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Abstract. Existing genotyping technologies have enabled researchers to
genotype hundreds of thousands of SNPs efficiently and inexpensively.
Methods for the imputation of non-genotyped SNPs and the inference
of haplotype information from genotypes, however, remain important,
since they have the potential to increase the power of statistical associ-
ation tests. In many cases, studies are conducted in sets of individuals
where the pedigree information is relevant, and can be used to increase
the power of tests and to decrease the impact of population structure on
the obtained results. This paper proposes a new Boolean optimization
model for haplotype inference combining two combinatorial approaches:
the Minimum Recombinant Haplotyping Configuration (MRHC), which
minimizes the number of recombinant events within a pedigree, and the
Haplotype Inference by Pure Parsimony (HIPP), that aims at finding a
solution with a minimum number of distinct haplotypes within a popu-
lation. The paper also describes the use of well-known techniques, which
yield significant performance gains. Concrete examples include symme-
try breaking, identification of lower bounds, and the use of an appropri-
ate constraint solver. Experimental results show that the new PedRPoly
model is competitive both in terms of accuracy and efficiency.
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1 Introduction

The majority of complex diseases are influenced by both environmental and
genetic factors. Existing technologies have enabled researchers to genotype hun-
dreds of thousands of single nucleotide polymorphisms (SNPs) in a single run.
Data obtained with genotyping or sequencing technologies for thousands of in-
dividuals will be available in the near future. This will enable researchers to
conduct whole genome association studies in an unprecedented scale to detect
increasingly subtle and more complex associations between genomes and dis-
eases [33].
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Despite these technological advances, existing technologies still generate geno-
types obtained from the conflation of two haplotypes on homologous chromo-
somes. Hence, haplotypes must be inferred computationally using the experi-
mentally identified genotypes. Inference of the haplotypes is made possible by
the fact that, in many cases, there exists a strong correlation between the allele
present in a particular SNP and other nearby sites. A given combination of alleles
in one chromosome is termed a haplotype, and the deviation from independence
that exists between alleles is known as linkage disequilibrium.

Haplotype inference from genotype data remains an important and chal-
lenging task. The identification of haplotypes allows to develop haplotype-based
association studies [5]. In addition, most imputation methods require the hap-
lotype data [30].

Many haplotype inference methods apply to unrelated individuals. Nonethe-
less, pedigree information is available in many studies and can be used to improve
the results of inference methods. Combinatorial methods for haplotype inference
have been shown to be practical and relevant, either for phasing families [20] or
unrelated individuals [10]. Recently, a study comparing the haplotype inference
methods using pedigrees and unrelated individuals [21] concluded that taking
into consideration both pedigree and population information leads to improve-
ments on the precision of haplotype inference methods.

This paper proposes the combination of two well-known haplotype inference
methods: pure parsimony, which aims at finding a solution that uses the min-
imum possible number of distinct haplotypes, and the minimum recombinant
approach used to phase individuals organized in pedigrees by minimizing the
number of recombination events within each pedigree. The resulting haplotype
inference model, PedRPoly, is shown to be quite competitive and more accurate
than the existing methods for haplotype inference from pedigrees, in particular,
using the minimum recombinant approach [20]. Note that a simpler and fairly
inefficient version of this model was first outlined in [9].

The models developed in this paper represent challenging combinatorial op-
timization problems, which can be viewed as a special case of multi-objective
optimization. The solution methods for these problems combine techniques often
used in the fields of operations research and artificial intelligence. Furthermore,
the proposed models yield accuracy results that conclusively outperform the min-
imum recombinant approach. This paper describes the first PedRPoly algorithm
which can actually be used in practice, since it is both efficient and accurate.

This paper is organized in two main parts. The first part describes the PedR-
Poly model, which combines the pure parsimony and the minimum recombinant
approaches. This model is enhanced with several constraint modeling techniques.
These techniques aim at improving the efficiency of the method and include the
identification of lower bounds, symmetry breaking and a heuristic sorting tech-
nique. The second part conducts a comprehensive experimental evaluation of
the accuracy and efficiency of PedRPoly on a large set of instances. The experi-
mental evaluation was also used to select the best performing constraint solver,
among a representative number of solvers.
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2 Haplotype Inference

Variations in the DNA sequence are the basis for evolution. Single Nucleotide
Polymorphisms (SNPs) are the most common variations between human beings,
and occur when a nucleotide base (A, T, C, G) is changed to other nucleotide base
at a single DNA position. Moreover, the mutant type nucleotide must be repre-
sented in a significant percentage of the population (normally 1%). An example
of a SNP is the mutation of the DNA sequence ACTTGAC to ACATGAC,
where the third nucleotide is changed from T to A. DNA is organized in struc-
tures called chromosomes. Chromosomes contain the genetic information coded
in different type of substructures, of which the best known are the genes. A gene
is a sequence of DNA bases which encodes a specific protein.

