑n

k=1

∑r−1
i=1

∑r

i′=i+1 y
k
i i′ (4.23)

subject to:

∑r−1
i=1

∑r

i′=i+1 y
k
i i′ ≤ 1 ∀k: 1≤k≤n (4.24)

∑n

k=1 y
k
i i′ ≤ 1 ∀i,i′: 1≤i<i′≤r (4.25)

ti j +
∑i−1

i′=1 y
k
i′ i +

∑r

i′=i+1 y
k
i i′ ≤ 1 if gk j = 0 ∀k: 1≤k≤n, ∀i: 1≤i≤r, ∀j: 1≤j≤m (4.26)

ti j ≥
∑i

i′=1 y
k
i′ i +

∑r

i′=i+1 y
k
i i′ if gk j = 1 ∀k: 1≤k≤n, ∀i: 1≤i≤r, ∀j: 1≤j≤m (4.27)

ti j + ti′ j ≥ yk
i i′ if gk j = 2 ∀k: 1≤k≤n, ∀i,i′: 1≤i<i′≤r, ∀j: 1≤j≤m (4.28)

ti j + ti′ j ≤ 2− yk
i i′ if gk j = 2 ∀k: 1≤k≤n, ∀i,i′: 1≤i<i′≤r, ∀j: 1≤j≤m (4.29)

associates a variable yki i′ with each triple (gk, hi, hi′), for each 1 ≤ k ≤ n and 1 ≤ i < i′ ≤ r,

such that yki i′ = 1 exactly when hi and hi′ are used to explained gk. Moreover, similar to PolyIP, a

Boolean variable ti j is associated with each haplotype site hi j , for each 1 ≤ i ≤ r and 1 ≤ j ≤ m,

representing the value of the haplotype at that position.

For each number of haplotypes r = UB−1, the formulation is as follows. The objective function

maximizes the number of genotypes which can be explained using r haplotypes,

max
n
∑

k=1

r−1
∑

i=1

r
∑

i′=i+1

yki i′ . (4.23)

Each genotype gk ∈ G is explained by at most one pair of haplotypes,

r−1
∑

i=1

r
∑

i′=i+1

yki i′ ≤ 1, (4.24)

for 1 ≤ k ≤ n. Moreover, considering that all genotypes are different, each pair of haplotypes can

explain at most one genotype,
n
∑

k=1

yki i′ ≤ 1, (4.25)

for each 1 ≤ i < i′ ≤ r. Observe that equations (4.24) and (4.25) guarantee that the value of the

objective function is the number of genotypes explained by r haplotypes. Furthermore, we need

to assure that if a haplotype pair (hi, hi′) explains genotype gk, then gk = hi ⊕ hi′ . Therefore, if
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gk j = 0, then each haplotype hi which explains gk must have value 0 at position hi j ,

ti j +
i−1
∑

i′=1

yki′ i +
r

∑

i′=i+1

yki i′ ≤ 1, (4.26)

for each 1 ≤ k ≤ n, 1 ≤ i ≤ r and 1 ≤ j ≤ m. Similarly, if gk j = 1, then haplotype hi which

explains gk must have value 1 at position hi j .

ti j ≥
i

∑

i′=1

yki′ i +
r

∑

i′=i+1

yki i′ , (4.27)

for each 1 ≤ k ≤ n, 1 ≤ i ≤ r and 1 ≤ j ≤ m. Finally, if gk j = 2, then we must ensure that the

haplotypes, hi and hi′ , which explain gk have distinct values at position hi j and hi′ j . This fact is

guaranteed by the following two equations:

ti j + ti′ j ≥ yki i′ (4.28)

and

ti j + ti′ j ≤ 2− yki i′ , (4.29)

for each 1 ≤ k ≤ n, 1 ≤ i < i′ ≤ r and 1 ≤ j ≤ m. The PUB
max formulation is summarized in

Table 4.4.

Concerning the size of formulation PUB
max, the number of variables is O(n × r2 + rm) Thus, the

number of variables is O(n3 + nm) since r = O(n). The number of constraints is O(n × r2 ×m),

which is O(n3 ×m).

In addition, the formulation is strengthen using additional constraints, which take into consider-

ation the graph of incompatibilities between genotypes. Moreover, the lexicographic order is applied

to haplotypes in order to break symmetries.

The performance of the PUB
max approach is significantly related with the quality of the upper

bound. Clearly, a tight upper bound reduces the number of iterations of the algorithm and the

number of ILP problems to solve.

4.3 Branch-and-Bound Models

4.3.1 HAPAR

HAPAR [164] is a branch-and-bound algorithm designed to solve the HIPP problem. Inspired
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Algorithm 12 HAPAR algorithm

HAPAR(G)

1 for each gi ∈ G

2 do List all possible explaining pairs of haplotypes in Array(i)

3 si ← length of Array(i)

4 S ← φ � S is the set of resolutions

5 Use the greedy algorithm to get a solution S∗ and set f∗(S) to be the size of the solution

� f(S) is the number of distinct haplotypes in S

6 Search for an optimal solution as follows:

7 for j1 = 1 to s1

8 do S ← {Array(1)[j1]}

9 if (f(S) > f∗(S))

10 then go to 7 and try next j1

11 for j2 = s1 to s2

12 do S ← {Array(1)[j1], Array(2)[j2]}.

13 if (f(S) > f∗(S))

14 then go to 11 and try next j2;

15 . . . . . .

16 for jn = 1 to sn

17 do S ← {Array(1)[j1], Array(2)[j2], . . . , Array(n)[jn]}

18 if (f(S) < f∗(S))

19 then f∗(S) = f(S);

20 return S

by the RTIP model [62], HAPAR also enumerates all possible pairs of haplotypes explaining each

genotype g ∈ G. Listing all haplotype pairs is a critical task, because the number of pairs is

exponential. Hence, the method includes several improvements in order to reduce the size of the

lists of haplotype pairs. One significant optimization consists in eliminating pairs of haplotypes that

are guaranteed not to yield solutions better than the solutions produced by other pairs of haplotypes.

Algorithm 12 presents the pseudo-code for HAPAR, which is the branch-and-bound general

procedure. The initial upper bound solution to the branch-and-bound algorithm is given by a

greedy algorithm which associates each genotype with the haplotype pair with maximum coverage.

The coverage of a haplotype h is the number of genotypes g ∈ G that h can explain and the coverage

of a haplotype pair is the sum of the coverage of both haplotypes in the pair. The solution of

this greedy algorithm is often close to the optimal solution. Afterward, standard branch-and-bound

search is performed. Starting with the initial greedy solution, the algorithm searches for solutions
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Table 4.5: The Set Covering formulation

minimize:
∑

hk∈HG
xk (4.30)

subject to:

∑

hk∈Ha
j
(gi)

xk ≥ 1 if gi j = 2 ∀gi∈G , ∀j: 1≤j≤m, a ∈ {0, 1} (4.31)

x(C(gi, H
′)) ≥ 1 ∀(gi,H′)∈N ′ (4.32)

with a lower number of distinct haplotypes, cutting off and pruning the search space where a solution

smaller than the current upper bound is guaranteed not to be found in that branch of the search

tree.

The complexity of the algorithm is O(2nm), where n is the number of genotypes in the sample

and m is the number of sites of each genotype.

4.3.2 Set Covering

A recent HIPP method is the Set Covering approach [94], which is based on an implicit repre-

sentation of the solution space. The Set Covering approach proposes an integer programming model

which has an exponential formulation. Nonetheless, variables and constraints are added dynamically

to the model in order to obtain, at each step, a tractable approach. In addition, haplotypes are also

generated at run-time.

In order to describe the Set Covering model, some definitions should be presented. Let H(g) be

the set of haplotypes which are compatible with genotype g ∈ G and HG =
⋃

g∈G H(g). Moreover,

Hv
j (g) (v ∈ {0, 1}) represents the set of haplotypes compatible with g and which have value v at

position j, i.e. Hv
j (g) = {hk ∈ H(g) : hk j = v}.

The model is based on the covering condition which states that a HIPP solution H must be such

that, for each gi ∈ G, position j with gi j = 2 and value v ∈ {0, 1}, there must exist a haplotype

hk ∈ H ∩H(gi) with hk j = v:

∀gi∈G∀j∈{j: gi j=2, 1≤j≤m}∀v∈{0,1}∃hk∈H∩H(gi) hk j = v.

Clearly, in the final solution, there must exist haplotypes compatible with gi with complemented

values in the positions where gi is heterozygous. The covering condition is not sufficient, but it is

necessary in every haplotype inference solution. This means that there may exist sets of haplotypes
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H which satisfy the covering condition but still do not explain all genotypes gi ∈ G.

The Set Covering model is as follows. For each haplotype that can explain at least one genotype

in G, i.e. for each hk ∈ HG , a variable xk is defined. Moreover, xk = 1 if haplotype hk belongs to

the HIPP solution H. These variables are similar to the variables xk in RTIP.

Also similarly to RTIP, the goal consists in minimizing the function

min
∑

hk∈HG

xk. (4.30)

In addition, for each genotype gi, the covering condition is represented by the constraint

∑

hk∈Ha
j
(gi)

xk ≥ 1, (4.31)

for every j such that gi j = 2, and a ∈ {0, 1}. As the covering condition is not sufficient to obtain

a feasible solution for haplotype inference, more restrictions are necessary in order to eliminate

unfeasible solutions. If H ′ is a set of haplotypes which does not solve G, then there are unresolved

genotypes gi in G. Let C(gi, H
′) = H(g)−H ′. There must be at least one haplotype on set C(g,H ′)

on the final solution. Let N ′ be the set of pairs of unresolved genotypes and insufficient sets of

haplotypes, i.e N ′ = {(gi, H ′) : H ′ does not solve G, gi unresolved genotype}. Therefore, for each

(gi, H
′) ∈ N ′ it must be valid that,

x(C(gi, H
′)) ≥ 1. (4.32)

The Set Covering formulation is summarized in Table 4.5.

The Set Covering formulation has an exponential number of variables and constraints. In order

to optimize its LP-relaxation, variables and constraints are generated at run-time. In particular, at

run-time only a subset of N ′ is considered in equations (4.32).

For solving the covering condition formulation, a dedicated branch-and-bound algorithm is used,

applying a pricing procedure where the haplotypes are implicitly represented. At each node of the

branch-and-bound tree either new variables or new constraints are added to the problem.
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Algorithm 13 Top-level SHIPs algorithm

SHIPs(G, lb)

1 r ← lb

2 while (true)

3 do Generate ϕr given G and r

4 if SAT(ϕr) = true

5 then return r

6 else r ← r + 1

4.4 Boolean Satisfiability Models

4.4.1 SHIPs

SHIPs [114] is the first SAT-based HIPP solver and represents a remarkable improvement on the

efficiency of the HIPP solvers. The SHIPs formulation iteratively models whether there exists a set

of distinct haplotypes H with size r which explains the set of genotypes G. The algorithm considers

increasing values for r = |H|, starting from a lower bound and stopping when achieves a feasible

solution.

Algorithm 13 summarizes the top-level operations of SHIPs. Starting with a lower bound on the

number of required haplotypes, r, the SHIPs algorithm models the problem for r haplotypes, into a

CNF formula ϕr, and uses a SAT solver to find a solution (identified by the function call SAT(ϕr)).

If the model is unsatisfiable, then the value of r is increased and a new model is generated; otherwise,

the model is satisfiable and an optimal solution is guaranteed to be achieved.

Considering r candidate haplotypes, the model is as follows. Let hk j represent the jth site of

haplotype hk, for 1 ≤ k ≤ r and 1 ≤ j ≤ m. The model also uses the so called selector variables, sak i

and sbk i (1 ≤ k ≤ r, 1 ≤ i ≤ n), which, for each genotype gi, select two (possibly equal) haplotypes

to explain gi. Hence, gi is explained by hk1
and hk2

exactly when sak1 i = 1 and sbk2 i = 1.

If gi j = 0, then the haplotypes selected to explain gi must have value 0 at site j,

(¬hk j ∨ ¬s
a
k i) ∧ (¬hk j ∨ ¬s

b
k i). (4.33)

Similarly, if gi j = 1 and hk is chosen by selector variables sak i or s
b
k i to explain gi then hk j must be
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Table 4.6: The SHIPs formulation (considering r haplotypes)

(¬hk j ∨ ¬sak i) ∧ (¬hk j ∨ ¬sbk i) if gi j = 0 ∀i: 1≤i≤n, ∀j: 1≤j≤m, ∀k: 1≤k≤r (4.33)

(hk j ∨ ¬sak i) ∧ (hk j ∨ ¬sbk i) if gi j = 1 ∀i: 1≤i≤n, ∀j: 1≤j≤m, ∀k: 1≤k≤r (4.34)

(gai j ∨ gbi j) ∧ (¬gai j ∨ ¬gbi j) if gi j = 2 ∀i: 1≤i≤n, ∀j: 1≤j≤m, ∀k: 1≤k≤r (4.35)

(hk j ∨ ¬gai j ∨ ¬sak i) ∧ (¬hk j ∨ gai j ∨ ¬sak i)

∧(hk j ∨ ¬gbi j ∨ ¬sbk i) ∧ (¬hk j ∨ gbi j ∨ ¬sbk i) if gi j = 2 ∀i: 1≤i≤n, ∀j: 1≤j≤m, ∀k: 1≤k≤r (4.36)

(
∑r

k=1 s
a
k i = 1) ∧ (

∑r

k=1 s
b
k i = 1) ∀i: 1≤i≤n, ∀j: 1≤j≤m, ∀k: 1≤k≤r (4.37)

assigned value 1,

(hk j ∨ ¬s
a
k i) ∧ (hk j ∨ ¬s

b
k i). (4.34)

Moreover, when gi j = 2, we require the chosen haplotypes to have opposing values at site j. To

achieve this goal, two Boolean variables, gai j , g
b
i j , are created such that gai j 6= gbi j ,

(gai j ∨ gbi j) ∧ (¬gai j ∨ ¬g
b
i j). (4.35)

As a result, for the case gi j = 2, the model requires that

(hk j ∨ ¬g
a
i j ∨ ¬s

a
k i) ∧ (¬hk j ∨ gai j ∨ ¬s

a
k i)

∧(hk j ∨ ¬g
b
i j ∨ ¬s

b
k i) ∧ (¬hk j ∨ gbi j ∨ ¬s

b
k i). (4.36)

Finally, each genotype gi must be explained by exactly one pair of haplotypes, and therefore, there

exist exactly one haplotype hk1
and exactly one haplotype hk2

such that sak1 i = 1 and sbk2 i = 1, i.e.

the following constraints must be valid:

(

r
∑

k=1

sak i = 1) ∧ (

r
∑

k=1

sbk i = 1). (4.37)

The SHIPs formulation, considering r haplotypes, is summarized in Table 4.6.

SHIPs includes several important modeling techniques for improving the effectiveness of using

SAT for solving the HIPP problem, namely identification and breaking of key problem symme-

tries [115] and also procedures for computing lower bounds on the number of haplotypes [117],

which are described in Section 4.1.2.
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The complexity of the SHIPs formulation is O(rnm). Since r = O(n), each SAT model is in

O(n2m).

4.4.2 SATlotyper

The majority of the haplotype inference methods can only handle biallelic SNP data of diploid

species. The SATlotyper method [130] is an interesting contribution which corresponds to a gen-

eralization of the SAT-based approach SHIPs to handle polyallelic SNPs (which have more than

two different alleles) and polyploid species (which have more than two homologous chromosomes),

which is the case of some species of plants. Therefore, the constraints generated by SATlotyper are

extensions of the constraints generated by SHIPs.

This section presents the SAT model for biallelic polyploids. Although SATlotyper is also able to

handle SNPs with more than two possible values, for that case we refer to the original paper [130].

Let p be the ploidy of the considered specie, i.e. the specie has p-tuples of homologous chromo-

somes. Then each polyploid genotype gi, with 1 ≤ i ≤ n is represented by a sequence of m vectors

with size p, where each vector encodes one SNP site of the given individual, gi j = (g1i j , g
2
i j , . . . , g

p
i j),

with 1 ≤ j ≤ m. A site gi j is heterozygous if there are two components of vector gi j , g
l1
i j and gl2i j ,

such that gl1i j 6= gl2i j , with 1 ≤ l1, l2 ≤ p. The haplotype inference problem must be reformulated.

Definition 4.6. Haplotype Inference - Polyploid Species

Given a set G with n genotypes, each of length m, the haplotype inference problem aims at finding

a set of haplotypes H, such that, for each genotype gi ∈ G there exists a non-ordered tuple of p

haplotypes (h1
i , . . . , h

p
i ), with h1

i , . . . , h
p
i explaining genotype gi.

A set with p haplotypes explains a genotype gi if the p haplotypes and the genotype gi have the

same allele composition at each SNP site.

Example 4.7. (Haplotype Inference - Polyploid Species) An example of a tetraploid genotype with

three biallelic SNP sites is gi = (1, 0, 0, 1)(0, 0, 0, 1)(1, 1, 1, 1). This genotype can have 24 possible

explanations, corresponding to all possible permutations of alleles at each position gi j.

