
Haplotype Inference with Boolean Constraint Solving: An Overview

Inês Lynce
IST/INESC-ID
TU Lisbon
Portugal

ines@sat.inesc-id.pt

Ana Graça
IST/INESC-ID
TU Lisbon
Portugal

assg@sat.inesc-id.pt

João Marques-Silva
School of ECS
U of Southampton
United Kingdom

jpms@ecs.soton.ac.uk

Arlindo L. Oliveira
IST/INESC-ID
TU Lisbon
Portugal

aml@inesc-id.pt

Abstract

Boolean satisfiability (SAT) finds a wide range of practi-
cal applications, including Artificial Intelligence and, more
recently, Bioinformatics. Although encoding some com-
binatorial problems using Boolean logic may not be the
most intuitive solution, the efficiency of state-of-the-art SAT
solvers often makes it worthwhile to consider encoding a
problem to SAT. One representative application of SAT in
Bioinformatics is haplotype inference. The problem of hap-
lotype inference under the assumption of pure parsimony
consists in finding the smallest number of haplotypes that
explains a given set of genotypes. The original formulations
for solving the problem of Haplotype Inference by Pure Par-
simony (HIPP) were based on Integer Linear Programming.
More recently, solutions based on SAT have been shown
to be remarkably more efficient. This paper provides an
overview of SAT-based approaches for solving the HIPP
problem and identifies current research directions.

1. Introduction

Haplotype inference is nowadays one of the most chal-
lenging problems in human genetics. The identification of
haplotypes, that contain the genetic data inherited from each
parent, may bring new insights to the genetic predisposition
to disease, as well as to response to drugs. Considering the
huge amount of data to deal with and the intrinsic complex-
ity of the problem, haplotype inference also poses a number
of computational challenges. This is true regardless of the
approach followed to infer the haplotypes.
One of the existing approaches for solving the haplo-

type inference problem is pure parsimony [7]. Given that
a solution has to be parsimonious, the original problem
becomes a minimization problem. The first tools devel-
oped for solving the Haplotype Inference by Pure Parsi-
mony (HIPP) problem were based on Integer Linear Pro-
gramming (ILP) and include exponential and polynomial

size models [7, 1, 2]. More recently, new tools based on
Boolean Satisfiability (SAT) and Pseudo Boolean Optimiza-
tion (PBO) have been developed [11, 5]. The SAT/PBO-
based tools use polynomial-sizemodels and additional tech-
niques for further reducing the size of the model. While the
former HIPP tools could only solve small-size illustrative
problem instances, the latter tools are remarkably more effi-
cient, and capable of solving much larger and harder prob-
lem instances.
The recent algorithmic developments for solving the

HIPP problem have made the pure parsimony approach
competitive to the point that it can be considered an effec-
tive alternative to other more standard approaches. Not sur-
prisingly, there is no clear best approach, i.e. different prob-
lem instances are solved differently by different approaches.
However, there is still a comprehensive evaluation to be
done in order to characterize the positive/negative aspects
of each approach.
This paper describes the state of the art in haplotype in-

ference by pure parsimony. The next section gives the pre-
liminaries, followed by an introduction to haplotype infer-
ence. Section 4 describes the techniques that can be applied
in general to solve the HIPP problem. Afterwards, models
based on ILP and SAT/PBO are described. Practical evi-
dence shows the performance of different tools and the ac-
curacy of bounding techniques. Finally, we point out future
research directions.

2. Preliminaries

DNA (deoxyribonucleic acid) refers to any of the nucleic
acids (adenine (A), cytosine (C), guanine (G) and thymine
(T)) that are the basis of the genetic information for liv-
ing organisms. DNA may also refer to the double strand
molecule where each strand contains a sequence of bases,
and each base contains one nucleic acid. From one strand it
is possible to determine the bases of the other strand be-
cause A only pairs with T and C with G. For example,
given the sequence CCTAAG, the corresponding bases in

the other strand must be GGATTC.
The genetic information is organized in DNA segments

called genes. Each gene encodes a specific function. Within
cells, DNA is organized into structures called chromo-
somes, for which a set of genes can be distinguished. In
diploid organisms, chromosomes are organized in pairs, due
to the inheritance coming from each parent. (In what fol-
lows we will only consider diploid organisms.)
DNA contains relevant hereditary information. This in-

formation, however, is mostly the same for all human be-
ings. There are some exceptions though, including the
ones derived from mutations at specific sites of the DNA
strand. These mutations are called Single Nucleotide Poly-
morphisms (SNPs), assuming they occur in at least 1% of
the population. For example, a SNP occurs if the sequence
CCTAAG is modified to CCTGAG. The site for which the
mutation occurred contains two possible values (called alle-
les): A and G. The analysis of SNPs is relevant to the extent
that they can be related with genetic diseases as well as to
patients response to drugs.