A given combination of SNPs in a single chromosome is called a haplotype.
Moreover, SNPs within a haplotype tend to be inherited together. The deviation
from independence that exists between SNPs is known as linkage disequilibrium
(LD).

Diploid organisms, such as human beings, have pairs of homologous chro-
mosomes, with each chromosome in a pair inherited from a single parent. In
practice, experimental technology is only able to obtain genotypes, which cor-
respond to the conflated data of two haplotypes on homologous chromosomes.
The haplotype inference problem consists in obtaining the set of haplotype pairs
which originated a given set of genotypes.

Considering that the assumptions underlying the infinite-site model [14] are
valid, we may assume that each SNP can only have two values (called alleles).
Each haplotype can therefore be represented by a binary string, with size m ∈ N,
where 0 represents the wild type allele and 1 represents the mutant type allele.
Each site of the haplotype hi is represented by hi j (1 ≤ j ≤ m). In addition,
each genotype is represented by a string, with size m, over the alphabet {0, 1, 2},
and each site of the genotype gi is represented by gi j . Each genotype is explained
by two haplotypes. A genotype gi is explained by a pair of haplotypes (hai , hbi ),
which is represented by gi = hai ⊕ hbi , if

gi j =

{
hai j if hai j = hbi j
2 if hai j 6= hbi j

.

A genotype site gi j with either value 0 or 1 is a homozygous site (the same allele
is inherited from both parents), whereas a site with value 2 is a heterozygous
site (different alleles are inherited from each parent).

Definition 1. (Haplotype Inference) Given a set G of n genotypes, each with
size m, the haplotype inference problem consists in finding a set of haplotypes
H, such that each genotype gi ∈ G is explained by two haplotypes hai , h

b
i ∈ H.

Observe that for each genotype g with k heterozygous sites, there are 2k−1

non-ordered pairs of haplotypes that can explain g. For example, genotype g =
022 can be explained either by haplotypes (000, 011) or by haplotypes (001, 010).
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Most often genotyping procedures leave a percentage of missing data, i.e.
genotype positions with unknown values. To represent missing sites, the alphabet
of the genotypes is extended to {0, 1, 2, ?}.

Pedigrees Pedigree data adds new relevant information to the haplotype infer-
ence problem. A pedigree refers to the genealogical tree which allows studying
the inheritance of genes within a family. The Mendelian laws of inheritance are
well established assumptions and, in particular, state that all sites in a single
haplotype are inherited from a single parent, assuming there are no mutations
within a pedigree. We assume that haplotype ha is inherited from the father and
hb is inherited from the mother. Nonetheless, a recombination may happen. A
recombination occurs when two haplotypes of a parent are mixed together and
the recombinant is inherited by the child. For example, suppose a father has the
haplotype pair (000, 111) and the haplotype that he passed on to his child is
100. Here, one recombination event must have occurred: haplotypes 000 and 111
got shuffled and originated a new haplotype h = 100. Therefore, the child has
inherited the first allele from the paternal grandmother, while second and third
alleles were inherited from the paternal grandfather. In a pedigree, an individual
is a founder if he does not have parents on the pedigree (and a non-founder if
he has both parents on the pedigree).

2.1 Minimum Recombinant Haplotype Configuration

Most rule-based haplotype inference methods for pedigrees assume no recombi-
nation within each pedigree [35, 37, 22]. The assumption of no recombination
is valid in many cases because recombination events are rare in DNA regions
with high linkage disequilibrium. Nonetheless, this assumption can be violated
even for some dense markers [19]. Therefore, a more realistic approach consists
in minimizing the number of recombinations within pedigrees [13, 31, 20].

Definition 2. The minimum recombinant haplotype configuration (MRHC) prob-
lem aims at finding a haplotype inference solution for a pedigree which minimizes
the number of required recombination events.