The core algorithm of SATlotyper is the same as in the basic SHIPs model. The model is defined

iteratively from a lower bound to an upper bound. Trivial lower and upper bounds are, respectively,

1 and p · n. As in SHIPs, the model uses selector variables for selecting which haplotypes are used

for explaining each genotype. For each genotype, the model uses p sets of selector variables, slk i, for

1 ≤ l ≤ p. Haplotypes hk1
, . . . , hkp

are selected to explain gi if s
l
k1 i = 1, . . ., slkp i = 1.
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For each genotype site gi j , the selector constraints are described as follows. If gli j = 0, for all

1 ≤ l ≤ p, then every haplotype which is chosen to explain gi must have value 0 at site j,

(¬hk j ∨ ¬s
l
k i), (4.38)

with 1 ≤ k ≤ r. If gli j = 1, for all 1 ≤ l ≤ p, then every haplotype which is chosen to explain gi

must have value 1 at site j,

(hk j ∨ ¬s
l
k i), (4.39)

with 1 ≤ k ≤ r. Otherwise, if the genotype site gi j is heterozygous, it is necessary to create p

Boolean variables g1i j , . . . , g
p
i j , which represent the possible arrangements of 1s and 0s at site j.

Hence, the following formula must be satisfied:

(hk j ∨ ¬g
l
i j ∨ ¬s

l
k i) ∧ (¬hk j ∨ gli j ∨ ¬s

l
k i), (4.40)

where 1 ≤ k ≤ r and 1 ≤ l ≤ p. Finally, for each value of i and l it is necessary that exactly one

haplotype is selected. This is represented by the cardinality constraint

r
∑

k=1

slk i = 1. (4.41)

Furthermore, the model applies symmetry breaking to haplotypes and genotypes, similarly to

SHIPs. Nonetheless, the existing version of SATlotyper does not include the computation of lower

bounds, which has a crucial contribution to the efficiency of SHIPs.

The number of variables of the SATlotyper model is O(nmp2 log2 p) and the number of con-

straints is O(rfnmp), where rf is the final (most parsimonious) number of haplotypes.

4.5 Answer Set Programming Models

4.5.1 HAPLO-ASP

A recent contribution to the HIPP problem is the HAPLO-ASP approach [39], based on Answer

Set Programming (ASP). ASP is a declarative programming paradigm that provides a high-level

language for representing combinatorial search problems, and efficient solvers to compute solutions.

The HAPLO-ASP solver, similarly to SHIPs, is an iterative algorithm. A binary search is

performed in order to find the optimal value between the lower bound (lb) and the upper bound
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(ub). At each iteration, an ASP formulation is solved, which decides whether there exists a solution

to the haplotype inference using k distinct haplotypes, lb ≤ k ≤ ub. Clearly, if there is a haplotype

inference solution using k distinct haplotypes and there exists no solution using k − 1 haplotypes,

then k corresponds to the number of haplotypes in the HIPP solution.

The ASP formulation is explained in the input language of the answer set solver Cmodels [47]

and the grounder LParse [147]. The core search engine for CMODELS is a SAT solver. In the

original paper, the authors have chosen to use the MiniSat solver [37].

4.6 Complete HIPP

In general, the HIPP problem has more than one possible solution for a single instance. In fact,

the number of HIPP solutions can be significantly large [27].

The Complete HIPP [78] problem aims at finding all haplotype inference solutions which mini-

mize the number of used haplotypes, i.e., all HIPP solutions.

Definition 4.8. Complete Haplotype Inference by Pure Parsimony

The Complete Haplotype Inference by Pure Parsimony (CHIPP) aims at finding all minimum-

cardinality sets of haplotypes Hk which can explain a given set of genotypes G.

In theory, every algorithm for solving HIPP can be easily modified for solving the CHIPP prob-

lem. For instance, consider the RTIP formulation. RTIP can be used to find the minimum number

of requested haplotypes, r, and achieve one HIPP solution, H0 = x01 , . . . , x0r . Afterward, a new

HIPP solution can be obtained eliminating the actual solution from the problem. Adding a new

constraint to the model,

r
∑

k=1

x0k < r, (4.42)

guarantees that the actual solution is not going to be found again, because the set of selected

haplotypes must be different. The procedure is repeated while there are haplotype inference solu-

tions using r haplotypes, i.e. while the optimization function has value r. This procedure allows

determining all HIPP solutions.

However, note that each iteration of the procedure needs to solve a NP-hard problem. Moreover

the number of solutions can be significantly large. Hence, this process can be very inefficient. In

order to improve the efficiency of the procedure, some optimization techniques are suggested [78].
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Backbone Haplotypes

A backbone haplotype is a haplotype which appears in every HIPP solution. Moreover, a genotype

which can be explained using two backbone haplotypes is referred to as backbone genotype. Note

that backbone genotypes can be omitted from the formulation. Indeed, backbone genotypes can

be explained by every solution that the procedure will return. Some backbone haplotypes are

easily identified. For example, homozygous genotypes or genotypes with only one heterozygous

site have only one possible explanation, and therefore, induce haplotypes that must appear in all

HIPP solutions, the trivial backbone haplotypes. Moreover, the procedure to identify all backbone

haplotypes, without having to compute all HIPP solutions, is as follows. First, a HIPP solution

is found, using r haplotypes. Next, iteratively remove, one at a time, haplotype hi (1 ≤ i ≤ r)

from the solution, by including a constraint in the model which does not allow haplotype hi to be

assigned value 1. If a new parsimonious solution exists without using haplotype hi, then hi is not

a backbone haplotype. Otherwise, hi is a backbone haplotype. The complexity of this procedure is

r times the complexity of finding a HIPP solution.

Duplicated sites

The preprocessing technique for eliminating duplicated sites, described in Section 4.1.1, cannot

be directly applied for solving the CHIPP problem. Indeed, some optimal solutions may be lost by

simply considering the explanation to the removed sites equal to the explanation of the original site.

Therefore, when completing the removed column, every possibility which maintains the number of

haplotypes and still explains the set of genotypes must be considered as optimal solution.

Decomposability

A HIPP problem instance is decomposable when the set of genotypes can be partitioned in dis-

joint sets of genotypes such that each genotype is incompatible with every genotype in the other sets.

Note that two incompatible genotypes cannot share explaining haplotypes with each other. Clearly,

for a decomposable problem instance, HIPP can be solved by independently finding a solution for

each partition. The CHIPP problem can also be solved for each sub-problem independently. The

number of HIPP solutions is the product of the number of solutions in each sub-problem, corre-

sponding to all combinations of sub-problem solutions.

In [78], algorithms for solving CHIPP based on RTIP and on HAPAR, and implementing the
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techniques described previously, are explained. The elimination of duplicated sites and the elimina-

tion of backbone genotypes are said to be the most important techniques to improve the efficiency

of the resolution of the CHIPP’s problem. Nonetheless, run times are not presented in the paper.

4.7 Complexity

The HIPP problem is NP-hard [73] and, furthermore, proved to be APX-hard [92]. Therefore,

there is a constant λ > 1 for which does not exist a λ-approximation for the HIPP problem, unless

P=NP. The proof of APX-hardness is based on a reduction from the NODE-COVER problem which

is known to be APX-hard [136].

The HIPP problem is APX-hard even when each genotype is restricted to possess at most three

heterozygous sites [92]. However, the case in which each genotype has at most two ambiguous

positions can be solved in polynomial time[93].

In [144] the complexity and the approximability of the HIPP problem are studied. The problem is

APX-hard even in very restricted cases. The HIPP problem is proved to be APX-hard for instances

with at most four heterozygous sites per genotype and at most three heterozygous sites per column

(SNP). On the other hand, the HIPP problem is tractable if the number of haplotypes in the solution

is fixed to an integer k.

A clique instance is an instance where every two genotypes are compatible. Note that in a clique

instance each column must not have both 0 and 1 values. The pure parsimony haplotyping is proved

to be NP-hard even on clique instances [144]. Nonetheless there are some islands of tractability.

A clique instance for which columns have at most two ambiguous sites is tractable. Moreover,

in a clique instance where each column has at most k heterozygous sites per column yields an

approximation ratio of (k+1)/2. Some other islands of tractability have also been identified in

the case of a very particular type of instances. A polynomial algorithm is given for the case of

enumerable instances 1 where the compatibility graph has bounded tree-width. Finally, HIPP is

proved to be APX-hard even when the compatibility graph is bipartite [144].

4.8 Heuristic Methods

Finding a solution to HIPP is an APX-hard problem [92], and therefore a significant number

of heuristic and meta-heuristic algorithms have been developed to approximate pure parsimony

1In an enumerable instance, a polynomial number of haplotypes is compatible with each genotype.
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solutions [92, 93, 165, 72, 82, 105, 163, 46, 125, 12]. Interesting contributions use, for instance,

genetic algorithms [165], iterative semi-definite programming-based algorithms [72, 82] and the tree-

grow method [105]. Heuristic algorithms can be used as haplotyping methods that approximate the

pure parsimony criterion but also as upper bounds to the HIPP solution.

In [92], two approximation algorithms to HIPP are presented. These algorithms are polynomial

assuming that the number of heterozygous sites per genotype is limited by an integer k. The first

approximation algorithm is based on the RTIP formulation. This algorithm performs a LP relaxation

of the problem and then applies a heuristic to obtain an integer solution. The solution obtained

is a 2k−1-approximation. In the same article, the authors describe a randomized approximation

algorithm which is a 2k+1(1+⌊log n⌋(1+⌈lnn⌉))-approximation, where n is the number of genotypes.

For the case that the number of heterozygous sites per genotype is at most k, different approximation

algorithms were proposed [93]. Another approximation method, based on RTIP, uses a simple

heuristic that chooses among the candidate haplotypes the one that can resolve more genotypes [163].

Two interesting heuristics to HIPP are based on semidefinite programming [72, 82]. An iterative

semi-definite programming-based algorithm [72] is shown to find an O(log n) approximation to the

optimal solution, where n is the number of genotypes. In [82], the heuristic method to HIPP

is obtained with a vector program (semi-definite programming) relaxation of a quadratic integer

programming formulation.

In addition, meta-heuristic methods have been developed to approximate the HIPP solution. A

stochastic local search method is described in [46]. Exploiting the graphs representing the compati-

bility between genotypes, a reduction procedure is developed which, starting from a set of haplotypes,

attempts to reduce its cardinality. The search space of the local search procedure is described by a

complete representation of the collection of sets of the pairs of haplotypes that explain the genotypes

of the problem instance. The choice of the state to move to can be done according to different local

search strategies, namely best improvement, stochastic first improvement, simulated annealing and

tabu search.

Another meta-heuristic approach to the HIPP problem makes use of a genetic algorithm [165]

whose population space corresponds to the set of all different possible genotype explanations. Start-

ing with a random initial population, the genetic operators - namely selection, tournament, crossover

and mutation - are performed in different algorithmic iterations. At each step, the best individual

of the current population is selected.

The parsimonious tree-grow (PTG) method [105] is another heuristic algorithm to HIPP. The

PTG method resolves the genotype matrix columns one by one. Successive layers of the constructed
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growing tree correspond to successive columns of the genotype matrix. This constructive heuristic

approach keeps all genotypes (or genotype fragments) resolved during the process.

Finally, the delayed selection algorithm [125] and the CollHaps algorithm [156], described in

Section 4.1.3 to compute upper bounds to the HIPP problem, can also be used as greedy algo-

rithms to approximate the HIPP solution. These algorithms are based on the well-known Clark’s

method [26] but include more sophisticated methods for the selection of explaining haplotypes, in

order to explicitly introduce a bias towards parsimonious solutions.

4.9 Conclusions

The goal of the haplotype inference by pure parsimony approach is to minimize the number of

haplotypes used for explaining a given set of genotypes. This problem is APX-hard [92].

Several techniques can be used in a preprocessing step aiming at simplifying the problem in-

stances and thus contributing to speed-up the performance of HIPP solvers [17, 116]. Structural

simplifications include eliminating duplicated genotypes, duplicated sites and complemented sites.

Applying these simplifications to the set of genotypes does not compromise the goal of obtaining a

pure parsimony solution for the initial set of genotypes because it is trivial to obtain a HIPP solution

for the initial set of genotypes after finding a HIPP solution for the simplified set of genotypes.

In addition, lower and upper bounds to the HIPP number of haplotypes can be computed before

applying a HIPP solver. The general lower bound procedure includes three lower bound techniques.

The CliqueLowerBound [114] technique produces a lower bound based on the largest clique of

incompatible genotypes. The ImprovedLowerBound [114] method improves the former lower

bound by identifying genotypes not included in the clique of incompatible genotypes but which

require at least one more distinct haplotype. Moreover, the FurtherImprovedLowerBound

technique further improves the lower bound by identifying genotypes with triples of heterozygous

sites which require haplotypes not previously considered.

In general, every heuristic method for solving the HIPP problem can be used as a polynomial

algorithm for computing an upper bound. The delayed haplotype selection [125] method and the

CollHaps [156] method are both based on the well-known Clark’s rule and represent two interesting

algorithms for computing upper bounds for the HIPP problem.

A significant number of exact models have been suggested for solving the HIPP problem. The

large majority of the models are integer linear programming formulations. The first model proposed,

published in 2003, is named RTIP [62] and is exponential on the number the number of genotypes
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and sites. PolyIP [16], published in 2004, represents the first polynomial ILP formulation modeling

the HIPP problem. HybridIP [17] represents a hybrid between RTIP and PolyIP. Two recent ILP

polynomial models which aim at solving the HIPP problem are HaploPPH [23], which was published

in 2009, and PUB
max [12] which is from 2008. HaploPPH is a class representative model. In addition,

PUB
max starts with an upper bound on the number of required haplotypes and solves a formulation

which aims at finding a maximum number of genotypes, s, which can be explained using UB − 1

haplotypes. If the solution is s < n, where n is the total number of genotypes, then UB is the HIPP

solution; otherwise, if s = n, then the process is iterated decreasing the value of the UB.

Dedicated branch-and-bound algorithms have also been proposed for solving the HIPP prob-

lem. HAPAR [164] performs a branch-and-bound search by enumerating the exponential number

of possible pairs of haplotypes. The Set Covering [94] method proposes an ILP formulation which

is also exponential but where variables and constraints are added dynamically to the model while

performing a dedicated branch-and-bound search.

The idea of considering Boolean satisfiability methods for tackling the HIPP problem arose with

the SHIPs [114] method, in 2006. Starting with a lower bound LB on the number of required

haplotypes, the SHIPs formulation models whether there exist LB haplotypes which can explain

the given set of genotypes. The value of the lower bound is iteratively increased until a feasible

solution is found. In addition, the SATlotyper [130] model extends the SHIPs formulation to handle

polyploid and polyallelic data. Furthermore, HAPLO-ASP [39] is an answer set programming model

that solves the HIPP problem.

The number of HIPP solutions can be significantly large [27]. The complete HIPP [78] problem

aims at finding all HIPP solutions for a given set of genotypes. In general, the process is very

time consuming because a large number of NP-hard problems are needed to be solved. Nonetheless,

some techniques, namely determining backbone haplotypes, duplicated sites and decomposability,

can help improving the efficiency.

Although the HIPP problem is an APX-hard problem, some small islands of tractability can be

found [93, 144]. In addition, a significant number of heuristic approaches have been developed to

provide an approximation to the general HIPP problem [92, 93, 165, 72, 82, 105, 163, 46, 125, 12,

134]. However, given the complexity of the problem, none of these approaches can guarantee a good

approximation.
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5

A New Approach for HIPP

This chapter describes one of the main contributions of this thesis. The idea is to formulate a

new exact HIPP model and to produce a new efficient approach that can be used as a practical

alternative to the approaches described in Chapter 4. The new proposed model is referred to as the

RPoly model.

RPoly was first published in 2007 [55]. Further improvements to the model were published in

2008 [56]. In addition, the model is explained in detail in a journal publication [57]. We would

like to point out that some methods described in Chapter 4 are posterior to RPoly. Note that

HAPLO-ASP [39], SATlotyper [130] and PUB
max [12] were published in 2008 and that HaploPPH [23]

and the Set Covering [94] approaches were published in 2009.

The proposed model, RPoly, is based on some prior formulations, namely PolyIP and SHIPs.

The RPoly model is based on the PolyIP model but with notable improvements. A significant

number of proposed modifications reduce the size of the model and are shown to be very effective.

Moreover, solving the HIPP problem using SAT techniques (SHIPs) has motivated the consideration

of other SAT-based procedures, such as pseudo-Boolean optimization (PBO) methods.

The RPoly model has been implemented in C code. The algorithm produces a PBO model

which is handled by a PBO solver, e.g. MiniSat+ 1 [38]. The RPoly solver can be obtained from

http://sat.inesc-id.pt/∼assg/rpoly.

The next sections describe the new PBO approach for solving the HIPP problem, RPoly, and its

features: use of a PBO solver, symmetry breaking, reduction of the size of the model, integration

of lower bounds and cardinality constraints. Moreover, each section evaluates each of the features

included in the final version of RPoly. Each feature contributes for RPoly to be the state of the

1http://minisat.se/MiniSat+.html
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Figure 5.1: Comparison of PolyIP (CPLEX) and PolyPB (MiniSat+) on the CPU time
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art HIPP solver. Section 5.5 extends the RPoly model to include genotypes with missing sites.