3. Haplotype Inference

A haplotype is a sequence of SNPs that are known to be
statistically associated. As a consequence of this associa-
tion, it is often possible to identify just a few SNPs (called
tag SNPs) within a haplotype that unambiguously identify
the remaining SNPs.
Due to technical limitations, it is not possible to directly

obtain haplotypes, which would make possible to distin-
guish between the SNPs inherited from each of the par-
ents. Instead, genotypes representing the conflated data of
the two parents are obtained. SNPs in genotypes are tradi-
tionally represented as AA, Aa or aa, where ’A’ stands for
the original base and ’a’ for the mutant.
If both parents have the same DNA base at a given site

(and so it is either AA or aa), it is called an homozygous
site, and it is straightforward to infer the value of the hap-
lotypes at that site. However, for a heterozygous site (Aa)
each haplotype at that site has a different value: one has
value A and the other has value a. Hence, for a sequence
of SNPs representing a genotype with heterozygous posi-
tions, there are possible pairs of haplotypes.
Without lack of generality, in what follows we will as-

sume that genotypes are represented by a sequence of ele-
ments that may assume values 0, 1 or 2. The values 0 and 1
represent homozygous sites whereas value 2 represents het-
erozygous sites. Haplotypes are therefore represented by a
sequence of values 0 and 1.

Definition 1 (Haplotype Inference) Given a set of
genotypes, each one represented by a string of size over
the alphabet 0,1,2 , the haplotype inference problem con-
sists in finding a set of haplotypes, each one represented

A C C T A T A T G C

A G T T C T A A G C

A G T T C T A A G C

A G T T A T A A G C

A G T T A T A A G C

A C T T A T A A C C

A C T T A T A A C C

A C T T A T A A C C

C T

G

C

C

T
A G T T A T T A G C

Figure 1. Mutations within a population

by a string of size over the alphabet 0,1 , such that each
genotype is explained by a pair of haplotypes. A genotype

is explained by a pair of haplotypes , i.e.
, iff:

if then ,

if then ,

if then ,

where refers to the character of the string.

Example 1 (Haplotype Inference) Consider the fol-
lowing set of genotypes

. One solution to the haplo-
type inference problem for is the set of haplotypes

,
where , , and

.

There are different approaches for choosing, between the
candidate haplotypes, which ones are the most adequate to
explain a genotype. This is usually done considering not
only one genotype but rather a set of genotypes from indi-
viduals of the same population. With such data, it is pos-
sible to take into account the coalescent model [9]. This
model states that there is a unique ancestor for all individu-
als of the same population. Hence, the individuals can be
grouped accordingly to the mutations they have been af-
fected by. Figure 1 illustrates the effect of mutations within
a population, as well as the similarities between individuals.
The coalescent model has inspired statistical approaches

that are behind the most well-known tools, which are com-
monly used by biologists. An alternative approach is pure
parsimony, for which the goal is to minimize the number of
haplotypes required to explain a given set of genotypes [7].
Although not directly, this approach may also be related
with the coalescent model.

Definition 2 (Haplotype Inference by Pure Parsimony)
Given a set of genotypes, a solution to the haplotype in-
ference by pure parsimony (HIPP) problem requires the ex-
plaining set of haplotypes to have minimum size.

Example 2 (Haplotype Inference by Pure Parsimony) Con-
sider again the set of genotypes

. A solution to the HIPP problem
requires only 4 haplotypes:

, where , ,
and .

The HIPP problem is NP-hard [10].

4. Standard Techniques for Solving HIPP

When solving the HIPP problem, there are quite a few
techniques that may be applied during preprocessing. These
techniques are inexpensive and empirical evidence shows
that they can significantly improve the performance of the
HIPP solvers.

