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Abstract. Haplotype inference from genotype data is a key step towards a better
understanding of the role played by genetic variations on inherited diseases. One
of the most promising approaches uses the pure parsimony criterion. This ap-
proach is called Haplotype Inference by Pure Parsimony (HIPP) and is NP-hard
as it aims at minimising the number of haplotypes required to explain a given
set of genotypes. The HIPP problem is often solved using constraint satisfaction
techniques, for which the upper bound on the number of required haplotypes is a
key issue. Another very well-known approach is Clark’s method, which resolves
genotypes by greedily selecting an explaining pair of haplotypes. In this work,
we combine the basic idea of Clark’s method with a more sophisticated method
for the selection of explaining haplotypes, in order to explicitly introduce a bias
towards parsimonious explanations. This new algorithm can be used either to ob-
tain an approximated solution to the HIPP problem or to obtain an upper bound
on the size of the pure parsimony solution. This upper bound can then used to
efficiently encode the problem as a constraint satisfaction problem. The experi-
mental evaluation, conducted using a large set of real and artificially generated
examples, shows that the new method is much more effective than Clark’s method
at obtaining parsimonious solutions, while keeping the advantages of simplicity
and speed of Clark’s method.

1 Introduction

Over the last few years, an emphasis in human genomics has been on identifying ge-
netic variations among different people. A comprehensive search for genetic influences
on disease involves examining all genetic differences in a large number of affected in-
dividuals. This allows the systematic test of common genetic variants for their role in
disease. These variants explain much of the genetic diversity in our species, a conse-
quence of the historically small size and shared ancestry of the human population. One
significant effort in this direction is represented by the HapMap Project[23], a project
that aims at developing a haplotype map of the human genome and represents the best
known effort to develop a public resource that will help finding genetic variants associ-
ated with specific human diseases.
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For a number of reasons, these studies have focused on the tracking of the inher-
itance of Single Nucleotide Polymorphisms (SNPs), point mutations found with only
two common values in the population. This process is made more difficult because of
technological limitations. Current methods can directly sequence only short lengths of
DNA at a time. Since the sequences of the chromosomes inherited from the parents are
very similar over long stretches of DNA, it is not possible to reconstruct accurately the
sequence of each chromosome. Therefore, at a genomic site for which an individual
inherited two different values, it is currently difficult to identify from which parent each
value was inherited. Instead, currently available sequencing methods can only deter-
mine that the individual is ambiguous at that site.

Most diseases are due to very complex processes, where the values of many SNPs
affect, directly and indirectly, the risk. Due to a phenomenon known as linkage dise-
quilibrium, the values of SNPs in the same chromosome are correlated with each other.
This leads to the conservation, through generations, of large haplotype blocks. These
blocks have a fundamental role in the risk of any particular individual for a given dis-
ease. If we could identify maternal and paternal inheritance precisely, it would be pos-
sible to trace the structure of the human population more accurately and improve our
ability to map disease genes. This process of going from genotypes (which may be am-
biguous at specific sites) to haplotypes (where we know from which parent each SNP
is inherited) is called haplotype inference.

This paper introduces a greedy algorithm for the haplotype inference problem called
Delayed Haplotype Selection (DS) that extends and improves the well-known Clark’s
method[5]. We should note that recent work on Clark’s method studied a number of
variations and improvements, none similar to DS, and all performing similarly to Clark’s
method. This new algorithm takes advantage of new ideas that have appeared recently,
such as those of pure parsimony[10]. A solution to the haplotype inference by pure
parsimony (HIPP) problem provides the smallest number of haplotypes required to ex-
plain a set of genotypes. This algorithm can then be used in two different ways: (1) as a
standalone procedure for giving an approximate solution to the HIPP problem or (2) as
an upper bound to the HIPP solution to be subsequently used by pure parsimony algo-
rithms which use upper bounds on their formulation. Experimental results, obtained on
a comprehensive set of examples, show that, for the vast majority of the examples, the
new approach provides a very accurate approximation to the pure parsimony solution.