Section 5.6 studies the impact of the constraint solver in RPoly. A final section resumes the chapter.

5.1 Solving ILP HIPP Models with PBO

In the context of the integer linear programming (ILP) based HIPP models - RTIP (Section 4.2.1),

PolyIP (Section 4.2.2) and HybridIP (Section 4.2.3) - all variables are Boolean and all coefficients are

integers. These facts imply that the ILP-based HIPP models are also pseudo-Boolean optimization

(PBO) models, and therefore PBO solvers can be considered.

The RTIP model is known to be inadequate for large problem instances due to its exponential

size and the performances of PolyIP and HybridIP models are similar, as shown in Section 6.2.

Hence, we only evaluate the performance of the PolyIP model using a PBO solver (MiniSat+ [38]),

which we refer to as PolyPB.

Figure 5.1 summarizes a comparison between PolyPB and PolyIP. The set of used instances

corresponds to the 1183 instances described in Table 6.1. Each point in the scatter plot represents

one problem instance, where the x-axis corresponds to the CPU time required by PolyPB to solve

HIPP and the y-axis corresponds to the CPU time required by PolyIP to solve the HIPP problem.

A log scale is used for both axis. Instances represented by points located above the traced diagonal

represent instances where PolyPB performs better than PolyIP. Points in the 103 lines represent

instances where the solver has reached the time limit of 1000 seconds without giving the solution.

Clearly, PolyPB is faster than PolyIP for all instances and, in addition, PolyPB is able to solve a
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significant larger number of instances. Indeed, PolyPB solves 623 instances which PolyIP aborts.

Overall, PolyIP solves only 40% of the instances whereas PolyPB solves 93% of the problem in-

stances. We conclude that the use of MiniSat+ with the Poly model represents by far a more

efficient solution than using the Poly model with CPLEX. The results obtained suggest that the

PBO techniques are, in fact, very good at solving the HIPP problem.

5.2 RPoly Model

The reduced Poly model (RPoly) [55] is a new PBO model based on the PolyPB model but

extended with further optimizations.

RPoly introduces two key modifications to the PolyPB model: the elimination of key symmetries

and the reduction of the size of the model.

5.2.1 Eliminating Key Symmetries

It is a well-known fact that the SHIPs model would not be competitive if it was not for some

specific optimizations, which include breaking key symmetries [114]. Eliminating symmetries prunes

the search space, which in general accelerates the performance of the solvers.

Clearly, if a genotype gi ∈ G is explained by the haplotype pair (ha
i , h

b
i ), then gi is also explained

by the haplotype pair (hb
i , h

a
i ). Eliminating this symmetry reduces the number of solutions and

consequently reduces the search space.

In practice, this symmetry is broken by adding additional constraints to the model. Considering

that each haplotype is trivially mapped in a binary number, a lexicographic order can be imposed

on the elements of each haplotype pair. Hence, for each site gi j in a genotype gi ∈ G, we must

ensure that ha
i < hb

i , i.e. if gi j is the first heterozygous site of gi then ha
i j = 0 and hb

i j = 1.

For example, consider the genotype g1 = 0212. Eliminating symmetry in the pairs of haplotypes,

the pair of haplotypes (ha
1 , h

b
1) explaining genotype g1 must be such that ha

1 2 = 0 and hb
1 2 = 1.

Figure 5.2 compares the performance of the PolyPB model with and without the symmetry

breaking constraints. Clearly, with a few exceptions (72 out of 1183 instances), eliminating sym-

metries accelerates the performance of the PBO solver. The new model is faster than the PolyPB

model for 90% of the instances and up to 2 orders of magnitude. This result comes as no surprise,

given the success of the same technique when implemented in the SHIPs model. This result is

indeed significant, as the new model only aborts 32 instances, whereas the PolyPB model aborts 82

instances. Thus, the elimination of symmetries reduces in more than 60% the number of aborted
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Figure 5.2: Run times for PolyPB with and without symmetry breaking
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instances.

5.2.2 Reducing the Model

The PBO instances generated by the PolyPB model are significantly larger than the SAT in-

stances generated with the SHIPs model [55]. The number of constraints in the PBO model can be

up to an order of magnitude larger than the number of constraints in the SAT model, whereas the

number of variables in the PBO model can be a factor of three larger than the number of variables

in the SAT model.

The differences on the size of the models suggest the integration of some specific reductions used

in the SHIPs model into the PolyPB model. For this reason, the resulting model is referred to as

reduced Poly model (RPoly).

The organization of RPoly follows the organization of PolyIP. The RPoly model also associates

two haplotypes (ha
i , h

b
i ) with each genotype gi ∈ G, and conditions are defined which capture when

a different haplotype is used for explaining a given genotype. However, RPoly presents effective

reductions. First, the set of variables is different. Instead of associating variables with each site of

each genotype, RPoly associates variables only with heterozygous sites. Observe that homozygous

sites do not require variables because the value of the haplotypes explaining homozygous sites is

known beforehand and so can be implicitly assumed. Therefore, a Boolean variable ti j is associated
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with each heterozygous site gi j , such that,

ti j =











1 if ha
i j = 1 ∧ hb

i j = 0

0 if ha
i j = 0 ∧ hb

i j = 1
. (5.1)

This alternative definition of the variables associated with the sites of genotypes reduces the

number of variables by a factor of 2. In addition, the model only creates variables for heterozygous

sites, and therefore the number of variables associated with sites equals the total number of het-

erozygous sites. As a result, the conditions described in equation (4.8) are not necessary. It should

be mentioned that this definition of the variables associated with sites follows the SHIPs model [114,

115].

The RPoly model also includes variables relating pairs of candidate haplotypes. In practice, for

two candidate haplotypes hp
i and hq

k (p, q ∈ {a, b} and 1 ≤ k < i ≤ n), a Boolean variable xp q
i k

is defined, such that xp q
i k is 1 if haplotype hp

i explaining genotype gi and haplotype hq
k explaining

genotype gk are different. Comparing with PolyIP, the key difference is that the candidate haplotypes

for each genotype are related with candidate haplotypes for other genotypes only if the two genotypes

are compatible. Two incompatible genotypes are guaranteed not to be explained by the same

haplotype, and therefore, for the four possible combinations of p and q, xp q
i k = 1.

In addition, in order to count the number of distinct haplotypes used, Boolean variables up
i are

defined such that up
i is 1 if haplotype hp

i explaining genotype gi is different from every haplotype

which explains genotype gk with k < i, for each p ∈ a, b and 2 ≤ i ≤ n.

The goal of haplotype inference by pure parsimony is to minimize the number of distinct haplo-

types. Hence, the cost function of the RPoly model is given by

min

n
∑

i=1

(ua
i + ub

i ). (5.2)

The symmetry in haplotype pairs described in Section 5.2.1 is broken by considering that ti j = 0

for each first heterozygous site gi j of each genotype gi,

(gi j = 2 ∧ ∀1≤j′<j gi j′ 6= 2) =⇒ ¬ti j . (5.3)

Two genotypes gi and gk are related only with respect to sites for which either gi or gk is

85



Figure 5.3: Number of variables, constraints and terms for PolyPB and RPoly models
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heterozygous at that site. The conditions on the xp q
i k variables are all of the following form,

¬(R⇔ S)⇒ xp q
i k , (5.4)

where the predicates R and S depend on the values of the sites gi j and gk j , and also on the haplotype

being considered, i.e. either ha or hb. Observe that 1 ≤ k < i ≤ n, 1 ≤ j ≤ m, and p, q ∈ {a, b}.

Accordingly, the R and S predicates are defined as follows:

• If gi j 6= 2 ∧ gk j = 2, then R = (gi j ⇔ (q ⇔ a)) and S = tk j .

• If gk j 6= 2 ∧ gi j = 2, then R = (gk j ⇔ (p⇔ a)) and S = ti j .

• If gi j = 2 ∧ gk j = 2, then R = (p⇔ q) and S = (ti j ⇔ tk j).

Moreover, the conditions on variables up
i are based on the conditions for the xi variables. Note

that if genotypes gi and gk are incompatible then their explaining haplotypes need not to be com-

pared. Let predicate κ(i, k) be defined true if and only if genotypes gk and gi are compatible. In

addition, let K<i be the cardinality of the set {gk ∈ G : k < i ∧ κ(i, k)}. Therefore, the RPoly model

integrates the following constraints:

∧

1≤k<i
κ(i,k)

(xp a
i k ∧ xp b

i k)⇒ up
i . (5.5)

In practice, the proposed modifications result in significantly smaller PBO problem instances,

thus originating the Reduced Poly (RPoly) model. Figure 5.3 compares the number of variables,

constraints and terms for the PolyPB (extended with symmetry breaking) and the RPoly models.

The results are consistent and show that the number of variables in RPoly can be up to a factor of

three smaller than the number of variables in PolyPB; the number of constraints in RPoly is up to

86



Figure 5.4: Run times for PolyPB with symmetry breaking and RPoly
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a factor of five smaller than in PolyPB; and the number of terms in RPoly is up to a factor of five

smaller than in PolyPB. We should note that the phasing class of instances (see Table 6.1) exhibits

a different behavior: most of these instances have around 105 variables, 107 constraints and 107

terms in the PBO model with symmetry breaking predicates. The number of variables, constraints

and terms in RPoly is not reduced by a constant factor, as it is for the other classes of instances.

These instances have a higher number of incompatible genotypes when compared with the other

classes of instances. Hence, the impact of the reduced model is much more significant. For the same

reason, the impact on the run times is also more significant (see Figure 5.4 where the run time for

the phasing instances using the PBO model with symmetry breaking is around 101 seconds). As a

result, for these instances RPoly can outperform PolyPB by two orders of magnitude.

In addition, we evaluate the effect of the reductions with respect to the run times. Figure 5.4

compares the PolyPB model extended with symmetry breaking constraints and the RPoly model,

both using the PBO solver MiniSat+, on the set of 1183 problem instances and with a timeout of

1000 seconds. RPoly significantly outperforms PolyPB. RPoly is faster than PolyPB for 92.6% of

the instances and the speedup can reach two orders of magnitude.

5.3 Optimized RPoly Model

Other techniques have been developed in order to further optimize the RPoly model [56]. The

new modifications allow significant additional improvements in performance.
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5.3.1 Integrating Lower Bounds

The two lower bound procedures used in SHIPs (see Section 4.1.2) can also be integrated in the

RPoly model.

The FurtherImprovedLowerBound procedure provides a list of genotypes with an indication

of the contribution of each genotype to the lower bound. Each genotype either contributes with

+2, indicating that 2 new haplotypes will be required for explaining this genotype, or with +1,

indicating that 1 new haplotype will be required for explaining this genotype. For each genotype

with an associated fixed haplotype, the corresponding u variable is assigned value 1, and the clauses

used for constraining the value of u, constraints (5.5), need not be generated. Remember that the u

variables denote whether a haplotype used for explaining a genotype is different from the haplotypes

considered so far.

It should be observed that the order of the genotypes is crucial for correctness. The RPoly model

needs to be generated in such a way that the first genotypes correspond to genotypes used in the

lower bound: first the genotypes used in the clique of mutually incompatible genotypes, GC , and

then the genotypes contributing to the improved lower bound. Moreover, for each genotype not

contributing to the lower bound, all fixed compatible haplotypes must be considered as candidate

haplotypes for explaining the genotype.

Similarly to the advantages of using lower bounds in SHIPs [117], the integration of lower bounds

in RPoly offers a few relevant advantages. First, several u variables become fixed with value 1. This

allows the PBO solver to focus on the remaining u variables. Second, the size of the generated

PBO problem instances becomes significantly smaller. For the more complex problem instances, the

integration of lower bound information reduces the size of the generated PBO instances by a factor

between 2 and 3, on average.

In addition, we have tried the integration of an upper bound on RPoly. A constraint which

explicitly imposes an upper bound on the cost function was included in the formulation. However,

the obtained results suggest that this approach does not improve the performance of the HIPP

solver. This fact may happen because the upper bound constraint prunes too much the state space

which, in this case, seems not to represent an advantage to the PBO solver. Consequently, the

integration of upper bounds is not included in the RPoly model.
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5.3.2 Integrating Cardinality Constraints

For the problem of HIPP, as well as other combinatorial problems, adding new constraints to a

model prunes the search and is therefore likely to contribute to the efficiency of the solver. This

observation motivates an additional improvement which imposes cardinality constraints on the x

variables.

Clearly, unless genotypes gi and gk are equal, they cannot be explained by the same pair of

haplotypes. Therefore, two different genotypes must be explained by at most one common haplotype.

In practice, this constraint is integrated in the model by adding cardinality constraints on the x

variables. (Recall that the x variables capture whether two haplotypes are distinct.) Moreover, for

incompatible pairs of genotypes, the constraints on the x variables are automatically guaranteed.

Hence, for each pair of distinct non-homozygous compatible genotypes, gi and gk, at least three of

their four pairwise haplotypes must be different,

if κ(i, k) ∧ gi 6= gk ∧ ∃1≤j,j′≤m(gi j = 2 ∧ gi j′ = 2), then
∑

p,q∈{a,b}

xp q
i k ≥ 3.

Since this cardinality constraint involves four x variables, the most effective solution is to encode

the cardinality constraint using the pairwise encoding. As a result, for each pair of compatible

genotypes gi and gk, the CNF representation of the previous cardinality constraint becomes

(xa a
i k ∨ xa b

i k ) ∧ (xa a
i k ∨ xb a

i k ) ∧ (xa a
i k ∨ xb b

i k) ∧ (xa b
i k ∨ xb a

i k ) ∧ (xa b
i k ∨ xb b

i k) ∧ (xb a
i k ∨ xb b

i k). (5.6)

Figure 5.5 evaluates the gains in the performance of RPoly achieved by integrating the lower

bound and cardinality constraints. The optimized RPoly model is referred to as RPoly version 1.2

(v1.2), whereas the original RPoly is RPoly version 1.1 (v1.1). For very easy instances, RPoly v1.1

is clearly faster, but for difficult instances, RPoly v1.2 is consistently faster. RPoly v1.2 is able to

solve 19 instances that RPoly v1.1 is not able to solve in 1000 seconds. There is only one problem

instance that RPoly v1.1 is able to solve and RPoly v1.2 aborts. RPoly v1.1 is able to solve 97%

of the problem instances within 1000 seconds and the improved solver, RPoly v1.2, is able to solve

98.5% of the instances, for the same timeout. Overall, the improved RPoly model reduces in 50%

the number of instances aborted.

The major gain is due to the integration of lower bounds. This optimization allows solving 18

instances that were previously aborted. The addition of cardinality constraints allows solving one

more instance than without these constraints.
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Figure 5.5: Comparison of RPoly v1.1 and RPoly v1.2 on the CPU time
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We may conclude that RPoly v1.2 is more robust and more effective on solving the hardest

instances than the previous version of RPoly. On the following, RPoly refers to RPoly v1.2.

5.4 Additional Remarks

The complete RPoly model is summarized in Table 5.1. It is interesting to observe that all

constraints are special cases of a constraint with the form

n
∑

i=0

aixi ≥ b, (5.7)

where ai ∈ {−1, 1} and b = 1− |{i : ai = −1, 1 ≤ i ≤ n}|. This means that each RPoly constraint

is equivalent to a single SAT clause, i.e. solving the RPoly model is a binate covering problem. This

fact also suggests that PBO solvers based on SAT may be adequate for solving the RPoly model.

Regarding the size of the model, the following space complexity theorem may be formulated.

Theorem 5.1. (Space Complexity) Let n be the number of genotypes in G, m the number of positions

of each genotype and θ the number of heterozygous positions in the instance. Then, the number of

variables of the PBO model is O(n2+θ), which corresponds to O(n2+nm). In addition, the number

of constraints of the PBO model is O(n2m).

Proof. The number of t variables is O(θ) because there exists one variable for each heterozygous

site. The number of x variables is O(n2) and the number of u variables is O(n). Hence, the number
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Table 5.1: The RPoly formulation a

minimize:
∑n

i=1 u
a
i + ub

i (5.2)

subject to:

ti j = 0 if
gi j = 2

∀i: 1≤i≤n, ∀j′,j: 1≤j′<j≤m (5.3)
∀j′<j gi j′ 6= 2

(−1)gi j+1tk j + x
p a
i k
≥ gi j

κ(i, k)

(−1)gi j tk j + x
p b
i k
≥ 1− gi j

if gi j 6= 2 ∀k,i: 1≤k<i≤n, ∀j: 1≤j≤m, p ∈ {a, b} (5.4)

gk j = 2

(−1)gk j+1ti j + x
a q
i k
≥ gk j

κ(i, k)

(−1)gk j ti j + x
b q
i k
≥ 1− gk j

if gi j = 2 ∀k,i: 1≤k<i≤n, ∀j: 1≤j≤m, q ∈ {a, b} (5.4)

gk j 6= 2

ti j − tk j + x
p q
i k
≥ 0

gi j = 2

tk j − ti j + x
p q
i k
≥ 0

if gk j = 2 ∀k,i: 1≤k<i≤n, ∀j: 1≤j≤m, p, q ∈ {a, b} (5.4)

p = q, κ(i, k)

ti j + tk j + x
p q
i k
≥ 1

gi j = 2

−ti j − tk j + x
p q
i k
≥ −1

if gk j = 2 ∀k,i: 1≤k<i≤n, ∀j: 1≤j≤m, p, q ∈ {a, b} (5.4)

p 6= q, κ(i, k)
∑

k<i
κ(i,k)

∑

q∈{a,b}

x
p q
i k
− u

p
i ≤ 2K<i − 3 ∀i: 1<i≤n, p ∈ {a, b} (5.5)

∑
p,q∈{a,b} x

p q
i k
≥ 3 if

gk 6= gi, κ(i, k)
∀k,i: 1≤k<i≤n (5.6)

¬ω(gk), ¬ω(gi)

aGenotypes must be sorted, starting with the genotypes used in the lower bound. The predicate κ(i, k) is defined

true iff genotypes gk and gi are compatible. K<i = |{gk ∈ G : k < i ∧ κ(i, k)}|. The predicate ω(gi) is defined true iff

genotype gi is homozygous.

of variables is O(n2 + θ), which is equal to O(n2 + nm) since θ = O(nm).