4.1. Simplifying the Problem Instances

A key approach for simplifying the haplotype inference
problem instances consists in reducing the size of the in-
stance [2].
The set of genotypes given to HIPP solvers contains

genotypes from individuals that belong to the same popu-
lation. Not surprisingly, these sets often contain repeated
genotypes, even though each of them refers to different in-
dividuals. Clearly, for each subset of repeated genotypes
only one of them has to be kept. After a solution to the sim-
plified problem has been found, it is straightforward to find
a solution to the original problem.
Other techniques for reducing the size of a problem in-

stance entail removing sites of the genotypes. Consider a set
of genotypes, each with the same number of sites. If there
are two sites with exactly the same value for each genotype,
then one of them can be removed. Furthermore, the same
procedure can be applied to symmetric sites. Two sites are
said to be symmetric if for each genotype the two sites are
either homozygous with value 0(1) and value 1(0) or het-
erozygous (both with value 2). Again, after a solution to the
simplified problem has been found, it is straightforward to
find a solution to the original problem.

Example 3 (Simplification Techniques) Consider the set
of genotypes .
By removing duplicated genotypes, the forth geno-
type is removed and the set becomes

. This set is further reduced
by removing duplicated sites, which implies removing the
fifth site for being equal to the first site, thus becoming

. Finally, we may remove
the third site for being symmetric to the second site, thus
getting the simplified set .

012 102

110

(2) (2)

(1)

Figure 2. Clique-based lower bound

4.2. Computing Lower Bounds

The techniques for computing lower bounds rely on in-
formation regarding incompatible genotypes: two geno-
types are incompatible if they are both homozygous at the
same site but with different values.
A lower bound can be computed from a maximal

clique [11]. Clearly, for two incompatible genotypes, and
, the haplotypes that explain must be distinct from the
haplotypes that explain . Given the incompatibility rela-
tion we can create an incompatibility graph , where each
vertex is a genotype, and two vertexes are connected with
an edge if they are incompatible. Suppose has a clique of
size . Then the number of required haplotypes is at least

, where is the number of genotypes in the clique
which do not have heterozygous sites.
Since this problem is NP-hard, we use the size of a

clique in the incompatibility graph, computed using a sim-
ple greedy heuristic. The genotype with the highest number
of incompatible genotypes is first selected. At each step,
the genotype selected is one that is still incompatible with
all the already selected genotypes, and preference is given
to the haplotype with the highest number of incompatible
genotypes.

Example 4 (Lower Bounds) Consider the following set of
genotypes: . The three genotypes are in-
compatible, which is represented in the incompatibility
graph in Figure 2, along with each genotype contribution
to the lower bound. Hence, the number of required haplo-
types is at least 5 (twice the clique size less the number of
genotypes with no heterozygous sites).

In addition, the analysis of the structure of the genotypes
allows the lower bound to be further increased, by identify-
ing heterozygous sites which require at least one additional
haplotype given a set of previously chosen genotypes [12].
The procedure starts from the clique-based lower bound and
grows the lower bound by searching for heterozygous sites
among genotypes not yet considered for lower bounding
purposes. For each genotype not in the clique, if the
genotype has a heterozygous site and all compatible geno-
types have the same value at that site (either 0 or 1), then

is guaranteed to require one additional haplotype to be
explained. Hence the lower bound can be increased by 1.
Another improvement to the lower bound consists in

identifying genotypes with triples of heterozygous sites,
among the genotypes not used in the clique lower bound.

Example 5 (Improved Lower Bounds) Consider the follow-
ing set of genotypes: . Given that there
are no two incompatible genotypes, the clique-based lower
bound would give a lower bound of 2 corresponding to a
unique vertex (e.g. with the first genotype). The analysis of
the structure of the remaining genotypes requires one ad-
ditional haplotype for the second and the third genotype,
thus increasing the lower bound to 4 haplotypes. This lower
bound can be further improved by analyzing the fourth hap-
lotype 222. Any of the haplotypes already included in the
lower bound requires at least two positions with value 0.
But the pair of haplotypes explaining 222 will require one
haplotype with at most one position with value 0. Hence,
the lower bound can be increased by 1 to 5.