This paper is organised as follows. The next section introduces key concepts, de-
scribes the problem from a computational point of view, and points to related work,
including Clark’s method and pure parsimony approaches. Based on Clark’s method,
section 3 describes a new algorithm called Delayed Haplotype Selection. Afterwards
section 4 gives the experimental results obtained with the new algorithm, which are
compared with other methods and evaluated from the point of view of a parsimonious
solution. Finally, section 5 presents the conclusions and points directions for future re-
search work, including the integration of the greedy algorithm in pure parsimonious
algorithms.
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2 Problem Formulation and Related Work

2.1 Haplotype Inference

A haplotype represents the genetic constitution of an individual chromosome. The un-
derlying data that forms a haplotype is generally viewed as the set of SNPs in a given
region of a chromosome. Normal cells of diploid organisms contain two haplotypes,
one inherited from each parent. The genotype represents the conflated data of the two
haplotypes. The value of a particular SNP is usually represented by X, Y or X/Y, de-
pending on whether the organism is homozygous with value X, homozygous with value
Y or heterozygous. The particular base that the symbols X and Y represent varies with
the SNP in question. For instance, the most common value in a particular location may
be the guanine (G) and the less common variation cytosine (C). In this case, X will mean
that both parents have guanine in this particular site, Y that both parents have cytosine
at this particular site, and X/Y that the parents have different bases at this particular
site. Since mutations are relatively rare, the assumption that at a particular site only two
bases are possible does not represent a strong restriction. This assumption is supported
by the so called infinite sites model[14], that states that only one mutation has occurred
in each site, for the population of a given species.

Starting from a set of genotypes, the haplotype inference task consists in finding
the set of haplotypes that gave rise to that set of genotypes. The variable n denotes the
number of individuals in the sample, and m denotes the number of SNP sites. Without
loss of generality, we may assume that the two values of each SNP are either 0 or 1.
Value 0 represents the wild type and value 1 represents the mutant. A haplotype is then a
string over the alphabet {0,1}. Genotypes may be represented by extending the alphabet
used for representing haplotypes to {0,1,2}. A specific genotype is denoted by gi, with
1 ≤ i ≤ n. Furthermore, gij denotes a specific site j in genotype gi, with 1 ≤ j ≤ m.
We say that a genotype gi can be explained by haplotypes hk and hl iff for each site
gij :

gij =

{

hkj if hkj = hlj

2 if hkj 6= hlj

In general, if a genotype gi has r ≥ 1 heterozygous sites, then there are 2r−1 pairs
that can explain gi. The objective is to find the set H of haplotypes that is most likely
to have originated the set of genotypes in G.

Definition 1. (Haplotype Inference) Given a set G of n genotypes, each of length m,
the haplotype inference problem consists in finding a set H of 2 · n haplotypes, not
necessarily different, such that for each genotype gi ∈ G there is at least one pair of
haplotypes (hk, hl), with hk and hl ∈ H such that the pair (hk, hl) explains gi.

Example 1. (Haplotype Inference) Consider genotype 02122 having 5 SNPs, of which
1 SNP is homozygous with value 0, 1 SNP is homozygous with value 1, and the 3
remaining SNPs are heterozygous (thus having value 2). Genotype 02122 may then
be explained by four different pairs of haplotypes: (00100, 01111), (01100, 00111),
(00110, 01101) and (01110, 00101).
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We may distinguish between a number of approaches that are usually used for solv-
ing the haplotype inference problem: the statistical, the heuristic and the combinato-
rial approaches. The statistical approaches[19,22] use specific assumptions about the
underlying haplotype distribution to approximate different genetic models, and may
obtain highly accurate results. The heuristic approaches include, among others, Clark’s
method[5]. Finally, most combinatorial approaches are based on the pure parsimony cri-
terion[10]. The later has shown to be one of the most promising alternative approaches
to statistical models[3, 17].

2.2 Clark’s Method

Clark’s method is a well-known algorithm that has been proposed to solve the haplotype
inference problem[5]. Clark’s algorithm has been widely used and is still useful today.
This method considers both haplotypes and genotypes as vectors. The method starts
by identifying genotype vectors with zero or one ambiguous sites. These vectors can
be resolved in only one way, and they define the initially resolved haplotypes. Then,
the method attempts to resolve the remaining genotypes by starting with the resolved
haplotypes. The following step infers a new resolved vector NR from an ambiguous
vector A and an already resolved genotype vector R.