Denote by θ1, . . . , θn the number of heterozygous positions of genotypes g1, . . . , gn, respectively.

The number of constraints generated by equation (5.4) is

n
∑

i=2

i−1
∑

k=1

(κ(i, k)O(θi + θk)), (5.8)

which is O(n2m). The number of constraints generated by equation (5.5) is 2n and the number of

constraints generated by equation (5.6) is O(n2), taking into consideration the ranges for the i and

k indexes. Hence, the number of constraints is O(n2m).
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Observe that the number of constraints and variables of the PolyIP model are, respectively, in

Θ(n2m) and Θ(n2 + nm), hence exhibiting the same worst-case complexity as the RPoly model.

Nevertheless, θ tends to be in practice much smaller than nm and K<i = |{gk ∈ G : k < i∧ κ(i, k)}|

tends to be much smaller than i, and so the RPoly model can yield a significantly more compact

representation than the PolyIP model.

Approximate Solutions

When RPoly exceeds the given resources without finding the optimal answer, then RPoly provides

the best solution which it was able to find within its allocated resources.

5.5 Missing Data

Most often, real genotype data contains a significant percentage of unknown data. Even with

modern automated DNA analysis techniques, generating data with missing alleles is not an uncom-

mon situation [84].

One useful feature of the RPoly tool is to be able to deal with unspecified genotype sites.

Genotyping procedures often leave a percentage of missing genotype positions, and so haplotype

inference tools need to be able to deal with missing sites. RPoly can handle SNPs with unspecified

values, inferring the values for the missing sites and still guaranteeing a parsimonious solution.

The formulation is as follows. Two Boolean variables are associated with each missing site to

represent the four possible values for the haplotypes: two homozygous values (one for each allele) and

two heterozygous values (one for each haplotype phase). The constraints for unspecified genotype

sites are similar to the constraints for heterozygous genotype sites.

Missing SNPs are represented by ’?’. Hence, the alphabet of the genotypes is extended to

{0, 1, 2, ?}. In practice, two variables, tai j and tbi j , are associated with each missing site gi j =?.

Then, tpi j = 0 indicates that hp
i j = 0, whereas tpi j = 1 indicates that hp

i j = 1, with p ∈ {a, b}.

The conditions on the xp q
i k variables, which correspond to equation (5.4), are updated to

¬(R⇔ S)⇒ xp q
i k , (5.9)

where the predicates R and S depend on the values of the sites gi j and gk j , and also on which

haplotype is being considered, i.e. either a or b. Observe that 1 ≤ k < i ≤ n, 1 ≤ j ≤ m and

p, q ∈ {a, b}. Accordingly, the R and S predicates are defined as follows:
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• If gi j 6= 2 ∧ gk j = 2, then R = (gi j ⇔ (q ⇔ a)) and S = tk j .

• If gk j 6= 2 ∧ gi j = 2, then R = (gk j ⇔ (p⇔ a)) and S = ti j .

• If gi j = 2 ∧ gk j = 2, then R = (p⇔ q) and S = (ti j ⇔ tk j).

• If gi j =? ∧ gk j /∈ {2, ?}, then R = tpi j and S = gk j .

• If gk j =? ∧ gi j /∈ {2, ?}, then R = tqk j and S = gi j .

• If gi j =? ∧ gk j = 2, then R = (q ⇔ a) and S = (tpi j ⇔ tk j).

• If gk j =? ∧ gi j = 2, then R = (p⇔ a) and S = (tqk j ⇔ ti j).

• If gi j =? ∧ gk j =?, then R = tpi j and S = tqk j .

5.6 Impact of the Constraint Solver

RPoly is a PBO model which uses as its engine the PBO solver MiniSat+ [38]. Nonetheless,

other PBO solvers can be considered to solve the model. In addition, given that PBO is a particular

case of ILP, PBO models may also be solved by generic ILP solvers. Moreover, MaxSAT solvers

can also be used. Indeed, there are well-known mappings from PBO to weighted MaxSAT and vice-

versa [68, 71]. The fact that all constraints in the RPoly model represent instances of the binate

covering problem [29] makes the conversion very simple since every constraint is equivalent to a

single clause.

Therefore, this section evaluates the performance of RPoly using a number of different solvers.

This evaluation shows the sensitivity of the RPoly model to the actual constraint solver. Part of

this evaluation is published in [50] but in this dissertation a few more solvers are considered.

For the experimentation, a well-known commercial ILP solver as well as the best performing

PBO and MaxSAT solvers of the 2009 evaluations 2 were considered. The evaluated solvers are

MiniSat+ 3 [37], Pueblo [145], BSOLO version 3.1 [119], PBS4 4 [3], Sat4j-pb 10 [11],

WBO [120], SCIP 5 [2], glpPB release 0.2 6 and CPLEX version 11.2 7. Moreover, we also

2http://www.maxsat.udl.cat and http://www.cril.univ-artois.fr/PB09
3http://minisat.se/MiniSat+.html
4http://www.aloul.net/Tools/pbs/pbs4.html
5http://scip.zib.de
6http://www.eecs.umich.edu/∼hsheini/tools/glpPB.tar.gz
7http://www.ilog.com/products/cplex
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Table 5.2: Percentage of instances solved by RPoly using different solvers

PBO Solver % solved MaxSAT Solver % solved ILP Solver % solved

MiniSat+ 98.5% WPM1 95.9% CPLEX 78.3%

Pueblo 95.3% MSUnCore 94.4%

WBO 94.6% Sat4j-maxsat 94.3%

Sat4j-pb 94.3% MiniMaxSat 83.9%

BSOLO 92.3% IncWMaxSatz 68.1%

PBS4 91.1%

SCIP 79.6%

glpPB 48.3%

considered weighted MaxSAT solvers in the experiments: WPM1 [5], Sat4j-maxsat 10 [11],

MSUnCore version 3 8 [126], MiniMaxSat [71] and IncWMaxSatz [106].

The RPoly model was adapted to be usable by the solvers described above. Table 5.2 summarizes

the results. MiniSat+, which is the solver used by default with the RPoly model, aborts 18 out of

1183 instances. Follows the weighted MaxSAT solver WPM1, which aborts 49 instances, Pueblo

which aborts 56 instances, WBO which aborts 64 instances and MSUnCore which aborts 66

instances. Both Sat4j-maxsat and Sat4j-pb abort 68 instances. With a poorer performance,

BSOLO aborts 91 instances, PBS4 aborts 105 instances, MiniMaxSat aborts 191 instances and

CPLEX aborts 257 instances. The solvers with worst performance are IncWMaxSatz which

aborts 377 instances and glpPB which aborts 612 instances.

Clearly, MiniSat+ is the best performing solver. The techniques used by MiniSat+ which

consist in translating the PBO model into SAT, result in an approach that is particularly suited for

problems that can be naturally encoded into SAT. Indeed, this is the case for the HIPP problem.

Hence, one may expect to get a more competitive solver with MiniSat+ rather than by applying

other PBO solver, not optimized towards Boolean satisfiability.

The glpPB solver is the worst performing solver. This ILP-based solver implements some of

the techniques also used by CPLEX, but glpPB is not as optimized as CPLEX. This can justify

the poor performance of the glpPB solver.

Overall, these experiments show that the SAT-based PB and MaxSAT solvers are, in general,

8http://www.csi.ucd.ie/staff/jpms/soft
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more suitable than the state of the art generic ILP solver CPLEX and the ILP-based PB solver

glpPB. The results for CPLEX and glpPB suggest that ILP techniques are not as adequate as

PB techniques for solving the HIPP problem.

Nonetheless, excluding glpPB and IncWMaxSatz, all the remaining solvers when applied to

the RPoly model are able to solve more instances than the majority of HIPP solvers (see Section 6.2).

5.7 Conclusions

RPoly represents an innovative method for solving the HIPP problem [55, 56]. The RPoly

model is based on the PolyIP [16] model but improved with a number of modifications. First, the

RPoly model is a pseudo-Boolean model and uses a pseudo-Boolean optimization solver for finding

a solution to the problem. Second, RPoly includes the elimination of key symmetries, reducing

significantly the search space. Moreover, inspired by the SHIPs [114] model, RPoly uses some ideas

which contribute to a significantly more compact model, and that is the reason for the model to

be named the Reduced Poly model. These reductions include reducing the number of variables

and constraints of the model. Moreover, RPoly integrates the computation of a lower bound which

allows further reducing the model by fixing the value of a number of variables. Finally, cardinality

constraints are joined to the model with the purpose of improving the run times by pruning the

search space.

These improvements contribute significantly for the efficiency of RPoly. The use of a PBO Solver,

MiniSat+, contributes for solving the large majority of the instances, more precisely 93%. The

elimination of key symmetries, reduction of the size of the model, integration of lower bounds and

cardinality constraints, contribute for an efficient HIPP solver, which is able to solve 98.5% of the

problem instances.

The RPoly model has the interesting particularity that each constraint is equivalent to a single

SAT clause. This fact suggests that SAT-based solvers are the most adequate for solving this model.

The number of variables of the RPoly model is O(n2 + nm) and the number of constraints

is O(n2m). Although RPoly exhibits the same space complexity of PolyIP, the RPoly model is

significantly more compact in practice.

In addition, RPoly is enriched with the possibility of having missing data. The achievement of

a HIPP solution is not compromised by including new constraints which deal with missing sites.

Unknown value sites are very common in real genotype data, and thus this feature is an added value

to the RPoly model.
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A significant number of constraint solvers, including ILP (CPLEX), PBO (MiniSat+, Pueblo,

WBO, Sat4j-pb, BSOLO, PBS4, SCIP, glpPB) and MaxSAT (WPM1, MSUnCore, Sat-

4j-maxsat, MiniMaxSat, IncWMaxSatz) solvers, were applied to the RPoly model. The main

conclusion is that the SAT-based PB and MaxSAT solvers are the most suitable for solving the

RPoly model. The best performing solver is MiniSat+, whereas the worst performing solver is

the glpPB solver. Nonetheless, excluding glpPB and IncWMaxSatz, all the remaining solvers,

when applied to the RPoly model can solve more instances than the large majority of HIPP solvers.

This result confirms the robustness of the RPoly model.
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6

HIPP: Experimental Results

This chapter illustrates the experimental results obtained using the current exact HIPP solvers.

First, in Section 6.1, the experimental setup, including the origin of the considerably large number

of instances is described. Section 6.2 compares the efficiency of all solvers which exactly respond

to the pure parsimony criterion. Furthermore, in Section 6.3, the effectiveness of the lower and

upper bounds described previously in this thesis, is tested. Section 6.4 evaluates the accuracy of

the pure parsimony criterion, by comparing the accuracy of RPoly with the accuracy of the mostly

used statistical haplotype inference tools. A final section resumes the conclusions acquired from the

results presented in this chapter.

6.1 Experimental Setup

6.1.1 Datasets

A significant number of instances is used for testing the performance of the HIPP algorithms.

A set with 1183 problem instances [55] is considered. The problem instances can be divided in two

sets: the synthetic data and the real data. Table 6.1 contains the considered classes of instances

and summarizes their sizes. For each class, we give the number of instances, and the minimum

and maximum number of SNPs and genotypes. All instances were simplified using the techniques

described in Section 4.1.1 and, therefore, the presented sizes correspond to the simplified instances.

Part of the synthetic data was generated using the Hudson’s program ms 1 [75]. This software

is able to simulate haplotype samples following the coalescent approach and under a variety of

assumptions about migration, recombination rate and population size. Randomly, the haplotypes

have been paired uniformly (equal haplotypes are removed, so that every haplotype is sampled

1http://home.uchicago.edu/∼rhudson1/source/mksamples.html
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Table 6.1: Classes of instances (I): number of SNPs and genotypes

Class # Instances minSNPs maxSNPs minGENs maxGENs

ms 380 4 57 9 94

phasing 329 14 188 34 90

hapmap 24 4 29 5 68

biological 450 4 77 4 49

Total 1183 4 188 4 94

with the same frequency) and non-uniformly (repeated haplotypes have higher probability of being

sampled than others) [17].

Additional synthetic data was generated by the simulation software cosi 2 [142]. These instances

(class phasing) were used recently to evaluate phasing algorithms [121]. The phasing instances

correspond to the SU-100kb, SU1, SU2 and SU3 classes available online 3.

Part of the real data (class hapmap) was obtained from the HapMap project 4 [153, 154], which

provides a comprehensive source of genotype data over four populations. These instances were

provided by D. Brown and I. Harrower [17]. The data was generated with DNA sequence from

regions with a small amount of recombination, of chromosomes 10 and 21. For all four populations,

regions with 30, 50 and 75 SNPs were chosen, therefore providing a total of 24 hapmap instances.

The class of biological benchmarks was obtained with the haplotypes from five well-studied genes,

available from scientific publications [85, 140, 89, 31, 36]. For each of the five sets of real haplotypes,

sets of genotypes with different sizes were generated. Genotypes have been generated by randomly

pairing two haplotypes.

6.1.2 Setting-up

Except when contrarily stated, all experiments were run on an Intel Xeon 5160 server (3.0GHz,

1333Mhz, 4GB) running Red Hat Enterprise Linux WS 4. The timeout for each instance was set to

1000 seconds and the memory limit was set to 2 GB.

2http://www.broad.mit.edu/∼sfs/cosi
3http://www.stats.ox.ac.uk/∼marchini/phaseoff.html
4http://www.hapmap.org
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Figure 6.1: Relative performance of HIPP solvers
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6.2 Efficiency of HIPP Solvers

In this section, an extensive comparison of the efficiency of RPoly with the other exact HIPP

solvers is performed. A significant number of HIPP solvers were tested, including RTIP [62],

PolyIP [16], HybridIP [17], HAPAR [164], SHIPs [116], SATlotyper [130], HAPLO-ASP [39] and

HaploPPH [23]. The results were obtained with the tools provided by the authors, except for the

RTIP tool. This tool was provided by the authors of PolyIP and HybridIP. To the best of our

knowledge, the author of RTIP has not made the software available. For the ILP approaches,

CPLEX version 11.2 was used. The most recent version of RPoly (version 1.2) and SHIPs (version

2) were used. SATlotyper version 0.1.1b was used. Both SAT-based HIPP solvers use MiniSat

2 5. HAPLO-ASP uses Cmodels (version 3.75) 6 and LParse version (1.0.17) 7, HaploPPH uses

Xpress-Mosel (version 3.0.2), from FICO Xpress 8.

6.2.1 Comparing Performances

Figure 6.1 presents the results for the HIPP solvers running in all instances. For each solver,

instances are sorted and plotted according to their running times, thus giving a figure about the

5http://minisat.se/MiniSat.html
6http://www.cs.utexas.edu/users/tag/cmodels.html
7http://www.tcs.hut.fi/Software/smodels
8http://www.fico.com
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Figure 6.2: CPU time comparison between RPoly and SHIPs/HaploPPH
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number of instances each solver is able to solve in less than 1000 seconds.

As the figure shows, RPoly is the HIPP tool capable of solving the largest number of instances.

RPoly solves 1165 out of 1183 instances within 1000 seconds, which represents more than 98% of the

instances. SHIPs is the second more robust HIPP solver, being able to solve more than 94% of the

problem instances. Follows HaploPPH which solves 79%, HAPLO-ASP which is able to solve 74%,

RTIP which solves about 68% and SATlotyper which solves about 67% of the problem instances.

HAPAR solves about 49% of the instances. PolyIP and HybridIP have very similar performances,

solving both about 40% of the instances.

Taking into account the amount of time that each solver requires, on average, to solve the non-

aborted instances, we can conclude that RPoly is also the fastest solver. RPoly takes on average 3.5

seconds for solving the non-aborted instances followed by RTIP that takes on average 6.8 seconds

and by SHIPs that takes 7.9 seconds. SATlotyper takes 24.0 seconds, HAPLO-ASP takes 30.2

seconds, HAPAR takes 39.9 seconds, HaploPPH takes 42.3 seconds, HybridIP takes 72.9 seconds

and PolyIP takes 73.4 seconds, on average.