4.3. Computing Upper Bounds

Clark’s method is a well-known algorithm to solve the
haplotype inference problem [3]. This method starts by
identifying genotypes with zero or one heterozygous sites,
which have only one possible explanation. Then, the
method attempts to explain the remaining genotypes with
at least one of the haplotypes already identified. This may
eventually require the inference of new haplotypes which
will be added to the set of haplotypes. The key point to note
is that there are many ways to extend the set of haplotypes,
since for genotypes with more than one heterozygous site
there are a few possible explanations.
Clark’s method may be used to compute an upper bound

to the HIPP problem. However, this method is often too
greedy. An alternative algorithm (called Delayed Selection
(DS) [16]) addresses the main drawback of Clark’s method.
The DS algorithm maintains two sets of haplotypes: the se-
lected haplotypes, which represent haplotypes which have
been chosen to be included in the target solution, and the
candidate haplotypes, which represent haplotypes which
can explain one or more genotypes not yet explained by a
pair of selected haplotypes.
The initial set of selected haplotypes corresponds to all

haplotypeswhich are required to explain the genotypes with
no more than one heterozygous sites, i.e. genotypes which
are explained with either one or exactly two haplotypes. At
each step, the DS algorithm chooses the candidate haplo-
type which can explain the largest number of genotypes.
The chosen haplotype is then used to identify additional
candidate haplotypes. Moreover, is added to the set of se-
lected haplotypes, and all genotypeswhich can be explained
by a pair of selected haplotypes are removed from the set of

unexplained genotypes. The algorithm terminates when all
genotypes have been explained.
Each time the set of candidate haplotypes becomes

empty, and there are still more genotypes to explain, a
new candidate haplotype is generated. The new haplo-
type is selected greedily as the haplotype which can explain
the largest number of genotypes not yet explained. Given
that the proposed organization allows selecting haplotypes
which will not be used in the final solution, the last step of
the algorithm is to remove from the set of selected haplo-
types all haplotypes which are not used for explaining any
genotypes.

5. Solving HIPP with ILP

The first solutions for solving the HIPP problem were
ILP models, solved with dedicated solvers [7, 8, 1, 2].
These models are briefly reviewed below.

5.1. Exponential-Size ILP Models

The original ILP models, TIP and RTIP, have linear
space complexity on the number of candidate haplotypes [7]
and so both are exponential on the number of given geno-
types in the worst-case. For each genotype , all can-
didate pairs of haplotypes that can explain are enumer-
ated. For example, given genotype 02122, the candidate
pairs of haplotypes for explaining it are: (00100,01111),
(01100,00111), (00110,01101) and (00101,01110). In the
general case, each genotype having heterozygous sites is
explained by pairs of haplotypes. Hence, the space
complexity is where is the number of sites, which
represents the maximum number of heterozygous sites per
genotype. A Boolean variable is associated with each
pair of haplotypes that can explain a given genotype ;
its value is 1 if this pair of haplotypes is used for explaining
or 0 otherwise. A cardinality constraint, , re-

quires that exactly one pair of haplotypes must be used for
explaining each genotype, among all pairs that can explain
the genotype. Each candidate haplotype is associated with
a dedicated variable , such that if the haplotype
is used. The utilization of a specific pair of haplotypes for
explaining a genotype (i.e.) implies the respective
variable, , for each haplotype in the pair. The

cost function consists in minimizing the number of haplo-
types used,

minimize (1)

This model is referred to as TIP [7]. A more efficient model
is RTIP, which introduces one key simplification. If geno-
type can be explained by pair of haplotypes (,), such
that both and cannot explain any other genotype, then
the pair of haplotypes (,) needs not to be considered

for explaining . If all pairs are discarded for a genotype
, then it suffices to pick any pair for explaining .

5.2. Polynomial-Size ILP Models

One alternative to the exponential models is the PolyIP
model, which is polynomial in the number of sites and
population size [8, 1], with a number of constraints and
variables, respectively, in and . The
PolyIP model represents the candidate haplotypes as se-
quences of Boolean variables, and then establishes condi-
tions for the haplotypes to explain the corresponding geno-
types, such that the total number of distinct haplotypes is
minimized. Haplotypes are represented with Boolean vari-
ables , and , i.e. variables for
each of the candidate haplotypes.
First, the PolyIP model defines conditions on the sites,

with and :

and if
and if

if
(2)

where denotes the possible values at each
site. Second, the PolyIP model defines conditions for iden-
tifying different haplotypes, with and

. Boolean variable is defined such that if
. The resulting conditions become:

(3)

If at least one site of and differs, then needs to be
assigned to value 1.
Third, the model introduces the variables denoting

whether is different from all previous haplotypes ,
where , and defines conditions on these vari-
ables. Boolean variable is defined such that
if is unique with respect to the previous haplotypes.
Thus, if is unique, then ; otherwise

. As a result, the condition on variable
becomes:

(4)

Finally, the cost function consists in minimizing the number
of different haplotypes:

minimize (5)

A number of optimizations have been proposed to the ba-
sic PolyIP model [1], with the purpose of pruning the search
space to be handled by the ILP solver. More recently, an

alternative polynomial-size ILP model, HybridIP, was pro-
posed [2], and represents a hybrid between the RTIP and the
PolyIP models. Nonetheless, no significant improvements
were achieved by HybridIP compared to PolyIP.