For example, suppose the father has the genotype g1 = 202, the mother has
the genotype g2 = 212 and the child has the genotype g3 = 222. One possible
solution to the haplotype inference problem is g1 = 001 ⊕ 100, g2 = 010 ⊕ 111
and g3 = 101 ⊕ 010. However, this solution implies that one recombination
has occurred, because the child has not inherited an integral haplotype from
his father, but a mixture of his paternal grandparents haplotypes. A different
solution to this example admits no recombination and, therefore, is a MRHC
solution: g1 = 000⊕ 101, g2 = 010⊕ 111 and g3 = 000⊕ 111.

In general, there can be a significant number of MRHC solutions to the same
problem. For instance, g1 = 000⊕101, g2 = 010⊕111, g3 = 101⊕010 is another
0-recombinant solution for the previous example, i.e. another MRHC solution.

The MRHC problem has been shown to be a NP-hard [19, 25] problem. The
PedPhase tool [20] implements an integer linear programming (ILP) model for
MRHC with missing alleles.
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2.2 Haplotype Inference by Pure Parsimony

The haplotype inference by pure parsimony problem consists in finding a solu-
tion to the haplotype inference problem which minimizes the number of distinct
haplotypes [12].

Natural phenomena tend to be explained parsimoniously, using the mini-
mum number of required entities. The haplotype inference by pure parsimony
approach is also biologically motivated by the fact that individuals from the
same population have the same ancestors and mutations do not occur often.
Moreover, it is also well-known that the number of haplotypes in a population
is much smaller than the number of genotypes [34].

Definition 3. The haplotype inference by pure parsimony (HIPP) approach aims
at finding a minimum-cardinality set of haplotypes H that can explain a given
set of genotypes G.

For example, consider the set of genotypes G = {g1, g2, g3} = {202, 212,
222}. There are solutions using 6 different haplotypes: H1 = {101, 000, 111,
010, 001, 110}, such that g1 = 101 ⊕ 000, g2 = 111 ⊕ 010 and g3 = 001 ⊕ 110.
However the HIPP solution only requires 4 distinct haplotypes: H2 = {101, 000,
111, 010} such that g1 = 101⊕ 000, g2 = 111⊕ 010 and g3 = 000⊕ 111.

The HIPP problem is NP-hard [16]. RPoly [10] is a state-of-the-art solver
implementing a 0-1 ILP model for solving the HIPP problem.

3 The PedRPoly Model

This section describes the minimum recombinant maximum parsimony model,
denoted as PedRPoly model. In practice, the PedRPoly model is a combination
of the MRHC PedPhase model [20] and the HIPP RPoly model [10].

Definition 4. Given sets of pedigrees from the same population, the minimum
recombinant maximum parsimony (MRMP) model aims at finding a haplotype
inference solution which first minimizes the number of recombination events
within pedigrees and then minimizes the number of distinct haplotypes used.

Figure 1 illustrates two trios (mother ©, father � and child ♦) from two
families A and B with the corresponding genotypes. The figure includes three
haplotype inference solutions. Solution 1 is a 0-recombinant solution with 7 dis-
tinct haplotypes {100, 101, 000, 111, 011, 001, 110}. Solution 2 is a 1-recombinant
solution (there is one recombination event in family B) using 5 distinct haplo-
types {100, 101, 000, 111, 011}. Solution 3 is a 0-recombinant solution using 5
distinct haplotypes {100, 101, 000, 111, 011}.

According to the PedRPoly model, solution 3 is preferred to the other solu-
tions. Solution 3 is both a MRHC and a HIPP solution. Consequently, solution
3 is a MRMP solution. If there exists no solution that minimizes both crite-
ria, then preference is given to the MRHC criterion. Hence, the MRHC solution
which uses the smallest number of distinct haplotypes would be chosen.
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Fig. 1. Solutions for haplotype inference with two trios

The minimum recombinant maximum parsimony model combines the Ped-
Phase and the RPoly models, in a new 0-1 integer linear programming model,
so called PedRPoly. A 0-1 integer linear programming problem aims at finding
a Boolean assignment to the variables which optimizes the value of a given cost
function, subject to a set of linear constraints. The cost function and the general
constraints of the PedRPoly model are detailed in Table 1, which is described in
the following paragraphs.