Suppose A is an ambiguous genotype vector with r ambiguous sites and R is a re-
solved vector that is a haplotype in one of the 2r−1 potential resolutions of vector A.
Then the method infers that A is the conflation of the resolved vector R and another
unique vector NR. All of the ambiguous positions in A are set in NR to the opposite
value of the position in R. Once inferred, this vector is added to the set of known re-
solved vectors, and vector A is removed from the set of unresolved vectors.

The key point to note is that there are many ways to apply the resolution rule, since
for an ambiguous vector A there may be many choices for vector R. A wrong choice
may lead to different solutions, or even leave orphan vectors, in the future, i.e., vectors
that cannot be resolved with any already resolved vector R.

The Maximum Resolution (MR) problem[9] aims at finding the solution of the
Clark’s algorithm with the fewest orphans, i.e. with the maximum number of geno-
types resolved. This problem is NP-hard as shown by Gusfield[9], who also proposed
an integer linear programming approach to the MR problem.

2.3 Pure Parsimony

Chromosomes in the child genome are formed by combination of the corresponding
chromosomes from the parents. Long stretches of DNA are copied from each parent,
spliced together at recombination points. Since recombination is relatively infrequent,
large segments of DNA are passed intact from parent to child. This leads to the well
known fact that the actual number of haplotypes in a given population is much smaller
than the number of observed different genotypes. The haplotype inference by pure par-
simony approach was proposed by Hubbel but only described by Gusfield[9].

Definition 2. (Haplotype Inference by Pure Parsimony) The haplotype inference by
pure parsimony (HIPP) approach aims at finding a solution for the haplotype infer-
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ence problem that minimises the total number of distinct haplotypes used. The problem
of finding such a parsimonious solution is APX-hard (and, therefore, NP-hard)[16].

Example 2. (Haplotype Inference by Pure Parsimony) Consider the following exam-
ple, taken from a recent survey on the topic[11], where the set of genotypes is: 02120,
22110, and 20120. There are solutions that use five different haplotypes1, but the solu-
tion (00100, 01110), (01110, 10110), (00100, 10110) uses only three different haplo-
types.

It is known that the most accurate solutions based on Clark’s method are those
that infer a small number of distinct haplotypes[10,20]. Although Clark’s method has
sometimes been described as using the pure parsimony criterion[19,1, 22], this criterion
is not explicitly used and an arbitrary choice of the resolving haplotype does not lead to
a pure parsimony solution. The present paper proposes a method that, while still based
on Clark’s method, explicitly uses the pure parsimony criterion, leading to more precise
results.

Several approaches, have been proposed to solve the HIPP problem. The first algo-
rithms are based on integer linear programming[10,2, 24], whereas the most recent and
competitive encode the HIPP problem as a constraint satisfaction problem (either using
propositional satisfiability[17, 18] or pseudo-Boolean optimization[4]).

One should note that the implementation of exact algorithms for the HIPP problem
often requires computing either lower or upper bounds on the value of the HIPP so-
lution[24, 18]. Clearly, Clark’s method can be used for providing upper bounds on the
solution of the HIPP problem. Besides Clark’s method, which is efficient but in general
not accurate, existing approaches for computing upper bounds to the HIPP problem
require worst-case exponential space, due to the enumeration of candidate pairs of hap-
lotypes[12, 24]. Albeit impractical for large examples, one of these approaches is used
in Hapar[24], a fairly competitive HIPP solver when the number of possible haplotype
pairs is manageable.

The lack of approaches both accurate and efficient for computing upper bounds, pre-
vented their utilization in recent HIPP solvers, for instance, in SHIPs[18]. Algorithm 1
summarizes the top-level operation of SHIPs. This SAT-based algorithm iteratively de-
termines whether there exists a set H of distinct haplotypes, with r = |H| such that
each genotype g ∈ G is explained by a pair of haplotypes in H. The algorithm con-
siders increasing sizes for H, from a lower bound lb to an upper bound ub. Trivial
lower and upper bounds are, respectively, 1 and 2 · n. For each value of r considered,
a CNF formula ϕr is created, and a SAT solver is invoked (identified by the function
call SAT(ϕr)). The algorithm terminates for a size of H for which there exist r = |H|
haplotypes such that every genotype in G is explained by a pair of haplotypes in H, i.e.
when the constraint problem is satisfiable. (Observe that an alternative would be to use
binary search.)