Although RTIP is able to solve a large set of instances in a surprising small amount of time,

RTIP is not a robust solver. Due to the exponential size of the formulation, RTIP either solves

the problem instance in a few seconds or causes memory exhaustion. Indeed, 96% of the problem

instances aborted by RTIP are due to memory exhaustion and on average an instance is aborted

due to memory exhaustion in 37.5 seconds. Also HAPLO-ASP has a problem of memory exhaustion

with large instances, and consequently aborts most of the instances of the phasing class. Indeed,

96.8% of the instances aborted by HAPLO-ASP abort due to memory exhaustion.
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Figure 6.3: CPU time comparison between RPoly and Haplo-ASP/RTIP
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Figures 6.2 and 6.3 compare RPoly with the other best performing solvers: SHIPs, HaploPPH,

HAPLO-ASP and RTIP, with respect to the CPU time. Points on the 103 lines represent instances

where either the solvers have reached the time limit of 1000 seconds without giving the solution, or

the solvers have aborted due to memory exhaustion. The case of memory exhaustion only happens

for RTIP and HAPLO-ASP.

The scatter plot on the left of Figure 6.2 compares RPoly and SHIPs on the CPU time. As

can be observed, RPoly has in general better performance than each of the other solvers. RPoly

is faster than SHIPs for 96% of instances. Furthermore, RPoly is able to solve 50 instances that

SHIPs aborts. Nonetheless, SHIPs is able to solve one instance within 1000 seconds which RPoly

does not.

Figure 6.2 (right) compares RPoly with HaploPPH. RPoly is able to solve 229 instances that

HaploPPH aborts and RPoly can solve all instances that HaploPPH is able to solve. Moreover,

RPoly is faster than HaploPPH for 80% of the problem instances.

Figure 6.3 (left) compares RPoly with HAPLO-ASP. RPoly is faster than HAPLO-ASP for 98%

of instances. Moreover, RPoly is able to solve 293 instances that HAPLO-ASP aborts. There is one

instance which HAPLO-ASP is able to solve within 1000 seconds and RPoly does not.

Finally, the scatter plot on the right of Figure 6.3 compares RPoly and RTIP on the CPU time.

Overall, RPoly is faster than RTIP for 96% of the problem instances. Moreover, RPoly is able to

solve 366 instances which RTIP aborts. However, RTIP is able to solve 6 out of the 18 instances

aborted by RPoly. This fact is interesting, albeit not significant.

Overall, RPoly is the most robust solver being able to solve the largest number of instances in a
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reduced amount of time.

6.2.2 Additional Remarks

The previous sections show that RPoly is clearly the most robust solver. For the large majority

of instances, RPoly is faster than any other exact HIPP solver. Furthermore, RPoly is the state of

the art HIPP solver which can solve the largest set of instances, aborting only 18 instances out of

1183 of different sources, reducing in 73% the number of instances aborted by SHIPs.

The fact that the best performing solvers are RPoly, SHIPs and, for some classes of instances,

HAPLO-ASP and SATlotyper, suggests that the SAT-based techniques are the most adequate for

solving the HIPP problem. It is interesting to note that each of these four solvers uses the SAT

solver MiniSat [37] as its core engine.

SATlotyper is probably less optimized than SHIPs due to the fact that SATlotyper was not cre-

ated to compete with exact HIPP solvers. SATlotyper is more general, being able to solve haplotype

inference problems on polyploid species and polyallelic SNPs. In particular, SATlotyper does not

include the computation of the lower bound, which is a crucial point to the good performance of

SHIPs.

The authors of the Set Covering [94] approach, described in Section 4.3.2, did not turn available

their haplotype inference software and therefore, we could not present the experimental results.

Nonetheless, according to [94], the Set Covering approach is not able to solve some ms instances

with 30 genotypes and 50 SNPs. Note that ms instances of these dimensions are trivially solved by

RPoly. These results suggest that the Set Covering approach would not perform so well in the more

challenging instances, as those from the phasing class.

Moreover, we also do not have experimental results for the PUB
max [12] approach, described in

Section 4.2.5. Nonetheless, the results presented in [12] indicate that PUB
max needs, on average, 875

seconds to solve instances generated with the Hudson’s program, with 50 genotypes, 10 SNPs and

recombination factor r = 16. Our ms dataset contains instances with these parameters and RPoly

is able to solve each in less than 2 seconds. This fact suggests that the PUB
max approach is also not

competitive with the RPoly method.

6.3 Testing Bounds

This section illustrates the effectiveness of the bounding techniques described in Section 4.1.2

and Section 4.1.3. For this study, only the instances that have been solved by at least one of the
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Figure 6.4: Difference between the lower bound and the optimal solution
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exact HIPP approaches have been taken into account. (This procedure has eliminated 13 out of the

1183 instances.) Otherwise it would not be possible to compare the values of the computed bounds

with the optimal solution.

6.3.1 Lower Bounds

Figure 6.4 provides a comparison between the lower bound given by Algorithm 7, described in

Section 4.1.2, and the exact HIPP solution, for the 1170 problem instances whose HIPP solution

is known. For around 32% of the instances, the lower bound computes the exact HIPP solution.

Moreover, for the large majority of the instances (more precisely 86%) the difference between the

HIPP solution and the lower bound is less than or equal to 5.

Analyzing the contribution of each algorithm of Section 4.1.2 to the lower bound, the following

results can be obtained. Algorithm 8, CliqueLowerBound, computes the exact HIPP solution for

only 1% of the instances. Moreover, the difference between the lower bound and the HIPP solution

is less than or equal to 5 for 30% of the instances. Algorithm 9, ImprovedLowerBound, notably

improves the previous lower bound. The computed lower bound is equal to the exact HIPP solution

for 30% of the considered instances. In addition, for 83% of the instances, the difference between

the exact solution and the ImprovedLowerBound solution is less than or equal to 5. Algorithm

10, FurtherImprovedLowerBound, further increases the lower bound and calculates the exact

HIPP solution for 32% of the instances and 86% of the problem instances differ from the HIPP

solution in less than 6 haplotypes.
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Figure 6.5: Difference between the Delayed Selection upper bound and the optimal solution
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Figure 6.6: Difference between the CollHaps upper bound and the optimal solution
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6.3.2 Upper Bounds

The evaluation of the delayed selection upper bound computation is summarized in Figure 6.5.

For 53% of the instances, the upper bound algorithm computes the exact HIPP solution. In addition,

for 87% of the instances the difference between the computed upper bound and the HIPP solution

is less or equal to 5. The distance between the upper bound and the HIPP solution goes up to 33

haplotypes.

Figure 6.6 presents the quality of the CollHaps upper bound. The upper bound value provided

by the CollHaps algorithm is equal to the optimum value for 951 instances, i.e. for more than 81% of

the problem instances. Moreover, for 99% of the instances the difference between the value provided
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Figure 6.7: Difference between the Delayed Selection upper bound and the lower bound
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by CollHaps and the HIPP solution is less or equal to 5. The distance between the upper bound

and the HIPP solution goes up to 9 haplotypes.

6.3.3 Upper Bounds vs Lower Bounds

Figure 6.7 compares the lower bound and the delayed selection upper bound values obtained for

each instance. For this plot the whole set of 1183 instances was evaluated. We may observe that for

more than 23% of the instances both values are exactly the same. This means that computing lower

and upper bounds suffices to solve these problem instances, i.e. no search is required. In addition,

the difference between the upper bound and the lower bound is less or equal to 5 for 71% of the

instances and less or equal to 10 for 85% of the instances, thus predictably not requiring much time

to be solved.

Finally, Figure 6.8 compares the lower bound and the CollHaps upper bound values. For 343

instances, i.e. 29% of the problem instances, the value of the upper bound is equal to the value of

the lower bound. For 82% of the problem instances, the difference between the upper and lower

bounds is less or equal to 5. The difference between the CollHaps upper bound and the lower bound

is at most 36 haplotypes.

6.4 Accuracy of Haplotype Inference Methods

In order to have practical impact in genetic studies, a haplotype inference method must be

accurate with respect to the reality. Accuracy is measured by the correct association between
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Figure 6.8: Difference between the CollHaps upper bound and the lower bound
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genotypes and explaining haplotypes. Even though it is not possible, in general, to know the precise

solution for the haplotype inference problem, there are a few very well-studied sets of genotypes for

which the solution is known. This solution is often obtained using different generations from the

same population.

This section aims at comparing the accuracy of the pure parsimony criterion with the accuracy

of different haplotype inference approaches. Hence, the accuracy of RPoly is compared with the

accuracy of the most well-known statistical approaches and the approach based on perfect phylogeny.

Although there are some studies which compare the accuracy of the phasing methods [121, 4, 150],

most studies exclude combinatorial methods, as pure parsimony, and recent statistical approaches,

as Shape-IT [34] and Beagle [19]. Hence, this section provides also a new accuracy comparison

between phasing methods.

Datasets

Two distinct sets of real data are used in this experiment. The first set is constituted of seven

instances whose haplotypes have been experimentally determined [133, 4] and correspond to the

A − G data sets already used in other haplotyping studies [27]. The set A contains 39 genotypes,

whereas all other sets B −G have 80 genotypes. The number of SNPs range from 5 to 47.

The second set of instances corresponds to data obtained from the HapMap site 9. We have

selected the SNPs from a set of nine important genes related with breast cancer, namely BRCA1,

9http://www.hapmap.org
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Table 6.2: Classes of instances (II): number of SNPs and genotypes

Class # Instances minSNPs maxSNPs minGENs maxGENs

known datasets: A-G 7 5 47 39 80

HapMap CEU 9 16 320 30 30

HapMap YRI 9 17 308 30 30

Total 25 5 320 30 80

BRCA2, P53, ATM, CYP1B1, HRAS1, RAD51, SOD2 and TSG101. The populations CEU and

Y RI were chosen because they are subdivided in family trios (mother, father, child). Using the

genotypes of the parents, it is possible to infer the haplotypes of the children for the majority of the

locus. The number of genotypes is 30 in all instances from this set and the number of SNPs range

from 17 to 308.

Table 6.2 summarizes the sizes of the considered classes of instances. Note that haplotyping

regions with tens of SNPs are still relevant in several association studies. Moreover, larger regions

can always be partitioned into small blocks [172].

Performance Metric

The accuracy of the methods is measured by the well-known switch error rate, which measures

the percentage of possible switches in haplotype orientation, used to recover the correct phase in an

individual [107]. Moreover, we introduce here the switch accuracy which is defined by the percentage

of successive pairs of heterozygous positions in an individual that are phased correctly with respect

to each other, i.e.

(switch accuracy) = 100%− (switch error rate).

Phasing Algorithms

The accuracy of distinct haplotype inference methods are compared here. The following statis-

tical tools are used: PHASE 10 [150] (version 2.0), FastPHASE 11 [143] (version 1.2.3), Beagle 12

[19] (version 3.1) and Shape-IT 13 [34] (version 1.0). PHASE and Shape-IT are Bayesian methods,

10http://depts.washington.edu/uwc4c/express-licenses/assets/phase
11http://depts.washington.edu/uwc4c/express-licenses/assets/fastphase
12http://www.stat.auckland.ac.nz/∼bbrowning/beagle/beagle.html
13http://www.griv.org/shapeit
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Figure 6.9: Switch accuracy of phasing methods in different datasets
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and Beagle and FastPHASE use hidden Markov models. Furthermore, the combinatorial method

which follows the imperfect phylogeny approach, HAP 14 [66] (version 3.0) is also tested.

6.4.1 Comparing Accuracies

Experimental results are summarized in Figure 6.9 and Table 6.3. Figure 6.9 shows the switch

accuracy for the known datasets and for HapMap instances. The accuracy in the HapMap instances

is the average of the 9 gene instances for populations CEU and Y RI, respectively.

It is not clear which method exhibits better accuracy. Actually, the performance of the solvers

may vary significantly with different instances. PHASE and Shape-IT have better accuracy in

instances A and D. On the other hand, HAP and FastPHASE have better accuracy in instances C

and E and RPoly and FastPHASE have better accuracy in instance F . All methods except HAP

have similar accuracy in instance G and in the set of instances from CEU population. Moreover,

PHASE, FastPHASE and Shape-IT have better accuracy for instances of Y RI population.

Instance B exhibits the smallest switch accuracy for all methods. Instance B is the one with the

least number of heterozygous sites. Hence, a small number of errors produce a large percentage in

the error rate. All methods have an accuracy rate of 69%, except HAP which have an accuracy of

54%.

Table 6.3 presents the general average switch error and standard deviation in all problem in-

stances. PHASE and Shape-IT present the smallest error rates, more precisely, PHASE presents

an average switch error rate of 4.40% and Shape-IT presents a switch error rate of 4.31%. Follows

FastPHASE and RPoly which present average switch error rate inferior to 8%. Beagle presents an

14http://research.calit2.net/hap
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Table 6.3: Switch error rate: mean and standard deviation (25 instances)

RPoly HAP PHASE FastPHASE Beagle Shape-IT

Mean switch error 7.91% 16.31% 4.40% 7.81% 10.52% 4.31%

Std deviation 0.085 0.173 0.066 0.162 0.167 0.065

average error rate of 10.52%. Finally, HAP presents the highest average error rate of 16.31%.

RPoly is comparable with the statistical methods in the CEU population, but has less accuracy

in the Y RI population. This can be explained by the fact that the CEU population is more recent

and has less diversity in haplotypes, which follows better the pure parsimony criterion.

HAP presents higher error rates due to the partition in blocks. Actually, the algorithm di-

vides the instances in small blocks of SNPs and solves the perfect phylogeny approach within each

block. However, HAP does not use a ligation method to join the solutions obtained within blocks.

Therefore, HAP tend to have better accuracy in instances with small number of SNPs.

In addition, we can conclude that PHASE and Shape-IT have very similar accuracy in all

datasets. RPoly has a general accuracy which can be compared with the accuracy of Beagle and

FastPHASE.

Although these statistical approaches can be considered more accurate than combinatorial ap-

proaches, the later can be considered as an alternative, specially in small regions or in less diversified

populations.

6.4.2 Discussion

This section aims at analyzing the true solutions with respect to the number of haplotypes, in

order to measure the distance between the pure parsimony solution and the true solution.

PHASE is a phasing tool which is known to be an accurate method for haplotype inference,

although often inefficient [121]. Therefore, firstly in this section, we would like to compare the

haplotypes in the solution provided by PHASE with the solution provided by the pure parsimony

approach. We used a timeout of 10,000 seconds to run the PHASE algorithm in the 1183 problem

instances described in Section 6.1.1. PHASE was able to solve 976 out of 1183 instances within

10,000 seconds.

Figure 6.10 provides a comparison between the PHASE solution and the HIPP solution, regarding

the number of haplotypes used in the solution. We used the set of 963 problem instances for which
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Figure 6.10: Difference between the number of haplotypes in PHASE and in HIPP solutions
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the HIPP solution is known and for which PHASE is able to provide a solution within 10,000

seconds. For approximately 65% of the instances, the PHASE solution and the HIPP solution

require exactly the same number of haplotypes. Moreover, for the large majority of the instances

(more precisely 88%) the difference between the number of haplotypes in the PHASE solution and in

the HIPP solution is less than or equal to 5. In addition, for 34% of the problem instances, the set of

haplotypes in the solution provided by the HIPP solver RPoly is exactly the same set of haplotypes

provided by PHASE. (This result should be similar using a different HIPP solver because HIPP

solvers have no other criterion than parsimony.) Furthermore, on average, 70% of the haplotypes

are the same in both the RPoly and PHASE solutions.

In addition, Table 6.4 presents the number of haplotypes in the solution obtained by each phasing

method, and the number of haplotypes in the true solution, for the A-G datasets. For 4 out of the 7

instances, the true solution has the most parsimonious number of haplotypes. Nonetheless, this fact

does not guarantee RPoly to be accurate solver in these instances. However, it is very interesting

to note that, for each instance except G, the most accurate solver provides a solution which is

parsimonious in the number of haplotypes.

These results emphasizes that solutions which tend to be accurate are typically parsimonious

or close to parsimonious. However, in general, and for a single instance, the number of solutions

satisfying the pure parsimony criterion can be large. The reason for this is that although the HIPP

criterion imposes a constraint on the number of haplotypes in the solution, the same set of haplotypes

can be used in different ways to explain the genotypes. In addition, there can be solutions with
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Table 6.4: Number of haplotypes in the solution of each approach and the real value

RPoly HAP PHASE FastPHASE Beagle Shape-IT Real Value

A 15 20 15 19 22 15 17

B 7 7 7 7 8 7 7

C 12 12 12 12 14 12 12

D 7 7 7 8 8 7 7

E 16 20 17 16 18 17 16

F 17 25 20 17 21 19 18

G 28 40 28 29 31 28 32

different sets of haplotypes that still have minimum size. Future research directions should consider

using a criterion to choose the most accurate solution between all possible HIPP solutions.