Following the RPoly model, PedRPoly associates two haplotypes, hai and hbi ,
with each genotype gi, and these haplotypes are required to explain gi. Moreover,
PedRPoly associates a variable ti j with each heterozygous site gi j , such that
ti j = 1 indicates that the mutant value was inherited from the father (hai j = 1)

and the wild value was inherited from the mother (hbi j = 0) whereas ti j = 0
indicates that the wild value was inherited from the father (hai j = 0) and the
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Table 1. The PedRPoly Model

minimize: ((2n + 1)×
∑

non-founder i

∑m−1
j=1 (r1i j + r2i j)) +

∑n
i=1(ua

i + ub
i )

subject to:

Equation Constraint Indexes

Mendelian laws of inheritance rules (Table 2)

l ∈ {1, 2}

(1)
−rli j + gli j − gli j+1 ≤ 0

1 ≤ i ≤ n, i non-founder

−rli j − gli j + gli j+1 ≤ 0
1 ≤ j ≤ m− 1

p, q ∈ {a, b}
(2) ¬(R⇔ S)⇒ xp q

i k (Table 3)
1 ≤ k < i ≤ n

1 < i ≤ n

(3)
∑

k<i ; q∈{a,b}

xp q
i k − up

i ≤ 2i− 3
p ∈ {a, b}

mutant value was inherited from the mother (hbi j = 1). In addition, PedRPoly
associates two variables with each missing site. Variable tai j is associated with the

paternal haplotype site hai j , whereas variable tbi j is associated with the maternal

haplotype site hbi j . The values of hai and hbi at homozygous sites are implicitly
assumed.

The grandparental origin of each site of the haplotypes must be considered
when analyzing recombination events within pedigrees. Following the MRHC
PedPhase model, for each non-founder individual i and site j, two variables are
defined: g1i j and g2i j . The assignment g1i j = 0 means that the paternal allele of

individual i at site j (i.e. hai j) comes from the paternal grandfather, and g1i j = 1
means that hai j comes from the paternal grandmother, i.e.

g1i j =

{
0 if hai j = haf(i) j
1 if hai j = hbf(i) j

,

where f(i) corresponds to the father of individual i. In a similar way, g2i j = 0

(g2i j = 1) means that the maternal allele of individual i at site j comes from the
maternal grandfather (grandmother), i.e.

g2i j =

{
0 if hbi j = ham(i) j

1 if hbi j = hbm(i) j

,

where m(i) corresponds to the mother of individual i.
Constraints to ensure that the Mendelian laws of inheritance are satisfied

are defined in Table 2. Note that PedRPoly only associates variables with het-
erozygous and missing sites (inspired by RPoly), while PedPhase also associates
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Table 2. Mendelian laws of inheritance rules regarding variables g1i j . (The constraints
involving variables g2i j are defined similarly. f(i) corresponds to the father of i. 1 ≤
i ≤ n, i non-founder, 1 ≤ j ≤ m.)

Condition Constraint

gi j = 0 ∧ gf(i) j = 2 tf(i) j ⇔ g1i j
gi j = 0 ∧ gf(i) j =? (g1i j ∨ ¬taf(i) j) ∧ (¬g1i j ∨ ¬tbf(i) j)
gi j = 1 ∧ gf(i) j = 2 tf(i) j ⇔ ¬g1i j
gi j = 1 ∧ gf(i) j =? (g1i j ∨ taf(i) j) ∧ (¬g1i j ∨ tbf(i) j)

gi j = 2 ∧ gf(i) j = 0 ¬ti j
gi j = 2 ∧ gf(i) j = 1 ti j
gi j = 2 ∧ gf(i) j = 2 (g1i j ∨ ti j ∨ ¬tf(i) j) ∧ (g1i j ∨ ¬ti j ∨ tf(i) j)∧

(¬g1i j ∨ ti j ∨ tf(i) j) ∧ (¬g1i j ∨ ¬ti j ∨ ¬tf(i) j)
gi j = 2 ∧ gf(i) j =? (g1i j ∨ ti j ∨ ¬taf(i) j) ∧ (g1i j ∨ ¬ti j ∨ taf(i) j)∧

(¬g1i j ∨ ti j ∨ ¬tbf(i) j) ∧ (¬g1i j ∨ ¬ti j ∨ tbf(i) j)

gi j =? ∧ gf(i) j = 0 ¬tai j
gi j =? ∧ gf(i) j = 1 tai j
gi j =? ∧ gf(i) j = 2 (g1i j ∨ tai j ∨ ¬tf(i) j) ∧ (g1i j ∨ ¬tai j ∨ tf(i) j)∧