6. Solving HIPP with SAT

An alternative to solving HIPP with ILP is to use SAT.
Current SAT solvers are characterized by being extremely
fast at solving real world problem instances, mainly due
to the capacity of learning new constraints whenever the
search reaches a dead-end, as well as to very efficient data
structures. SAT-based approaches for the HIPP problem
were proposed recently in the SHIPs tool [11, 12], and al-
lowed remarkable performance improvements over the ex-
isting ILP-based models.
The SAT-based HIPP solution algorithm starts from a

lower bound on the number of haplotypes necessary to
explain the set of genotypes; a trivial value for is 1. The
algorithm searches for the smallest value such that there
exists a set of haplotypes with , which explain all
genotypes in . Observe that the value of is guaranteed to
satisfy , since a solution with haplotypes is
guaranteed to exist. For each value of considered, a CNF
formula is created, and a SAT solver is invoked.
In what follows the same indexes will be used through-

out: ranges over the genotypes and over the sites, with
and , where is the number of

genotypes and is the number of sites. In addition, can-
didate haplotypes are considered, each with sites, and
with . An additional index is associated with
haplotypes, such that . As a result,
denotes the site of haplotype .
For a given value of , the SHIPs model considers hap-

lotypes and seeks to associate two haplotypes (possibly cor-
responding to the same haplotype) with each genotype ,
where . The Boolean variables used by SHIPs are
depicted in Figure 3. For each genotype the model uses
selector variables for selecting which haplotypes are used
for explaining . Since the genotype is to be explained by
two haplotypes, the model uses two sets, and , of se-
lector variables, respectively and with .
Hence, genotype is explained by haplotypes and
if and . Clearly, is also explained by
the same haplotypes if and .
We can now derive the conditions for the SHIPs model:

If a site is 0 (resp. 1), and if haplotype is selected
for explaining genotype , either by the or the rep-
resentative, then the value of haplotype at site must
be 0 (resp. 1). In CNF, if site is 0, then the model
includes , and if site is
1, then the model includes ,
in both cases for .

Figure 3. Boolean variables used in SHIPs

Otherwise, one requires that the haplotypes explaining
the genotype have opposing values at site . This
is done by creating a variable such that
site of the haplotype selected by the representative
selector assumes the same value as , and site of
the haplotype selected by the representative selector
assumes the complementary value of . As a result
the model requires

for
. Observe that equals if ,

and equals if .

Clearly, for each genotype , and for or , it is nec-
essary that exactly one haplotype is used, and so exactly
one selector variable can be assigned value 1. This can be
captured with the following cardinality constraints:

(6)

These cardinality constraints can be encoded in CNF in lin-
ear space, by introducing additional auxiliary variables [11,
12]. In current implementations, auxiliary variables are not
handled differently by SAT solvers. However, the special
handling of these variables may be considered in the future,
as it has been recently shown that not branching on these
variables, as well as not learning constraints with these vari-
ables, leads in general to more robust performances [15].
Besides the basic model outlined above, SAT-based

haplotyping requires the inclusion of a number of effec-
tive techniques, including lower bounds and identifica-
tion of symmetries [11] (see Section 4.3). More recent
work addressed using local search algorithms for improving
lower bounds in SAT-based approaches for the HIPP prob-
lem [13]. Another sucessful approch used answer set pro-
gramming (ASP) [4]. Similarly to SHIPs, this ASP-based
approach uses a SAT solver as a search engine. SAT solvers
have also been recently used for solving the HIPP problem
for non-diploid organisms [17].