This paper develops an efficient and accurate approach for haplotype inference,
inspired by pure parsimony, and which can be used to compute tight upper bounds

1 In general, up to 2 · n distinct haplotypes may be required to explain n genotypes. However,
in this particular case, there is no solution with six distinct haplotypes.



6 J. Marques-Silva et al.

Algorithm 1 Top-level SHIPs algorithm

SHIPS(G, lb)

1 r← lb

2 while (true)
3 do Generate ϕr given G and r

4 if SAT(ϕr) = true

5 then return r

6 else r← r + 1

to the HIPP problem. Hence, the proposed approach can be integrated in any HIPP
approach, including Hapar[24] and SHIPs[18].

3 Delayed Haplotype Selection

A key drawback of haplotype inference algorithms based on Clark’s method is that these
algorithms are often too greedy, at each step seeking to explain each non-explained
genotype with the most recently chosen haplotype. As a result, given a newly selected
haplotype ha, which can explain a genotype gt, a new haplotype hb is generated that
only serves to explain gt. If the objective is to minimize the number of haplotypes, then
the selection of hb may often be inadequate.

This section develops an alternative algorithm which addresses the main drawback
of Clark’s method. The main motivation is to avoid the excessive greediness of Clark’s
method in selecting new haplotypes. Therefore a delayed greedy algorithm for haplo-
type selection (DS) is used instead.

In contrast to Clark’s method, where identified haplotypes are included in the set
of chosen haplotypes, the DS algorithm maintains two sets of haplotypes. The first set,
the selected haplotypes, represents haplotypes which have been chosen to be included in
the target solution. A second set, the candidate haplotypes, represents haplotypes which
can explain one or more genotypes not yet explained by a pair of selected haplotypes.

The initial set of selected haplotypes corresponds to all haplotypes which are re-
quired to explain the genotypes with no more than one heterozygous sites, i.e. geno-
types which are explained with either one or exactly two haplotypes. Clearly, all these
haplotypes must be included in the final solution.

At each step, the DS algorithm chooses the candidate haplotype hc which can ex-
plain the largest number of genotypes. The chosen haplotype hc is then used to identify
additional candidate haplotypes. Moreover, hc is added to the set of selected haplotypes,
and all genotypes which can be explained by a pair of selected haplotypes are removed
from the set of unexplained genotypes. The algorithm terminates when all genotypes
have been explained.

Each time the set of candidate haplotypes becomes empty, and there are still more
genotypes to explain, a new candidate haplotype is generated. The new haplotype is
selected greedily as the haplotype which can explain the largest number of genotypes
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Algorithm 2 Delayed Haplotype Selection

DELAYEDHAPLOTYPESELECTION(G)

1 �HS is the set of selected haplotypes; HC is the set of candidate haplotypes
2 HS ← CALCINITIALHAPLOTYPES(G)
3 G ← REMOVEEXPLAINEDGENOTYPES(G,HS)
4 for each h ∈ HS

5 do
6 for each g ∈ G
7 do if CANEXPLAIN(h, g)
8 then hc ← CALCEXPLAINPAIR(h, g)
9 HC ←HC ∪ {hc}

10 Associate hc with g

11 while (G 6= ∅)
12 do if (HC = ∅)
13 then
14 hc ← PICKCANDHAPLOTYPE(G)
15 HC ← {hc}
16 h← hc ∈ HC associated with largest number of genotypes
17 HC ←HC − {h}
18 HS ←HS ∪ {h}
19 G ← REMOVEEXPLAINEDGENOTYPES(G,HS)
20 for each g ∈ G
21 do if CANEXPLAIN(h, g)
22 then hc ← CALCEXPLAINPAIR(h, g)
23 HC ←HC ∪ {hc}
24 Associate hc with g

25 HS ← REMOVENONUSEDHAPLOTYPES(HS)
26 returnHS

not yet explained. Clearly, other alternatives could be considered, but the experimental
differences, obtained on a large set of examples, were not significant.

Observe that the proposed organization allows selecting haplotypes which will not
be used in the final solution. As a result, the last step of the algorithm is to remove
from the set of selected haplotypes all haplotypes which are not used for explaining any
genotypes.