(¬g1i j ∨ tai j ∨ tf(i) j) ∧ (¬g1i j ∨ ¬tai j ∨ ¬tf(i) j)
gi j =? ∧ gf(i) j =? (g1i j ∨ tai j ∨ ¬taf(i) j) ∧ (g1i j ∨ ¬tai j ∨ taf(i) j)∧

(¬g1i j ∨ tai j ∨ ¬tbf(i) j) ∧ (¬g1i j ∨ ¬tai j ∨ ¬tbf(i) j)

variables with homozygous sites. The new definition of variables associated with
sites requires the redefinition of the constraints related with Mendelian laws.
For instance, consider the first constraint of Table 2, tf(i) j ⇔ g1i j , for the case
gi j = 0 and gf(i) j = 2. Clearly, if tf(i) j = 1 (representing that individual f(i)
has inherited value 1 from his father and value 0 from his mother) then g1i j = 1
(representing that individual i must have inherited the value 0 from his paternal
grandmother) and conversely.

In addition, in order to allow counting the number of recombinations, the
model defines new variables r. For each non-founder individual i, variable r1i j
(r2i j) is assigned value 1 if a recombination took place at site j, to create the

paternal (maternal) haplotype of individual i. Thus, rli j = 1 if gli j 6= gli j+1, for
l ∈ {1, 2} and 1 ≤ j ≤ m − 1, which is ensured by constraints (1) in Table 1.
Here, another simplification to the original MRHC is considered. Actually, in
the PedPhase model, rli j = 1 if and only if gli j 6= gli j+1. Observe that an
implication, instead of an equivalence, is sufficient for correctness and reduces
in half the number of these constraints.

Moreover, the model defines variables to count the number of distinct hap-
lotypes used. Let xp q

i k , with p, q ∈ {a, b} and 1 ≤ k < i ≤ n, be 1 if haplotype
p of genotype gi (hpi ) and haplotype q of genotype gk (hqk) are different. The
conditions on the xp q

i k variables are based on the values of variables ti j and tk j

for heterozygous sites and of variables tai j , t
b
i j , t

a
k j and tbk j for missing sites, and

are described by equations (2) in Table 1.



Haplotype Inference by Combining Parsimony and Pedigree Information 9

Table 3. Definition of predicates R and S, accordingly to index values.

Condition Constraint

gi j 6= 2 ∧ gk j = 2 R = (gi j ⇔ (q ⇔ a)) and S = tk j

gk j 6= 2 ∧ gi j = 2 R = (gk j ⇔ (p⇔ a)) and S = ti j
gi j = 2 ∧ gk j = 2 R = (p⇔ q) and S = (ti j ⇔ tk j)

gi j =? ∧ gk j /∈ {2, ?} R = tpi j and S = gk j

gk j =? ∧ gi j /∈ {2, ?} R = tqk j and S = gi j
gi j =? ∧ gk j = 2 R = (q ⇔ a) and S = (tpi j ⇔ tk j)

gk j =? ∧ gi j = 2 R = (p⇔ a) and S = (tqk j ⇔ ti j)

gi j =? ∧ gk j =? R = tpi j and S = tqk j

Furthermore, the model needs variables u to denote when one of the haplo-
types, associated with a given genotype, is different from all previous haplotypes.
Hence, upi , with p ∈ {a, b} and 1 ≤ i ≤ n, is 1 if haplotype p of genotype gi is
different from all previous haplotypes. Then, the conditions on the upi variables
are based on the conditions for the xp q

i k variables, with 1 ≤ k < i and q ∈ {a, b}.
These conditions are described by equations (3) in Table 1.

Finally, the cost function consists in minimizing the number of recombination
events and the number of distinct haplotypes, which are, respectively, given by
the sum of variables r and u,

minimize ((2n+ 1)×
∑

(non-founder i)

m−1∑
j=1

(r1i j + r2i j)) +

n∑
i=1

(uai + ubi ). (1)

Given that higher importance is given to the minimum recombinant criterion,
a larger weight is given to the number of recombinations. Note that 2n is a
trivial upper bound on the number of haplotypes in the solution, and therefore
giving weight 2n + 1 to the number of recombinations implies that a MRHC
solution is always preferred. The idea of giving more weight to the number of
recombinations is biological motivated by the fact that recombination events
within haplotypes in a pedigree are rare. Moreover, note that a larger number of
recombinants suggests a larger number of haplotypes. In general, a recombination
event generates a new haplotype, whereas without recombination, the haplotypes
of the child are exact copies of the parents’ haplotypes. Nonetheless, different
weights w, 1 < w < 2n + 1, were also tried but did not lead to improvements
neither on accuracy or efficiency.