6.5 Conclusions

The results obtained in a set of 1183 instances from different sources suggest the following

conclusions. An extensive comparison of nine HIPP solvers (RPoly [55], RTIP [62], PolyIP [16],

HybridIP [17], HAPAR [164], SHIPs [116], SATlotyper [130], HAPLO-ASP [39] and HaploPPH [23])

has confirmed that RPoly is the most efficient solver. Indeed, RPoly is the HIPP tool capable of

solving the largest number of instances, more precisely, 98.5% of the total number. Moreover,

in general, RPoly is also the fastest solver. The fact that the best performing solvers are RPoly,

SHIPs and for some classes of instances, HAPLO-ASP and SATlotyper suggests that the SAT-based

techniques are the most adequate for solving the HIPP problem.

The study of the effectiveness of the bounding techniques yields the following conclusions. The

lower bound [114] algorithm calculates the exact solution for 32% of the instances. The delayed

haplotype selection [125] upper bound algorithm computes the exact HIPP solution for 53% of the

instances. The CollHaps [156] algorithm is more robust and provides a better upper bound, being

able to coincide with the exact HIPP value for 81% of the instances. Therefore, it is important to

evaluate the distribution of the difference between upper and lower bounds. The tighter lower and

upper bounds overlap for 29% of the instances.

Finally, the accuracy of RPoly is compared with the accuracy of well-known methods as HAP [66],

PHASE [150], FastPHASE [143], Beagle [19] and Shape-IT [34], in a set of real instances. Exper-

111



imental results suggest that the accuracy of RPoly can be considered as an alternative to other

methods. RPoly presents an accuracy which is comparable with the best statistical methods in

some classes of instances, in particular, in more recent populations which have less diversity in hap-

lotypes. In particular, the accuracy of RPoly is comparable with the ones of Beagle and FastPHASE.

Nonetheless, future work directions include studying new criteria that can be included in the pure

parsimony solvers, with the goal of improving the accuracy of the method.
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7

A New Approach for Haplotype Inference
in Pedigrees

Many haplotype inference methods apply either to unrelated individuals [149, 19, 55] from the

same population or to pedigrees [42, 100, 173, 88]. Nonetheless, in real studies and most of the times,

the input data contains both closely related and unrelated individuals. Recently, a study comparing

the haplotype inference methods using pedigrees and unrelated individuals [101] concluded that

taking into consideration both pedigree and population information leads to improvements in the

precision of haplotype inference methods. The combination of population and pedigree genetic

models has the potential to increase the precision of the inference methods, leading to an increased

power of the statistical tests [20, 25] and a reduction in the number of wrong results caused by the

existence of a sub-population structure that is ignored by the statistical tests.

This chapter describes a key contribution of this thesis that consists in a new approach for hap-

lotype inference, which applies to sets of pedigrees from the same population [51, 52]. The new

approach is a combination of two well-known haplotype inference approaches: pure parsimony (Sec-

tion 3.2.1), which is used to phase unrelated individuals; and minimum recombinant (Section 3.3.1),

which is used to phase individuals organized in pedigrees. The new approach is called minimum re-

combinant maximum parsimony (MRMP), and the suggested model for solving the MRMP problem

is named PedRPoly model. A first version of the PedRPoly model was first outlined in [51].

The new model, PedRPoly, is enhanced with several constraint modeling techniques. These

techniques aim at improving the efficiency of the method and include the identification of lower

bounds, symmetry breaking and a heuristic sorting technique. Furthermore, a significant number

of constraint optimization solvers is tested. The use of an appropriate optimization solver with the

model contributes for an efficient haplotype inference solver. This significantly improved version of
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PedRPoly is described in [52].

7.1 Minimum Recombinant Maximum Parsimony

We propose a new approach for haplotype inference, denoted minimum recombinant maximum

parsimony (MRMP) [52]. The MRMP approach is a combination of the HIPP and the MRHC

approaches. Therefore, given a set of genotypes from individuals grouped in pedigrees, the MRMP

problem searches the haplotype inference solution which minimizes the number of recombinants

within pedigrees and the number of distinct haplotypes.

Definition 7.1. Minimum Recombinant Maximum Parsimony

Given a set of n genotypes, G, each genotype with m sites, from individuals grouped in K sets

of pedigrees from the same population, the minimum recombinant maximum parsimony (MRMP)

problem aims at finding a haplotype inference solution which, first, minimizes the number of recom-

bination events within pedigrees and, then, minimizes the number of distinct haplotypes used within

all individuals.

Example 7.2. (Minimum Recombinant Maximum Parsimony) Figure 7.1 illustrates two trios

(mother ©, father 2 and child 3) from two families A and B with the corresponding genotypes.

In this context, gfamm represents the genotype of the mother in trio fam, gfamf represents the geno-

type of the father in trio fam and gfamc represents the genotype of the child in trio fam, where

fam ∈ {A,B}. Hence, the set of genotypes is G = {gAm = 222, gAf = 102, gAc = 202, gBm = 202,

gBf = 211, gBc = 222}. The bottom of the figure includes three haplotype inference solutions. Solution

1 is a 0-recombinant solution with 7 distinct haplotypes H1 = {100,101,000,111,011,001,110}, such

that gAm = 001 ⊕ 110, gAf = 100 ⊕ 101, gAc = 100 ⊕ 001, gBm = 000 ⊕ 101, gBf = 011 ⊕ 111 and

gBc = 111 ⊕ 000. Solution 2 is a 1-recombinant solution (there must be one recombination event

in family B) using 5 distinct haplotypes H2 = {100, 101, 000, 111, 011}, such that gAm = 000 ⊕ 111,

gAf = 101 ⊕ 100, gAc = 101 ⊕ 000, gBm = 000 ⊕ 101, gBf = 011 ⊕ 111 and gBc = 011 ⊕ 100. Solu-

tion 3 is a 0-recombinant solution using 5 distinct haplotypes H3 = {100, 101, 000, 111, 011}, such

that gAm = 000 ⊕ 111, gAf = 101 ⊕ 100, gAc = 101 ⊕ 000, gBm = 000 ⊕ 101, gBf = 011 ⊕ 111 and

gBc = 111⊕ 000.

According to the MRMP model, solution 3 is preferred to the other solutions. Solution 3 is both

a MRHC and a HIPP solution. Consequently, solution 3 is a Minimum Recombinant Maximum

Parsimony solution. If there exists no solution that minimizes both criteria, then preference is given

to the MRHC criterion. Hence, the MRHC solution which uses the smallest number of distinct
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Figure 7.1: Solutions for haplotype inference with two trios
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haplotypes would be chosen.

Theorem 7.3. (Complexity) To find a solution to the minimum recombinant maximum parsimony

(MRMP) is a NP-hard problem.

Proof. The proof follows because the HIPP problem is NP-hard and can be reduced to the MRMP

problem, by considering that each family contains only one individual.

7.2 The PedRPoly Model

This section describes the PedRPoly model, which is the first approach for solving the minimum

recombinant maximum parsimony problem. Note that the PedRPoly model is a combination of the

MRHC PedPhase model [100] (Section 3.3.1) and the HIPP RPoly model [55] (Section 5.2).

PedRPoly is a pseudo-Boolean optimization model. The problem variables, the cost function
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and the general constraints of the PedRPoly model are described in the following paragraphs and

summarized in Table 7.1.

Variables

Following the RPoly model, PedRPoly associates two haplotypes, ha
i and hb

i , with each genotype

gi, and these haplotypes are required to explain gi, gi = ha
i ⊕hb

i , where ha
i represents the haplotype

inherited from the father and hb
i represents the haplotype inherited from the mother. Moreover,

PedRPoly associates a variable ti j with each heterozygous site gi j = 2, such that ti j = 1 indicates

that the mutant type allele was inherited from the father and the wild type allele was inherited from

the mother, whereas ti j = 0 indicates that the wild type allele was inherited from the father and

the mutant type allele was inherited from the mother, i.e.

ti j =











1 if ha
i j = 1 ∧ hb

i j = 0

0 if ha
i j = 0 ∧ hb

i j = 1
.

In addition, PedRPoly associates two variables, tai j and tbi j , with each missing site gi j =?. Variable

tai j is associated with the paternal haplotype site ha
i j , whereas variable tbi j is associated with the

maternal haplotype site hb
i j , i.e.

tai j = ha
i j

and

tbi j = hb
i j .

The values of ha
i and hb

i at homozygous sites are implicitly assumed. Homozygous sites on the wild

type nucleotide, gi j = 0, imply that ha
i j = hb

i j = 0, whereas homozygous sites on the mutant type

nucleotide, gi j = 1, imply that ha
i j = hb

i j = 1.

The grandparental origin of each site of the haplotypes must be considered when analyzing

recombination events within pedigrees. Following the MRHC PedPhase model, for each non-founder

individual i and site j, two variables are defined: g1i j and g2i j . The assignment g1i j = 0 means that

the paternal allele of individual i at site j (i.e. ha
i j) comes from the paternal grandfather, and g1i j = 1
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means that ha
i j comes from the paternal grandmother, i.e.

g1i j =











0 if ha
i j = ha

f(i) j

1 if ha
i j = hb

f(i) j

,

where f(i) corresponds to the father of individual i. In a similar way, g2i j = 0 (g2i j = 1) means that

the maternal allele of individual i at site j comes from the maternal grandfather (grandmother), i.e.

g2i j =











0 if hb
i j = ha

m(i) j

1 if hb
i j = hb

m(i) j

,

where m(i) corresponds to the mother of individual i.

In order to allow counting the number of recombinations, the model defines new variables, r1i j

and r2i j , for each non-founder individual i and 1 ≤ j < m. Variable r1i j is assigned value 1 if

a recombination took place at site j, to create the paternal haplotype of individual i. Similarly,

variable r2i j is assigned value 1 if a recombination took place at site j, to create the maternal

haplotype of individual i. Thus,

rli j = 1 if gli j 6= gli j+1,

for l ∈ {1, 2} and 1 ≤ j ≤ m− 1.

Moreover, a simplification to the original MRHC model is considered. Actually, in the PedPhase

model, rli j = 1 if and only if gli j 6= gli j+1. Observe that an implication, instead of an equivalence, is

sufficient for correctness and allows reducing in half the number of constraints regarding variables

r.

In addition, the model defines variables to count the number of distinct haplotypes used. Let

xp q
i k , with p, q ∈ {a, b} and 1 ≤ k < i ≤ n, be assigned value 1 if haplotype p of genotype gi (hp

i )

and haplotype q of genotype gk (hq
k) are different.

Furthermore, the model needs variables u to denote when one of the haplotypes, associated with

a given genotype, is different from all previous haplotypes. Hence, up
i , with p ∈ {a, b} and 1 ≤ i ≤ n,

is assigned value 1 if haplotype p of genotype gi is different from all previous haplotypes.
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Table 7.1: The PedRPoly model (Minimum Recombinant Maximum Parsimony) a

minimize: (2n+ 1)×
∑

non−founder i

∑m−1
j=1 (r1i j + r2i j) +

∑n

i=1(u
a
i + ub

i ) (7.1)

subject to:

Mendelian Laws (Table 7.2)

−rli j + gli j − gli j+1 ≤ 0 ∀i: 1≤i≤n, i non−founder, ∀j: 1≤j<m (7.2)

−rli j − gli j + gli j+1 ≤ 0 ∀i: 1≤i≤n, i non−founder, ∀j: 1≤j<m (7.3)

¬(R ⇔ S) ⇒ x
p q

i k (Table 7.3) ∀i,k: 1≤k<i≤n, κ(i,k) (7.4)

∑

{k: k<i, κ(i,k)}

∑

q∈{a,b}

x
p q

i k − u
p
i ≤ 2K<i − 3 ∀i: 1≤i≤n, ∀p∈{a,b} (7.5)

aGenotypes must be sorted, starting with the genotypes used in the lower bound. The predicate κ(i, k) is defined

true iff genotypes gk and gi are compatible and K<i = |{gk ∈ G : k < i ∧ κ(i, k)}|

Cost Function

The cost function consists in minimizing the number of recombination events and the number of

distinct haplotypes, which are, respectively, given by the sum of variables r and u,

minimize ((2n+ 1)×
∑

(non-founder i)

m−1
∑

j=1

(r1i j + r2i j)) +

n
∑

i=1

(ua
i + ub

i ). (7.1)

Given that priority is given to the minimum recombinant criterion, a larger weight is associated

with the number of recombinations. Note that 2n is a trivial upper bound on the number of

haplotypes in the solution and, therefore, giving weight 2n+ 1 to the number of recombinations

implies that a MRHC solution is always preferred. The idea of associating a larger weight with

the number of recombinations is biological motivated by the fact that recombination events within

haplotypes in a pedigree are rare. Moreover, note that a larger number of recombinants suggests a

larger number of haplotypes. In general, a recombination event generates a new haplotype, whereas

without recombination, the haplotypes of the child are exact copies of the parents’ haplotypes.

Nonetheless, different weights w, 1 ≤ w < 2n+ 1, were also tried but did not lead to improvements

neither in accuracy or efficiency.

General Constraints

The PedRPoly model requires constraints which ensure that the Mendelian laws of inheritance

are satisfied. In addition, constraints must guarantee that if there is a recombination event between
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Table 7.2: Mendelian laws of inheritance rules a

Condition Constraint

gi j = 0 ∧ gf(i) j = 2 tf(i) j ⇔ g1i j

gi j = 0 ∧ gf(i) j =? (g1i j ∨ ¬taf(i) j) ∧ (¬g1i j ∨ ¬tbf(i) j)

gi j = 1 ∧ gf(i) j = 2 tf(i) j ⇔ ¬g1i j

gi j = 1 ∧ gf(i) j =? (g1i j ∨ taf(i) j) ∧ (¬g1i j ∨ tbf(i) j)

gi j = 2 ∧ gf(i) j = 0 ¬ti j

gi j = 2 ∧ gf(i) j = 1 ti j

gi j = 2 ∧ gf(i) j = 2
(g1i j ∨ ti j ∨ ¬tf(i) j) ∧ (g1i j ∨ ¬ti j ∨ tf(i) j)∧

(¬g1i j ∨ ti j ∨ tf(i) j) ∧ (¬g1i j ∨ ¬ti j ∨ ¬tf(i) j)

gi j = 2 ∧ gf(i) j =?
(g1i j ∨ ti j ∨ ¬taf(i) j) ∧ (g1i j ∨ ¬ti j ∨ taf(i) j)∧

(¬g1i j ∨ ti j ∨ ¬tbf(i) j) ∧ (¬g1i j ∨ ¬ti j ∨ tbf(i) j)

gi j =? ∧ gf(i) j = 0 ¬tai j

gi j =? ∧ gf(i) j = 1 tai j

gi j =? ∧ gf(i) j = 2
(g1i j ∨ tai j ∨ ¬tf(i) j) ∧ (g1i j ∨ ¬tai j ∨ tf(i) j)∧

(¬g1i j ∨ tai j ∨ tf(i) j) ∧ (¬g1i j ∨ ¬tai j ∨ ¬tf(i) j)

gi j =? ∧ gf(i) j =?
(g1i j ∨ tai j ∨ ¬taf(i) j) ∧ (g1i j ∨ ¬tai j ∨ taf(i) j)∧

(¬g1i j ∨ tai j ∨ ¬tbf(i) j) ∧ (¬g1i j ∨ ¬tai j ∨ ¬tbf(i) j)

aThese constraints refer to variables g1i j . The constraints involving variables g2i j are defined similarly. f(i)

corresponds to the father of i. 1 ≤ i ≤ n, i non-founder, 1 ≤ j ≤ m.

two positions, then the respective r variable is assigned value 1. The other constraints, related with

variables x and u, are adopted from the RPoly model, and aim at counting the number of distinct

haplotypes.

Constraints to ensure that the Mendelian laws of inheritance are satisfied are defined in Table 7.2.

Note that PedRPoly only associates variables with heterozygous and missing sites (similar to RPoly),

while PedPhase also associates variables with homozygous sites. The new definition of variables

associated with sites requires the redefinition of the constraints related with the Mendelian laws

of inheritance. For instance, consider the first constraint of Table 7.2, tf(i) j ⇔ g1i j , for the case

gi j = 0 and gf(i) j = 2. Clearly, if tf(i) j = 1 (representing that individual f(i) has inherited value 1
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Table 7.3: Definition of predicates R and S

Condition
Predicate

R S

gi j 6= 2 ∧ gk j = 2 (gi j ⇔ (q ⇔ a)) tk j

gk j 6= 2 ∧ gi j = 2 (gk j ⇔ (p⇔ a)) ti j

gi j = 2 ∧ gk j = 2 (p⇔ q) (ti j ⇔ tk j)

gi j =? ∧ gk j /∈ {2, ?} tpi j gk j

gk j =? ∧ gi j /∈ {2, ?} tqk j gi j

gi j =? ∧ gk j = 2 (q ⇔ a) (tpi j ⇔ tk j)

gk j =? ∧ gi j = 2 (p⇔ a) (tqk j ⇔ ti j)

gi j =? ∧ gk j =? tpi j tqk j

from his father and value 0 from his mother) then g1i j = 1 (representing that individual i must have

inherited the value 0 from his paternal grandmother). The contrary also holds.

Constraints which ensure that rli j = 1 if gli j 6= gli j+1 are the following:

−rli j + gli j − gli j+1 ≤ 0 (7.2)

and

−rli j − gli j + gli j+1 ≤ 0, (7.3)

for 1 ≤ i ≤ n, i non-founder, 1 ≤ j < m.