The overall delayed haplotype selection algorithm is shown in Algorithm 2 and
summarizes the ideas outlined above. Line 2 computes the set of haplotypes HS associ-
ated with genotypes G with one or zero heterozygous sites, since these haplotypes must
be included in the final solution. Line 3 removes from G all genotypes that can be ex-
plained by a pair of haplotypes in HS . The same holds true for line 19. Lines 6 to 10 and
20 to 24 correspond to the candidate haplotype generation phase, given newly selected
haplotypes. The DS algorithm runs in polynomial time in the number of genotypes and
sites, a straightforward analysis yielding a run time complexity in O(n2 m).
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Table 1. Classes of problem instances evaluated

Class #Instances minSNPs maxSNPs minGENs maxGENs
uniform 245 10 100 30 100
nonuniform 135 10 100 30 100
hapmap 24 30 75 7 68
biological 450 13 103 5 50
Total 854 10 103 5 100

In practice, the delayed haplotype selection algorithm is executed multiple times,
as in other recent implementations of Clark’s method[20]. At each step, ties in picking
the next candidate haplotype (see line 16) are randomly broken. The run producing the
smallest number of haplotypes is selected.

Results in the next section suggest that delayed haplotype selection is a very effec-
tive approach. Nonetheless, it is straightforward to conclude that there are instances for
which delayed haplotype selection will yield the same solution as Clark’s method. In
fact, it is possible for DS to yield solutions with more haplotypes than Clark’s method.
The results in the next section show that this happens very rarely. Indeed, for most ex-
amples considered (out of a comprehensive set of examples) DS is extremely unlikely to
compute a larger number of haplotypes than Clark’s method, and most often computes
solutions with a significantly smaller number of haplotypes.

4 Experimental Results

This section compares the delayed haplotype selection (DS) algorithm described in the
previous section with a recent implementation of Clark’s method (CM)[8]. In addition,
the section also compares the HIPP solutions, computed with a recent tool[18], with
the results of DS and CM. As motivated earlier, the objectives of the DS algorithm are
twofold: first to replace Clark’s method as an approximation of the HIPP solution, and
second to provide tight upper bounds to HIPP algorithms.

Recent HIPP algorithms are iterative[18], at each step solving a Boolean Satisfiabil-
ity problem instance. The objective of using tight upper bounds is to reduce the number
of iterations of these algorithms. As a result, the main focus of this section is to ana-
lyze the absolute difference, in the number of haplotypes, between the computed upper
bound and the HIPP solution.

4.1 Experimental setup

The instances used for evaluating the two algorithms have been obtained from a number
of sources[18], and can be organized into four classes shown in Table 1. For each class,
Table 1 gives the number of instances, and the minimum and maximum number of
SNPs and genotypes, respectively 2. The uniform and nonuniform classes of instances

2 Table 1 shows data for the original non-simplified instances. However, all instances were sim-
plified using well-known techniques[3] before running any of the haplotype inference algo-
rithms.
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are the ones used by other authors[3], but extended with additional, more complex,
problem instances. The hapmap class of instances is also used by the same other au-
thors[3]. Finally, the instances for the biological class are generated from data publicly
available[13, 21, 7, 6, 15]. To the best of our knowledge, this is the most comprehensive
set of examples used for evaluating haplotype inference solutions.

All results shown were obtained on a 1.9 GHz AMD Athlon XP with 1GB of RAM
running RedHat Linux. The run times of both algorithms (CM and DS) were always a
few seconds at most, and no significant differences in run times were observed between
CM and DS. As a result, no run time information is included below.

4.2 Experimental evaluation

The experimental evaluation of the delayed haplotype selection (DS) algorithm is or-
ganized in two parts. The first part compares DS with a publicly available recent im-
plementation of Clark’s method (CM)[8], whereas the second part compares DS with
an exact solution to the Haplotype Inference by Pure Parsimony (HIPP) problem[18].
In all cases, for both CM and DS, we select the best solution out of 10 runs. Other
implementations of Clark’s method could have been considered[20]. However, no sig-
nificant differences were observed among these implementations when the objective is
to minimize the number of computed haplotypes.