7. Solving HIPP with PBO

The success of solving HIPP with SATmotivated consid-
ering other Boolean-based decision and optimization pro-

cedures. One very successful approach is based on us-
ing Pseudo-Boolean Optimization (PBO) in a tool called
RPoly [5, 6].
The organization of RPoly is similar to the organization

of PolyIP: two haplotypes are associated with each geno-
type, and conditions which capture when a different haplo-
type is used for explaining a given genotype are defined.
With no surprise, the generated PBO formulas are much
larger than the generated SAT formulas for a given HIPP
problem instance. Whereas the PBO approach assumes the
worst case for which the number of required haplotypes is
twice the number of genotypes, the SAT approach incre-
mentally increases the number of required haplotypes start-
ing from a lower bound.
Despite the similarities, RPoly has a few key differences

with respect to PolyIP. First, the set of variables is differ-
ent. Instead of associating a variable with each site of each
haplotype, RPoly only associates variables with heterozy-
gous sites (since the value of haplotypes in the other sites is
known beforehand, and so can be implicitly assumed). In
addition, each used variable describes the possible pairs of
values for the corresponding heterozygous site.
In practice, the model associates two haplotypes, and
, with each genotype , and these haplotypes are required
to explain . Moreover, the model associates a variable
with each heterozygous site (i.e. with).

Hence, indicates that and ,
whereas indicates that and . The
value of and at homozygous sites is implicitly as-
sumed.
This alternative definition of the variables associated

with the sites of genotypes reduces the number of variables
by a factor of 2. In addition, the model only creates vari-
ables for heterozygous sites, and so the number of vari-
ables associated with sites equals the total number of het-
erozygous sites. As a result, the conditions provided by (2)
are eliminated. It is interesting to observe that this defini-
tion of the variables associated with sites follows the SHIPs
model [11, 12].
Finally, another key modification is that the candidate

haplotypes for each genotype are related with candidate
haplotypes for other genotypes only if the two genotypes
are compatible. Clearly, incompatible genotypes are guar-
anteed not to be explained by the same haplotype.
The proposed modification implies the use of two addi-

tional sets of variables. Variable , with
and , is 1 if the haplotype of genotype
and the haplotype of genotype are different. Clearly,

if genotypes and are incompatible, then the value of
is 1 for the four possible combinations of and .

Moreover, two genotypes and are related only with re-
spect to sites such that either or is heterozygous
at that site. In addition, the model uses variables to denote

when one of the haplotypes associated with a given geno-
type is different from all previous haplotypes. Hence, ,
with and , is 1 if haplotype of
genotype is different from all previous haplotypes.
The conditions on the variables are based on the con-

ditions for the variables for the PolyIP model:

(7)

The conditions on the variables are all of the fol-
lowing form, for all :

(8)

Where the predicates and depend on the values of the
sites and , and on which of the haplotypes is
considered, i.e. either or . Observe that ,

, and . Accordingly, the and
predicates are defined as follows:

If , then and
.

If , then and
.

If , then and
.

Finally, the cost function is given by:

minimize (9)

The proposed simplifications to PolyIP model [1] yield
significant performance improvements, even when the two
models are solved with a PB solver [5]. More recently, a
number of improvements to RPoly were proposed [6]. Sim-
ilarly to SHIPs, one of the proposed improvements is the
integration of lower bounds (see Section 4.3).
One useful feature of the RPoly tool is to be able to deal

with unspecified genotype sites. Genotyping procedures of-
ten leave a percentage of missing genotype positions, and so
haplotype inference tools need to be able to deal with miss-
ing sites. RPoly can handle SNPs with unspecified values,
inferring the values for the missing sites and still guaran-
teeing a parsimonious solution. Two Boolean variables are
associated with each missing site to represent the four possi-
ble values for the haplotypes: two homozygous values (one
for each allele) and two heterozygous values (one for each
haplotype phase). The constraints for unspecified genotype
sites are similar to the constraints for heterozygous geno-
type sites.

Class # Instances minSNPs maxSNPs minGENs maxGENs
SU1 100 104 173 80 90
SU2 100 156 188 89 90
SU3 100 128 182 87 90
SU-100kb 29 14 20 34 88
Total 329 14 188 34 90

Table 1. Classes of instances: number of SNPs and genotypes

8. Practical Experience

This section illustrates the behaviour of the models de-
scribed above in a challenging set of 329 problem in-
stances 1. These instances were generated to evaluate phas-
ing algorithms [14]. Table 1 characterizes the instances giv-
ing the number of instances for each class, as well as the
minimum and maximum number of SNPs (minSNPs and
maxSNPs) and genotypes (minGENs and maxGENs) for the
instances of each class.
A comparison of alternative approaches for solving the