Based on the RPoly model, the conditions on the xp q
i k variables are related to the values of

variables ti j and tk j for heterozygous sites and of variables tai j , t
b
i j , t

a
k j and tbk j for missing sites,

and are described by equations

¬(R⇔ S)⇒ xp q
i k , (7.4)

where predicates R and S are described in Table 7.3, for 1 ≤ k < i ≤ n with κ(i, k) and p, q ∈ {a, b}.

Note that xp q
i k = 1 if genotypes gi and gk are incompatible, so it is only required to introduce

constraints for gi and gk such that κ(i, k) is true.

Then, the conditions on the up
i variables are based on the conditions for the xp q

i k variables, with
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1 ≤ k < i and q ∈ {a, b}. These conditions are described by

∑

{k: k<i, κ(i,k)}

∑

q∈{a,b}

xp q
i k − up

i ≤ 2K<i − 3, (7.5)

where κ(i, k) is a predicate which is true if and only if gi and gk are compatible and K<i is the

cardinality of the set {gk ∈ G : k < i ∧ κ(i, k)}.

7.3 Optimized PedRPoly

This section describes three improvements on the original PedRPoly model, which contribute for

an efficient haplotype inference method. In addition, the practical contribution of each technique

to improving the efficiency of PedRPoly is detailed. In what follows, we used PedRPoly with the

Boolean multilevel optimization (BMO) MaxSAT solver, MSUnCore [7]. Although we consider

PedRPoly to be a PBO model, PBO and MaxSAT are equivalent formalisms (Section 2.4.2), and,

therefore, the use of MSUnCore is straightforward.

7.3.1 Integrating Lower Bounds

The FurtherImprovedLowerBound procedure (Section 4.1.2) provides a list of genotypes

with an indication of the contribution of each genotype to the lower bound. Each genotype either

contributes with +2, indicating that 2 new haplotypes will be required for explaining this genotype,

or with +1, indicating that 1 new haplotype will be required.

This lower bound has been included in the PedRPoly model. s As in RPoly, the use of lower

bounds allows the variables u associated with haplotypes affected by the lower bound to be fixed

and, consequently, the clauses used for constraining the value need not to be generated. Indeed, if

gi is a genotype contributing with +2 to the lower bound, then ua
i = 1 and ub

i = 1. Moreover, if gi

is a genotype contributing with +1 to the lower bound, then either ua
i or ub

i can be assigned value

1. The new model with integrating lower bounds will be named PedRPoly-LB.

Practical Impact

The dataset used in the experimental results consists of 945 challenging instances, which will be

described in detail in Section 8.1.

Figure 7.2 (left) provides a scatter plot which compares the performance of the plain PedRPoly

model with PedRPoly implementing the identification of lower bounds, within a timeout of 1000
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Figure 7.2: CPU time comparison between models: plain PedRPoly model vs PedRPoly-LB model

and PedRPoly-LB model vs PedRPoly-LB-Ord model
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seconds.

PedRPoly-LB reduces in half the number of instances aborted by the plain PedRPoly model. The

plain model aborts 59 instances while PedRPoly-LB is not able to solve 26 instances. PedRPoly-LB

solves 37 instances which the plain PedRPoly aborts, although being able to solve 4 instances which

PedRPoly-LB aborts. Moreover, PedRPoly-LB is faster than plain PedRPoly for more than 94% of

the problem instances.

7.3.2 Sorting Genotypes

The order in which the genotypes are organized, before the model being generated, can have

an important impact on the efficiency of the solver. In particular, note that variables u designate

whether a haplotype associated with a genotype is different from all previous haplotypes. The

lexicographic order in the genotypes is used as an heuristic defined by a total order in the genotype

sites where 0 < 1 < 2 < ?, i.e.

gi j < gl j ∧ (∀{k: k<j} gi k = gl k)⇒ i < l, (7.6)

for 1 ≤ i, l ≤ n and 1 ≤ k < j ≤ m.

The new model, which integrates lower bounds and where the genotypes are sorted according to

the lexicographic order is named PedRPoly-LB-Ord.
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Figure 7.3: CPU time comparison between models: PedRPoly-LB-Ord model vs PedRPoly-LB-Ord-

Sym model and plain PedRPoly model vs PedRPoly-LB-Ord-Sym model
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Practical Impact

Figure 7.2 (right) compares the performance of PedRPoly-LB with PedRPoly-LB-Ord. PedRPoly-

LB-Ord is able to solve 17 instances which PedRPoly-LB aborts. However, there are 3 instances

which PedRPoly-LB solves and PedRPoly-LB-Ord is not able to solve. Moreover, PedRPoly-LB-Ord

is faster than PedRPoly-LB for 86% of the instances.

7.3.3 Eliminating Key Symmetries

Symmetry breaking is a well-known technique for pruning the search space and, therefore, is

expected to contribute to the efficiency of a model. Note that, in general, in the haplotype inference

problem, if a genotype g is explained by the haplotype pair (ha, hb), then g is also explained by the

haplotype pair (hb, ha). Within pedigrees, this symmetry in pairs of haplotypes does not exist for

every individual. For non-founders, symmetry is already broken by imposing that the first haplotype

comes from the father and the second haplotype comes from the mother. Nonetheless, symmetry

can be broken in founders. This symmetry is broken by introducing a new constraint for each

heterozygous founder i, imposing that the first heterozygous site gi j is explained with ha
i j = 1 and

hb
i j = 0, i.e.

gi j = 2 ∧ (∀{k: k<j} gi k 6= 2)⇒ ti j = 1, (7.7)

for 1 ≤ i ≤ n and 1 ≤ k < j ≤ m.

The new model which includes breaking symmetry in founders is named PedRPoly-LB-Ord-Sym.
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Table 7.4: PedRPoly: comparison between models (timeout 1000 sec; memory limit 3.5 GB)

Solver # Solved inst. % Solved inst. Avg run time (sec)

PedRPoly 886/945 93.76% 62.50

PedRPoly-LB 919/945 97.25% 47.30

PedRPoly-LB-Ord 933/945 98.73% 41.64

PedRPoly-LB-Ord-Sym 938/945 99.26% 24.08

Practical Impact

Figure 7.3 (left) compares the performance of PedRPoly-LB-Ord with PedRPoly-LB-Ord-Sym.

The final model is able to solve 938 out of 945 instances. PedRPoly-LB-Ord-Sym solves 7 instances

which PedRPoly-LB-Ord aborts and aborts 2 instances which PedRPoly-LB-Ord solves. Moreover,

PedRPoly-LB-Ord-Sym is faster than PedRPoly-LB-Ord for 99% of the instances.

Figure 7.3 (right) compares the performance of plain PedRPoly and PedRPoly-LB-Ord-Sym.

The later is faster than the former for all instances, and solves 52 instances which the plain model

aborts. These facts illustrate the importance of the improved model in the efficiency of PedRPoly.

Table 7.4 summarizes the improvement achieved by combining modeling techniques. Overall,

PedRPoly-LB-Ord-Sym outperforms all other models, being capable of solving 99.26% of the in-

stances within 1000 seconds, and using an average run time of 24 seconds. In the remainder of the

paper, PedRPoly-LB-Ord-Sym will be denoted simply by PedRPoly.

7.4 Additional Remarks

Solving the PedRPoly model is a binate covering problem, i.e. each constraint can be translated

into SAT using a single clause. This fact suggests that optimization solvers based on SAT may be

adequate for solving the PedRPoly model.

Indeed, PedRPoly is a Boolean optimization model which can be solved using any PBO or

MaxSAT solver.

Regarding the size of the model, the following space complexity theorem may be formulated.

Theorem 7.4. (Space Complexity) Let n be the number of genotypes in the pedigree and m the

number of positions of each genotype. Then, the number of variables of the PedRPoly model is

O(n2 + nm) and, in addition, the number of constraints of the PedRPoly model is O(n2m).
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Table 7.5: PedRPoly: comparison using different solvers (timeout 1000 sec; memory limit 3.5 GB)

Solver # Solved inst. % Solved inst. Avg run time (sec)

MaxSat bmo 938/945 99.26% 24.08

WPM1 911/945 96.40% 14.75

CPLEX 553/945 58.52% 84.73

Scip 455/945 48.15% 139.07

MiniSat+ 260/945 27.51% 238.45

IncWMaxSatz 221/945 23.39% 71.04

Bsolo 160/945 16.93% 170.26

WMaxSatz 16/945 1.69% 113.16

Finally, we would like to point out that not every key feature used in the RPoly model can be

integrated in the PedRPoly model. In particular, structural simplifications cannot be applied. Note,

for example, that two equal genotypes may have to be explained differently according to the genetic

data of their relatives.

7.5 Impact of the Constraint Solver

A key issue for the efficiency of the haplotype inference solver is to select an adequate underly-

ing optimization solver. In this section, eight different optimization solvers were tested for solving

the final version of the PedRPoly model. Integer linear programming, pseudo-Boolean optimiza-

tion and also weighted MaxSAT solvers were considered. Scip [2] (version 1.2.0) combines con-

straint programming and mixed integer programming methodologies. CPLEX (version 12.1) is an

IBM/ILOG commercial linear programming optimization tool. Weighted MaxSAT solvers were also

tested: MaxSat bmo [7], WPM1 [5], WMaxSatz [96] (version 2.5), and IncWMaxSatz [106].

MiniSat+ [38] and Bsolo [119] (version 3.5) are pseudo-Boolean optimization solvers, also known

as 0-1 ILP solvers.

Table 7.5 summarizes the performance of the different solvers. Clearly, the solver which is able

to solve a larger number of instances is MaxSat bmo, which solves 99.26% of the instances.

The second best performing solver isWPM1 which solves 96.40% of the instances. The third and

fourth best performing solvers are the integer programming solvers. CPLEX solves 58.52% and Scip
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solves 48.15% of the instances, followed by MiniSat+ which solves 27.51% and IncWMaxSatz

which solves 23.39% of the problem instances. Bsolo solves 16.93% and WMaxSatz solves 1.69%

of the instances. Most of the instances aborted by IncWMaxSatz and WMaxSatz were due to

limitations in the internal data structures used by these solvers.

The fact that MaxSat bmo is the best solver for solving the PedRPoly model is justified by the

fact that MaxSat bmo performs Boolean multilevel optimization, and therefore is specialized for

solving Boolean problems with more than one cost function.

7.6 Conclusions

This chapter proposes a new approach for the haplotype inference problem. The new approach

combines two well-known combinatorial approaches: the pure parsimony [55] and the minimum

recombinant [100] approaches. Hence, the new approach is named minimum recombinant maximum

parsimony (MRMP) approach.

Given a set of pedigrees from the same population, the MRMP approach aims at finding a

solution to the haplotype inference problem which minimizes the number of recombination events

within families and, between those solutions, choose a solution which uses the minimum number of

distinct haplotypes [51, 52].

A model for solving the MRMP problem is proposed. The new model, named PedRPoly, is

based on the PedPhase and on the RPoly models. The plain model needs to be enhanced with

several constraint modeling techniques, such as introducing lower bounds, breaking symmetries and

including heuristic sorting techniques, in order to be practical to use. These modeling techniques

increase the number of instances solved by 6%. In addition, the most adequate constraint solver

must be chosen. MaxSat bmo [7] increases the number of instances solved by 260% when compared

with PedRPoly using MiniSat+ [38]. MaxSat bmo and WPM1 [5] are the most robust solvers at

tackling the PedRPoly model, each solving, respectively, 99.3% and 96.4% of the problem instances.

To summarize, the PedRPoly is a new model for haplotype inference in pedigrees, which is

efficient and practical for challenging instances.
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8

Haplotype Inference in Pedigrees:
Experimental Results

This chapter has the purpose of studying the accuracy of PedRPoly, a method for haplotype

inference in pedigrees whose formulation was proposed in the previous chapter.

First of all, the experimental setup, including the used datasets and haplotype inference algo-

rithms, are presented. Second, the accuracies of PedRPoly and PedPhase are compared. Third,

the accuracy of PedRPoly is compared with the accuracy of statistical pedigree-based haplotype

inference methods. Finally, the conclusions are presented.

8.1 Experimental Setup

8.1.1 Datasets

The experimental data was simulated using the SimPed software 1 [95]. Given the pedigree struc-

ture, as well as the frequencies of haplotypes for founder individuals, SimPed generates haplotypes

for all individuals in the pedigree.

The haplotypes for founders and their frequencies were obtained from 7 real datasets of exper-

imentally identified haplotypes [4, 133], and correspond to the A-G datasets already used in other

haplotyping studies [27]. The number of SNPs ranges from 5 to 47. Note that haplotyping regions

with tens of SNPs are still relevant in several association studies. Moreover, larger regions can

always be partitioned into small blocks [172].

The same three pedigree structures used in the PedPhase paper [100] were considered: pedigree 1

with 15 individuals, pedigree 2 with 29 individuals and pedigree 3 with 17 individuals. Pedigree 3

1http://www.hgsc.bcm.tmc.edu/cascade-tech-software simped-ti.hgsc
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Figure 8.1: Pedigree structures: pedigree 1 has 15 individuals, pedigree 2 has 29 individuals and

pedigree 3 has 17 individuals and a mating loop

Pedigree 1 Pedigree 3

Pedigree 2

contains a mating loop, which means that two mating individuals have a common ancestor in the

pedigree. Pedigree structures are represented in Figure 8.1.

Each simulated instance consists of 10 replicates of the given pedigree, simulating 10 different

families from the same population. Hence, the number of genotypes per instance may be 150, 290 or

170. Recombination events are uniformly distributed between SNPs with intermarker recombination

fractions of 0.1%, 0.5% and 1%. Three variations in missing rates were considered: 1%, 10% and

20%. For each combination of parameters, 5 independent replicates were selected, resulting in a

total of 945 (= 7× 33 × 5) input trials. Table 8.1 summarizes the details of the used instances.

The assumed intermarker recombination rate of 0.1-1% is quite high. Nonetheless, the evaluation

performed is interesting in regions of high recombination rates (recombination hotspots) where the

SNPs are sparsely sampled.

Genotyping errors have not been simulated. Nonetheless, genotyping errors do not represent a

significant limitation because they can be minimized by previously applying an appropriate error
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Table 8.1: Details of the dataset

# Instances 945

Number of SNPs 5-47

Number of Genotypes 150-290

Size of Pedigrees 15-29

Intermarker Recombination Fractions 0.1%-1%

Missing Rate 1%-20%

detection software [141].

8.1.2 Setting-up

All results were obtained on a Intel Xeon 5160 server (3.0GHz, 1333Mhz, 4GB) running Red

Hat Enterprise Linux WS4. PedPhase was run on Windows because the algorithm of this software

that solves the minimum recombinant haplotype configuration problem is not available for Linux.

Results are presented for a timeout of 1000 seconds and a memory limit of 3.5 GB.

8.1.3 Phasing Algorithms

The accuracy of four methods for haplotype inference in pedigrees is compared in this chapter.

PedRPoly, described in the previous chapter, is compared with PedPhase, Superlink and PhyloPed.

For PedPhase 2 [100], version 2.1 is used. When we mention the PedPhase method, we always

refer to the integer linear programming method that solves the minimum recombinant haplotype con-

figuration problem. Indeed, PedPhase is a more general tool, which implements five algorithms for

haplotype inference in pedigrees: the ILP algorithm, the block-extension algorithm, the constraint-

finding algorithm for 0-recombinant data, the locus- and the member-based dynamic programming

algorithms.

In addition, two statistical tools: Superlink 3 [42] (version 1.7) and PhyloPed 4 [88] (version 0.4)

were used. Superlink performs a maximum likelihood calculation and PhyloPed uses blocked Gibbs

sampling, applying the perfect phylogeny model if there is little evidence of ancestral recombinations

2http://vorlon.case.edu/j̃xl175/haplotyping.html
3http://cbl-fog.cs.technion.ac.il/superlink
4http://phyloped.icsi.berkeley.edu/phyloped
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or recurrent mutations in the founder haplotypes.

8.2 Comparing Accuracies

Two different commonly used error rates were considered as performance metrics. The switch

error rate measures the percentage of possible switches in haplotype orientation, used to recover

the correct phase in an individual [107]. Missing alleles are not considered for computing the switch

error. The missing error rate (or genotype inference error rate) is the percentage of incorrectly

inferred missing data [121].

8.2.1 PedRPoly vs PedPhase

This section analyzes the gains in accuracy resulting from adding the maximum parsimony

criterion to the minimum recombinant criterion, i.e. the accuracy of PedRPoly, which integrates both

HIPP with MRHC, is compared with the one of PedPhase, which uses only the MRHC approach.

PedRPoly aims at being an improvement on the PedPhase approach. Indeed, PedRPoly uses the

minimum recombinant maximum parsimony approach, whose set of solutions is contained in the set

of solutions of the MRHC approach.

Note that instances for which at least one of the two solvers is unable to give a solution within the

timeout have been removed from the comparison. PedPhase is able to solve 99.8% of the instances,

whereas PedRPoly is able to solve 99.3%. As a result, 9 out of 945 instances have been left out.