Finally, we would like to point out that a two-step approach which obtains
all MRHC solutions first and then picks the solution with the smallest number
of haplotypes would not be practical. The number of MRHC solutions is, in
general, significantly large, specially with higher missing rates, and usually it
is not feasible to compute all solutions. In addition, note that the number of
all MRHC solutions is the product of the number of MRHC solutions for each
pedigree. On the other hand, the minimum recombinant maximum parsimony
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criterion reduces the search space and results confirm that it produces more
accurate results.

4 Improving Efficiency

This section describes three improvements on the original PedRPoly model,
which contribute for an efficient haplotype inference model. The practical con-
tribution of each technique is detailed in Section 5.1.

4.1 Lower Bounds

The integration of lower bounds is a modeling technique implemented previously
in other approaches [26, 11]. The algorithms for computing lower bounds rely
on information regarding (in)compatible genotypes. Two genotypes are declared
compatible if does not exist a site for which one genotype has value 0 and the
other genotype has value 1. Otherwise, the genotypes are incompatible. Clearly,
two incompatible genotypes cannot be explained by the same haplotypes. Given
the incompatibility relation we can create an incompatibility graph I, where
each vertex is a genotype, and two vertexes are linked with an edge if they are
incompatible. Suppose I has a clique of size k. Hence, the number of required
haplotypes is at least 2 · k− σ, where σ is the number of genotypes in the clique
which do not have heterozygous sites.

In addition, an analysis of the structure of the genotypes allows the lower
bound to be further increased. The objective of the new procedure is to identify
heterozygous sites which require at least one additional haplotype given a set
of previously chosen genotypes. For each genotype g not in the clique, if the
genotype has a heterozygous site and all compatible genotypes have the same
value at that site (either 0 or 1), then g is guaranteed to require one additional
haplotype to be explained. Hence the lower bound can be increased by 1.

Therefore, the lower bound procedure provides a list of genotypes with an in-
dication of the contribution of each genotype to the lower bound. Each genotype
either contributes with +2, indicating that 2 new haplotypes will be required for
explaining this genotype, or with +1, indicating that 1 new haplotype will be
required.

This technique has been included in the PedRPoly model. In practice, the
implementation of lower bounds allows the variables u associated with haplo-
types affected by the lower bound to be fixed and, consequently, the clauses used
for constraining the value need not to be generated. Indeed, if gi is a genotype
contributing with +2 to the lower bound, then uai = 1 and ubi = 1. Moreover,
if gi is a genotype contributing with +1 to the lower bound, then either uai or
ubi can be assigned 1. The new model with integration of lower bounds will be
named PedRPoly-LB.
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4.2 Sorting Genotypes

The order in which the genotypes are organized, before the model is generated,
can have an important impact on the efficiency of the solver. In particular, note
that variables u designate whether a haplotype associated with a genotype is
different from all previous haplotypes. We used as an heuristic the lexicographic
order on the genotypes, defined by a total order on the genotype sites where
0 < 1 < 2 < ?, i.e.

gi j < gl j ∧ (∀{k: k<j} gi k = gl k)⇒ i < l. (2)

The new model, which integrates lower bounds and where the genotypes are
sorted according to the lexicographic order is named PedRPoly-LB-Ord.

4.3 Symmetries

Symmetry breaking is a well-known technique for pruning the search space and,
therefore, contributing to the efficiency of a model. Note that, in general, in the
haplotype inference problem, if a genotype g is explained by haplotype pair (ha,
hb), then g is also explained by haplotype pair (hb, ha). Within pedigrees, this
symmetry on pairs of haplotypes does not exist for every individual. For non-
founders, symmetry is already broken by imposing that the first haplotype comes
from the father and the second haplotype comes from the mother. Nonetheless,
the symmetry can be broken on founders. This symmetry is broken by intro-
ducing a new constraint for each heterozygous founder, imposing that the first
heterozygous site gi j is explained with hai j = 1 and hbi j = 0, i.e.

gi j = 2 ∧ (∀{k: k<j} gi k 6= 2)⇒ ti j = 1. (3)

The new model which includes breaking symmetry on founders is named
PedRPoly-LB-Ord-Sym.