HIPP problem is summarized in Figure 4. The HIPP
solvers RTIP [7], PolyIP [1], HybridIP [2], SHIPs [12] and
RPoly [6] were considered 2. All HIPP solvers were run on
a Intel Xeon 5160 server (3.0GHz, 1333Mhz, 4GB) running
Red Hat Enterprise Linux WS 4.
The run times for each solver were sorted and plotted,

the cutoff point being 1000 seconds. As the figure shows,
the ILP approaches are significantly less efficient than the
SAT/PBO approaches. The ILP approaches are able to solve
less than 30% of the problem instances. SHIPs is able to
solve around 81% of the problem instances, whereas RPoly
is able to solve more than 94% of the problem instances.
This section also illustrates the effectiveness of the

bounding techniques described in Section 4. For this study,
only the instances that have been solved by at least one
of the solvers have been taken into account. (This proce-
dure has eliminated 12 of the 329 instances). Otherwise it
would not be possible to compare the values of the com-
puted bounds with the optimal solution.
Figure 5 provides a comparison between the lower bound

and the HIPP solution. For around 30% of the instances, the
lower bound computes the exact HIPP solution. Moreover,
for the majority of the instances (more precisely 65%) the
difference between the lower bound and the HIPP solution
is less than or equal to 5.
The evaluation of the upper bound computation is sum-

marized in Figure 6. For 16% of the instances, the up-
per bound algorithm computes the exact HIPP solution. In
addition, for 65% of the instances the difference between

1Available from http://www.stats.ox.ac.uk/ marchini/phaseoff.html.
2The results were obtained with the tools provided by the authors, ex-

cept for the RTIP tool. This tool was provided by the authors of PolyIP
and HybridIP. To our best knowledge, the author of RTIP has not made the
software available.

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

C
PU
tim
e

Number of instances solved

RTIP
PolyIP
HybridIP
SHIPs
RPoly

Figure 4. Relative Performance of HIPP solvers

10
20
30
40
50
60
70
80
90
100

-20 -15 -10 -5 0

N
um
be
ro
fI
ns
ta
nc
es

Difference of LB to HIPP Solution

Figure 5. Quality of the Lower Bound

the computed upper bound and the HIPP solution is less or
equal to 5, and for 88% the difference is less than or equal
to 10.
Finally, Figure 7 compares the lower and upper bound

values obtained for each instance 3. For this plot the whole
set of 329 instances has been evaluated. We may observe
that for more than 10% of the instances both values are ex-
actly the same. This means that computing lower and up-
per bounds suffices to solve these problem instances, i.e. no
search is required. In addition, the difference between the
upper bound and the lower bound is more than 10 for less
than half of the instances, thus predictably not requiring
much time to be solved.

3These results are not as impressive as the ones reported in the original
publications [12, 16] because here only a subset of very hard instances is
being considered.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

N
um
be
ro
fI
ns
ta
nc
es

Difference of UB to HIPP Solution

Figure 6. Quality of the Upper Bound

9. Research Directions

Pure parsimony has been shown in the past to be an ac-
curate approach for haplotype inference [18]. Accuracy is
measured by the correct association between genotypes and
explaining haplotypes. Although it is not possible in gen-
eral to know the precise solution for the haplotype inference
problem, there are very well-studied sets of genotypes for
which the solution is known. This solution is often obtained
using different generations from the same population.
In the future, additional criteria should be taken into ac-

count to further improve the accuracy of the HIPP algo-
rithms. This is motivated by the fact that in general, and
for a single instance, the number of solutions satisfying the
pure parsimony criterion can be significantly large.
The reason for a large number of solutions is that al-

though the HIPP criterion imposes a constraint on the num-
ber of haplotypes in the solution, the same set of haplotypes

0
5
10
15
20
25
30
35
40

0 10 20 30 40 50 60

N
um
be
ro
fI
ns
ta
nc
es

Difference of UB to LB

Figure 7. Quality of the Bounds

can be used in different ways to explain the genotypes. In
addition, there can be solutions with different sets of haplo-
types that still have minimum size.
To illustrate this issue, we have performed an extensive

evaluation for a specific instance: SU100kb.25, which has
34 genotypes and 15 sites. This is one of the smallest in-
stances and therefore it is easier to get all HIPP solutions.
The SU100kb.25 instance has 48 parsimonious solutions
with 17 haplotypes each. 14 out of 17 haplotypes are com-
mon to all HIPP solutions. The remaining 3 haplotypes are
picked from a set of 7 haplotypes and are used in general
to explain only one genotype. If we compare each pair of
HIPP solutions, we observe that out of the 1128 solution
pairs, 72 pairs have exactly the same haplotypes, 384 pairs
differ in 1 haplotype, 480 pairs differ in 2 haplotypes and
192 pairs differ in 3 haplotypes.
The measures given above make it clear that there are

significantly different solutions, and therefore picking the
first solution to be foundmay not be the best option in terms
of accuracy. Future research directions should consider us-
ing a criterion to choose the most accurate solution between
all possible HIPP solutions.