Figure 8.2 presents a bar graph comparing the switch error rate of PedRPoly with the switch error

rate of PedPhase. Results have been organized by parameter value: missing rate, recombination

rate, pedigree and population. Each value is the average of the error rate for the instances generated

with the corresponding parameter value. PedRPoly is more accurate than PedPhase for 67.09% of

the instances. The two solvers have equal error rates for 19.55% of the instances. For 13.35% of the

instances, PedRPoly is less accurate than PedPhase.

Considering all instances that both solvers are able to solve, the average switch error rate of

PedRPoly is 1.21% and the average switch error rate of PedPhase is 1.92%, i.e. the switch error rate

of PedRPoly is 37% less than the one of PedPhase.

In addition, a few interesting observations can be stated. As one might expect, the error rate

increases as the missing and the recombination rates increases. Moreover, it is clear that the

instances of population B are associated with higher error rates. This fact is explained by the

instances of this class having a small number of SNPs, more exactly five SNPs. Hence, a small
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Figure 8.2: Switch error: comparing PedRPoly and PedPhase
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number of errors implies a large proportion of errors because the number of heterozygous sites per

genotype is small.

Figure 8.3 presents a bar graph for evaluating the missing error rate of the two tools. PedRPoly

is more accurate than PedPhase for 73.93% of the instances. The two solvers have equal error rate

for 12.39% of the instances. For 13.68% of the instances, PedRPoly is less accurate than PedPhase.

Moreover, considering all instances that both solvers are able to solve, the average missing error

rate of PedRPoly is 2.51% and the average missing error rate of PedPhase is 4.10%, i.e. the missing

error rate of PedRPoly is 39% less than the one of PedPhase.

The population information included by the PedRPoly model is shown to be extremely impor-

tant for haplotyping and inferring missing data. Overall, we conclude that PedRPoly consistently

outperforms PedPhase in terms of accuracy.

Comparing the Number of Haplotypes

The numbers of distinct haplotypes in the PedRPoly and in PedPhase solutions are compared

with the number of distinct haplotypes in the real solution.

Figure 8.4 (left) provides the distribution of the difference between the number of distinct haplo-
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Figure 8.3: Missing error: comparing PedRPoly and PedPhase
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types in the PedRPoly solution and in the real solution. The number of haplotypes in the PedRPoly

solution is exactly the same as in the real solution for 60% of the instances, and for more than

99.6% of the problem instances, the number of haplotypes in the PedRPoly solution differs from

the number of haplotypes in the real solution by less than 5 haplotypes. Note that there are 138

instances, corresponding to the bars with positive values: 1, 2, 3 and 4, for which the number of

haplotypes in the real solution is lower than the number of haplotypes in the PedRPoly solution.

This fact indicates that the number of recombinants is underestimated and the number of haplotypes

is overestimated, i.e. the real solution is not the one which minimizes the number of recombinants.

Figure 8.4 (right) provides the distribution of the difference between the number of haplotypes

in the PedPhase solution and in the real solution. Clearly, PedPhase solutions are less similar

to the real solutions with respect to the number of haplotypes. For the same set of instances, the

PedPhase solution has the same number of haplotypes as the real solution for 12.3% of the instances,

and differs from the real solution by less than 5 haplotypes for 45.8% of the instances.

A study was performed to analyze any particularity of the instances where PedRPoly is less

accurate than PedPhase. The only fact concluded is that, in general, those are instances where the
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Figure 8.4: Difference between the number of distinct haplotypes in the solution provided by Pe-

dRPoly/PedPhase and in the real solution
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error rate of PedPhase is inferior to the average error rate of PedPhase, even though the difference

in the number of haplotypes to the real solution can be large.

8.2.2 PedRPoly vs Statistical Approaches

Although the main goal of this work is to show that MRHC combined with HIPP has better

accuracy than MRHC alone, two distinct statistical methods for haplotype inference within pedigrees

are also evaluated. These methods are Superlink [42] and PhyloPed [88].

We would like to point out that some other methods for haplotype inference in pedigrees, such as

HAPLORE [173] and ZAPLO [132], could not be used in these experiments because these algorithms

explicitly assume no recombination between SNPs, which our datasets contain.

PhyloPed does not work properly for very long blocks, as it runs out of memory for the algorithms

employed. For this reason, in this experiment we have used PhyloPed with blocks of size 5. Hence,

the number of blocks in the instances of populations A, B, C, D, E, F and G is 2, 1, 4, 2, 6, 5

and 10, respectively. In addition, the current version of PhyloPed does not allow mating loops.

Hence, PhyloPed is not used in instances containing pedigree 3. Moreover, PhyloPed does not allow

individuals containing only missing sites and, therefore, one additional instance with this feature

has to be removed. At the end, PhyloPed can be run in 629 instances from the considered dataset.

In addition, note that Superlink is used with information in the recombination rates, information

which is not given to the other methods.
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Table 8.2: Switch error rate

PedRPoly PedPhase Superlink PhyloPed

1% 0.83% 1.07% 1.13% 15.90%

Missing Rate 10% 1.17% 1.56% 1.95% 16.72%

20% 1.83% 3.22% 3.84% 15.49%

0.1% 0.57% 1.31% 1.49% 12.02%

Recombination Rate 0.5% 1.56% 1.92% 2.39% 16.13%

1% 1.59% 2.36% 2.73% 20.01%

Pedigree Ped1 (n=150) 1.12% 1.72% 2.04% 15.00%

Ped2 (n=290) 1.39% 2.05% 2.41% 17.39%

A (m=9) 1.10% 1.86% 2.44% 18.36%

B (m=5) 4.58% 4.72% 5.43% 8.93%

C (m=17) 0.36% 1.04% 1.31% 18.61%

Population D (m=8) 0.37% 1.22% 1.41% 8.60%

E (m=26) 0.39% 1.12% 1.31% 22.03%

F (m=22) 0.52% 1.13% 1.34% 18.82%

G (m=47) 0.95% 1.57% 1.64% 20.24%

TOTAL All 1.24% 1.87% 2.20% 16.06%

Instances for which at least one of the methods is unable to give a solution have been removed

from the comparison. PedPhase is unable to solve 2 instances, PedRPoly is unable to solve 7

instances, Superlink does not solve 69 instances and PhyloPed cannot be run in 316 instances. As

a result, there are 559 out of 945 instances for which all methods can provide a solution within the

timeout.

Table 8.2 summarizes the switch error rate of the four haplotype inference in pedigrees methods.

One can observe that, for each class of instances, PedRPoly is consistently the most accurate,

exhibiting the lower error rate. PedPhase is the second most accurate method, followed by Superlink.

PhyloPed exhibits the most higher error rates. Considering all the 559 instances, the average switch

error rate of PedRPoly is 1.24%, the average switch error rate of PedPhase is 1.87%, the average

switch error rate of Superlink is 2.20% and the average switch error rate of PhyloPed is 16.06%.

Table 8.3 summarizes the missing error rate of the four haplotype inference in pedigrees methods.
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Table 8.3: Missing error rate

PedRPoly PedPhase Superlink PhyloPed

1% 1.95% 2.74% 8.37% 11.96%

Missing Rate 10% 2.40% 3.77% 10.11% 13.21%

20% 3.33% 5.18% 12.62% 14.46%

0.1% 2.19% 3.43% 9.83% 11.97%

Recombination Rate 0.5% 2.68% 3.90% 10.42% 13.49%

1% 2.65% 4.10% 10.37% 13.89%

Pedigree Ped1(n=150) 2.36% 3.73% 10.27% 12.87%

Ped2(n=290) 2.69% 3.91% 10.12% 13.44%

A(m=9) 3.48% 3.84% 9.98% 15.01%

B(m=5) 7.31% 6.94% 13.92% 10.80%

C(m=17) 0.96% 3.27% 9.05% 13.01%

Population D(m=8) 1.63% 3.46% 12.07% 12.47%

E(m=26) 0.83% 2.83% 9.10% 13.95%

F(m=22) 1.26% 3.52% 7.78% 14.30%

G(m=47) 0.99% 1.98% 8.12% 12.53%

TOTAL All 2.51% 3.81% 10.21% 13.12%

PedRPoly exhibits the smaller missing error rate for all classes of instances, except for population

B, where PedPhase shows to be more accurate. Superlink and PhyloPed exhibit higher error rates.

Considering all the 559 instances, the average missing error rate of PedRPoly is 2.51%, the average

missing error rate of PedPhase is 3.81%, the average missing error rate of Superlink is 10.21% and

the average missing error rate of PhyloPed is 13.12%. PedRPoly, PedPhase and Superlink have

higher missing error rates than switch error rate, whereas PhyloPed has smaller missing error rates

than switch error rate.

One explanation for the high error rates of PhyloPed is the partition in small blocks. Unfortu-

nately, PhyloPed does not handle large blocks, neither uses an expeditious ligation method. Hence,

PhyloPed tend to be more accurate in instances with a small number of SNPs. Indeed, for the class

of population B, PhyloPed presents smaller error rates than for the average instance, whereas the

other three methods drastically increase the error rate.
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Regarding the efficiency of the methods, PedPhase and PhyloPed are the most efficient, solving

each instance in a few seconds. PedRPoly is the third most efficient solver, being able to solve

938 out of the 945 instances within 1000 seconds. PedRPoly efficiency is analyzed in detailed in

Chapter 7. Superlink is the less efficient method, being unable to solve 69 instances within 1000

seconds. Setting the timeout to 10,000 seconds, Superlink is still not able to solve 57 instances.

8.3 Conclusions

The proposed method for haplotype inference in pedigrees, PedRPoly, was tested on a set of

945 simulated instances, with different populations, pedigree structures, recombination and missing

rates. The accuracy of PedRPoly was compared with the accuracies of other methods for haplotype

inference in pedigrees, among which are PedPhase [100], Superlink [42] and PhyloPed [88].

Experimental results show that the PedRPoly method is considerably more accurate than Ped-

Phase, exhibiting smaller switch and missing error rates. This fact confirms that the population

information included by the PedRPoly model is important for haplotyping and inferring missing

data. Moreover, PedRPoly significantly outperforms Superlink and PhyloPed in the analyzed data.

Overall, we conclude that PedRPoly is an accurate method for haplotype inference in pedigrees

and is a credible alternative to the state of the art approaches.
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9

Conclusions

This chapter concludes the dissertation by summarizing the achievements and pointing out di-

rections for future research work.

9.1 Summary of Achievements

In the past years, there has been an enormous progress in developing new computational meth-

ods for solving the haplotype inference problem. In particular, the haplotype inference by pure

parsimony approach has deserved a considerable attention in the last decade, with several HIPP

methods being proposed. However, the HIPP problem is NP-hard and, therefore, efficient methods

for HIPP are of interest.

Boolean satisfiability has been successfully applied in different fields. The application of SAT-

based methodologies in haplotype inference has been shown to produce very efficient results when

compared to alternative methods.

This PhD work contributes with new SAT-based algorithms for haplotype inference, which are

very competitive, both in terms of efficiency and accuracy. This dissertation describes three main

contributions of the research developed in this PhD, which are summarized in the following para-

graphs.

The first achievement of this work is a new method for solving the HIPP problem. The new

method, named RPoly, is considerable more efficient than the other methods developed for solving

the HIPP problem. RPoly is inspired by previous HIPP methods, but includes several new opti-

mizations. First, RPoly is a compact model, with a reduced number of variables and constraints.

Moreover, RPoly integrates the computation of lower bounds, that allows further reducing the size

of the model. RPoly also includes cardinality constraints, that allow pruning the search space. In
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addition, the use of the pseudo-Boolean optimization solver MiniSat+ is shown to have a significant

impact in improving the run times of the haplotype inference method. Furthermore, RPoly is able

to handle missing sites. All these features contribute for a method which is significantly efficient

and practical and, therefore, is currently the state of the art for solving the HIPP problem.

In addition, the RPoly method is shown to be competitive with other methods in terms of

accuracy. RPoly presents an accuracy which is comparable to the best statistical methods in some

classes of instances, in particular, in more recent populations which have less diversity in haplotypes.

For example, the accuracy of RPoly is comparable with the ones of Beagle and FastPHASE.

Moreover, having a competitive HIPP solver allows to extend the pure parsimony approach with

some ideas which contribute for solving similar problems and improving the accuracy of haplotype

inference approaches. Following this direction, the second main achievement of this thesis has

emerged.

The second contribution of this dissertation is a new Boolean optimization model for haplotype

inference in groups of pedigrees. The suggested approach, named minimum recombinant maximum

parsimony (MRMP), is based on the combination of two well-known combinatorial approaches:

MRHC and HIPP, taking into consideration both pedigree information and population information.

Given sets of pedigrees from the same population, the MRMP approach aims at finding a haplotype

inference solution which minimizes the number of recombination events within pedigrees and the

number of distinct haplotypes within all individuals. The method for MRMP, named PedRPoly, can

be viewed as a special case of multi-objective optimization. The use of an appropriate constraint

solver and the integration of modeling techniques contribute to a robust haplotype inference method.

Experimental results show that the PedRPoly method is competitive in terms of efficiency, and more

accurate than the existing methods for haplotype inference in pedigrees.

We consider that the third contribution of this dissertation is to systematize the HIPP approach,

contributing to better understanding the problem by providing a vast comparison between all HIPP

methods, testing the lower and upper bounds for HIPP, and analyzing the accuracy of the approach.

We concluded that the SAT-based techniques are the most adequate for solving the HIPP problem,

representing approaches which are considerable more efficient than the remaining HIPP algorithms.

Furthermore, an additional contribution was given, which is mainly related with the use of SAT.

First, a number of constraint solvers, including ILP, PBO and MaxSAT solvers have been used.

The main conclusion is that the SAT-based PB and weighted MaxSAT solvers are the most suitable

for solving the RPoly model. In addition, the models presented in this dissertation provide an

interesting new set of challenging Boolean optimization benchmarks, some of which cannot yet be
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solved by any PBO and MaxSAT solvers.

A final remark is that computational methods for haplotype inference would still be relevant in

case it turned up to be technologically cost-effective to obtain the haplotype data directly. Indeed,

although the haplotypes of some individuals may be available, there may exist other individuals

whose DNA is unavailable. This is particularly true for pedigrees where the haplotypes of the

individuals are strongly related. Algorithms such as PedRPoly are also important for associating

consistent haplotypes with unsampled pedigree members.

9.2 Directions of Future Work

The methods proposed in this dissertation have a number of limitations which could be explored

in future work.

Genome-wide association studies require a haplotype inference method which could deal with

very long blocks of SNPs. This requirement suggests that integrating a partition-ligation procedure

in the RPoly and PedRPoly methods would be of interest.

In addition, RPoly could be improved in order to handle polyallelic and polyploid data. SAT-

lotyper, the HIPP method which is able to deal with polyploid species and polyallelic SNPs, is

inefficient. Integrating these features in the robust RPoly method would contribute for an effi-

cient polyploid and polyallelic HIPP method. The idea could also be extended to pedigree-based

approaches, as PedRPoly.

Moreover, haplotype inference should also be evaluated for genotypes coming from different

populations (with a minor overlap) to check whether the inference mechanism is able to distinguish

individuals from different populations.

Another future work direction is to integrate additional criteria in the RPoly and PedRPoly

models with the goal of further improving the accuracy of the methods. Although some attempts

have been done in this direction during this PhD work, some other criteria remain to be evaluated.

One hypothesis is to minimize the entropy of the solution which is suggested by the assumption

that the most common haplotypes are evenly distributed in the population.

Another interesting idea for future work is to develop a portfolio of haplotype inference algo-

rithms, pursuing the goal of obtaining more accurate solutions. Indeed, as presented in Section 6.4,

there is no haplotype inference method which is consistently the most accurate. These results sug-

gest that a portfolio of haplotype inference methods could be of interest. The final solution would be

chosen based on the votes of each haplotype inference method, probably giving higher importance
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to methods which are believed to have better accuracy.

Regarding the PedRPoly model, a number of questions still remain without an answer. First,

it would be interesting to compare the sizes of the sets of solutions for the minimum recombinant

maximum parsimony and the minimum recombinant haplotype configuration problems. This work

implies developing a dedicated solver which efficiently counts all the solutions. Second, the PedRPoly

method should be tested in larger and real instances. In addition, we believe that there is still room

for improving the efficiency of PedRPoly, in particular with the advance of better multi-objective

SAT-based solvers.

Although a research effort can still be performed to the development of new population-based

haplotype inference methods, this subject comes to a saturated point where it becomes extremely

difficult to produce new interesting results. However, there are several other computational biology

related problems which can be tackled in the future using SAT techniques. These problems include

imputation, i.e. inferring unobserved genotypes based on a set of known haplotypes; estimating

haplotype frequencies from blocks of consecutive SNPs using pooled DNA; or developing partition-

ligation methods in order to deal with long genotypes/haplotypes.

Finally, there are a large number of hard real world problems where SAT-based algorithms can

be applied, and the modeling techniques presented in this dissertation could be an inspiration to

different models in relevant applications.
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[5] C. Ansótegui, M. L. Bonet, and J. Levy. Solving (weighted) partial MaxSAT through satisfia-

bility testing. In International Conference on Theory and Applications of Satisfiability Testing

(SAT’09), volume 5584 of LNCS, pages 427–440, 2009.
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