The results for the first part are shown in Figure 1. The scatter plot shows the differ-
ence of CM and of DS with respect to the exact HIPP solution for the examples consid-
ered. The results are conclusive. DS is often quite close to the HIPP solution, whereas
the difference of CM with respect to the HIPP solution can be significant. While the dis-
tance of DS to the HIPP solution never exceeds 16 haplotypes, the distance of CM can
exceed 50 haplotypes. Moreover, for a large number of examples, the distance of DS to
the HIPP solution is 0, and for the vast majority of the examples the distance does not
exceed 5 haplotypes. In contrast, the distance of CM to the HIPP solution often exceeds
10 haplotypes.

The second plot in Figure 1 provides the distribution of the difference between
the number of haplotypes computed with DS and with CM. A bar associated with a
value k represents the number of examples for which CM exceeds DS by k haplotypes.
With one exception, DS always computes a number of haplotypes no larger than the
number of haplotypes computed with CM. For the single exception, DS exceeds CM in
1 haplotype (hence -1 is shown in the plot). Observe that for 85% of the examples, DS
outperforms CM. Moreover, observe that for a reasonable number of examples (40.1%,
or 347 out of 854) the number of haplotypes computed with CM exceeds DS in more
than 5 haplotypes. Finally, for a few examples (3 out of 854), CM can exceed DS by
more than 40 haplotypes, the largest value being 46 haplotypes.

It should also be noted that, if the objective is to use either DS or CM as an up-
per bound for an exact HIPP algorithm, then a larger number of computed haplotypes
represents a less tight, and therefore less effective, upper bound. Hence, DS is clearly
preferable as an upper bound solution.

The results for the second part, comparing DS to the HIPP solution, are shown
in Figure 2. As can be observed for the majority of examples (78.7%, or 672 out of
854), DS computes the HIPP solution. This is particularly significant when DS is used
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Fig. 1. Comparison of Clark’s Method (CM) with Delayed Haplotype Selection (DS)

as an upper bound for recent HIPP algorithms[18]. For examples where DS computes
the HIPP solution, exact HIPP algorithms are only required to prove the solution to be
optimum. For a negligible number of examples (0.9%, or 8 out of 854) the difference of
DS to the HIPP solution exceeds 5 haplotypes. Hence, for the vast majority of examples
considered, DS provides a tight upper bound to the HIPP solution.

The results allow drawing the following conclusions. First, DS is a very effective
alternative to CM when the objective is to minimize the total number of computed hap-
lotypes. Second, DS is extremely effective as an upper bound for exact HIPP algorithms.
For most examples (99.1%, or 846 out of 854) the number of haplotypes identified by
DS is within 5 haplotypes of the target HIPP solution.

5 Conclusions and Future Work

This paper proposes a novel approach for haplotype selection, which addresses one of
the main drawbacks of Clark’s method[5]: its excessive greediness. This is achieved
by delaying haplotype selection, one of the greedy steps of Clark’s method. This ap-
proach leads to a tight upper bound that can be used when modelling this problem as a
constraint satisfaction problem. The main context for the work is the development of ef-
ficient and accurate upper bounding procedures for exact algorithms for the Haplotype
Inference by Pure Parsimony (HIPP) problem. Nevertheless, the proposed approach
can also serve as a standalone haplotype inference algorithm. Experimental results, ob-
tained on a comprehensive set of examples, are clear and conclusive. In practice, the
new delayed haplotype selection (DS) algorithm provides quite tight upper bounds, of
far superior quality than a recent implementation of Clark’s method. For the vast ma-
jority of the examples considered, the results for DS are comparable to those for HIPP,
and for a large percentage of the examples, DS computes the actual HIPP solution.
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Fig. 2. Comparison of Delayed Haplotype Selection (DS) with HIPP solution

As mentioned earlier, recent approaches for the HIPP problem iterate through in-
creasingly higher lower bounds[18]. This implies that solutions to the haplotype in-
ference problem are only obtained when the actual solution to the HIPP problem is
identified. Thus, these recent approaches to the HIPP problem[18] cannot be used for
computing approximate HIPP solutions. The work described in this paper provides an
efficient and remarkably tight approach for computing upper bounds. This allows recent
HIPP based algorithms[18] to compute the exact solution by iterating through decreas-
ing upper bounds. Hence, at each step a solution to the haplotype inference problem is
identified, and, therefore, these methods can be used for approximating the exact HIPP
solution. The integration of the DS algorithm in recent solutions to the HIPP problem
is the next natural step of this work.
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