Acknowledgments

This work is partially funded by Microsoft under con-
tract 2007-017 of the Microsoft Research PhD Scholar-
ship Programme, and by FCT under research projects
POSC/EIA/ 61852/2004 and PTDC/EIA/64164/2006 and
PhD grant SFRH/BD/28599/2006.

References

[1] D. Brown and I. Harrower. A new integer programming
formulation for the pure parsimony problem in haplotype

analysis. In Workshop on Algorithms in Bioinformatics
(WABI’04), pages 254–265, 2004.

[2] D. Brown and I. Harrower. Integer programming approaches
to haplotype inference by pure parsimony. IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
3(2):141–154, 2006.

[3] A. G. Clark. Inference of haplotypes from pcr-amplified
samples of diploid populations. Molecular Biology and Evo-
lution, 7(2):111–122, 1990.

[4] E. Erdem and F. Türe. Efficient haplotype inference with
answer set programming. In AAAI Conference on Artificial
Intelligence, pages 436–441, July 2008.

[5] A. Graça, J. Marques-Silva, I. Lynce, and A. Oliveira. Ef-
ficient haplotype inference with pseudo-Boolean optimiza-
tion. In Algebraic Biology, pages 125–139, 2007.

[6] A. Graça, J. Marques-Silva, I. Lynce, and A. Oliveira. Ef-
ficient haplotype inference with combined CP and OR tech-
niques. In CPAIOR’08, pages 308–312, 2008.

[7] D. Gusfield. Haplotype inference by pure parsimony. In
14th Annual Symposium on Combinatorial Pattern Match-
ing (CPM’03), pages 144–155, 2003.

[8] B. Halldórsson, V. Bafna, N. Edwards, R. Lippert,
S. Yooseph, and S. Istrail. A survey of computational
methods for determining haplotypes. InDIMACS/RECOMB
Satellite Workshop on Computational Methods for SNPs and
Haplotype Inference, pages 26–47, 2004.

[9] R. Hudson. Gene genealogies and the coalescent process.
Oxford Survey of Evolutionary Biology, 7:1–44, 1990.

[10] G. Lancia, C. M. Pinotti, and R. Rizzi. Haplotyping pop-
ulations by pure parsimony: complexity of exact and ap-
proximation algorithms. INFORMS Journal on Computing,
16(4):348–359, 2004.

[11] I. Lynce and J. Marques-Silva. Efficient haplotype inference
with Boolean satisfiability. In AAAI Conference on Artificial
Intelligence, pages 104–109, July 2006.

[12] I. Lynce and J. Marques-Silva. Haplotype inference with
Boolean satisfiability. International Journal on Artificial In-
telligence Tools, 17(2):355–387, April 2008.

[13] I. Lynce, J. Marques-Silva, and S. Prestwich. Boosting hap-
lotype inference with local search. Constraints, 13(1):155–
179, 2008.

[14] J. Marchini, D. Cutler, N. Patterson, M. Stephens, E. Eskin,
E. Halperin, S. Lin, Z. Qin, H. Munro, G. Abecassis, P. Don-
nelly, and International HapMap Consortium. A compari-
son of phasing algorithms for trios and unrelated individuals.
American Journal of Human Genetics, 78:437–450, 2006.

[15] J. Marques-Silva and I. Lynce. Towards robust CNF encod-
ings of cardinality constraints. In Principles and Practice of
Constraint Programming (CP), September 2007.

[16] J. Marques-Silva, I. Lynce, A. Graça, and A. Oliveira. Ef-
ficient and tight upper bounds for haplotype inference by
pure parsimony using delayed haplotype selection. In 13th
Portuguese Conference on Artificial Intelligence (EPIA 07),
pages 621–632, 2007.

[17] J. Neigenfind, G. Gyetvai, R. Basekow, S. Diehl, U. Achen-
bach, C. Gebhardt, J. Selbig, and B. Kersten. Haplotype in-
ference from unphased snp data in heterozygous polyploids
based on SAT. BMC Genomics, 9(356), 2008.

[18] L. Wang and Y. Xu. Haplotype inference by maximum par-
simony. Bioinformatics, 19(14):1773–1780, 2003.