5 Experimental Evaluation

This section has a threefold purpose. First, it illustrates the contribution of each
technique described in Section 4 to the efficiency of PedRPoly. Second, it presents
the results obtained using a number of constraint optimization solvers to solve
the PedRPoly model, enabling the user not only to choose the best constraint
solver for PedRPoly, but also indicating which solvers are more appropriate for
solving Boolean constraint problems with multiple cost functions. Finally, it
tests the accuracy of the PedRPoly model against the accuracy of the PedPhase
approach.
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Fig. 2. CPU time comparison between models: plain PedRPoly model vs PedRPoly-LB
model and PedRPoly-LB model vs PedRPoly-LB-Ord model

Experimental Data The experimental data was simulated using the SimPed soft-
ware [17]. SimPed generates haplotypes for families, given the pedigree structure,
as well as the haplotypes and their frequencies for founders. The haplotypes for
founders and their frequencies were obtained from 7 real data sets of experimen-
tally identified haplotypes [2, 29], and correspond to the A-G data sets already
used in other haplotyping studies [6]. The number of SNPs range from 5 to 47.
Note that haplotyping regions with tens of SNPs are still relevant in several as-
sociation studies. Moreover, larger regions can always be partitioned into small
blocks [36].

In addition, the same three pedigree structures used by PedPhase [20] were
considered: pedigree 1 with 15 individuals, pedigree 2 with 29 individuals and
pedigree 3 with 17 individuals. Pedigree 3 contains a mating loop, which means
that two mating individuals have a common ancestor in the pedigree. Each sim-
ulated instance consists of 10 replicates of the given pedigree, simulating 10
different families from the same population. Hence, the number of genotypes
per instance may be 150, 290 or 170. Recombination events are uniformly dis-
tributed between alleles with probabilities 0.1%, 0.5% and 1%. Three variations
on missing rates were considered: 1%, 10% and 20%. For each combination of
parameters, 5 independent replicates were selected, resulting in a total of 945
(= 7× 33 × 5) input trials.

Genotyping errors have not been simulated. Nonetheless, genotype errors do
not represent a significant limitation because they can be minimized by previ-
ously applying an appropriate error detection software [32].

Experimental Setup All results were obtained on a Intel Xeon 5160 server (3.0GHz,
1333Mhz, 4GB) running Red Hat Enterprise Linux WS4. PedPhase ILP was run
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Fig. 3. CPU time comparison between models: PedRPoly-LB-Ord model vs PedRPoly-
LB-Ord-Sym model and plain PedRPoly model vs PedRPoly-LB-Ord-Sym model

on Windows because this software is not available for Linux. Results are pre-
sented for a timeout of 1000 seconds and a memory limit of 3.5 GB.

5.1 Efficiency

This section studies the contribution of each modeling technique to improving
the efficiency of PedRPoly. Furthermore, a significant number of constraint op-
timization solvers is tested. The use of an appropriate optimization solver with
the model contributes for an efficient haplotype inference solver. In what follows,
we used PedRPoly with the Boolean multilevel optimization (BMO) Max-SAT
solver provided by the authors [4].

Lower Bounds Figure 2 (left) provides a scatter plot which compares the per-
formance of the plain PedRPoly with PedRPoly implementing the identification
of lower bounds, within a timeout of 1000 seconds. Each point in the plot cor-
responds to a problem instance, where the x-axis corresponds to the CPU time
required by PedRPoly-LB and the y-axis corresponds to the CPU time required
by the plain PedRPoly. Points in the 103 lines represent instances which cannot
be solved within 1000 seconds.

PedRPoly-LB reduces in half the number of instances aborted by the plain
PedRPoly. The plain model aborts 59 instances while PedRPoly-LB is not able to
solve 26 instances. PedRPoly-LB solves 37 instances which the plain PedRPoly
aborts, although being able to solve 4 instances which PedRPoly-LB aborts.
Moreover, PedRPoly-LB is faster than plain PedRPoly for more than 94% of the
problem instances.
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Table 4. The PedRPoly model: comparison between models (timeout 1000 sec; memory
limit 3.5 GB)

Solver # Solved inst. % Solved inst. Avg run time (sec)

PedRPoly 886/945 93.76% 62.50
PedRPoly-LB 919/945 97.25% 47.30
PedRPoly-LB-Ord 933/945 98.73% 41.64
PedRPoly-LB-Ord-Sym 938/945 99.26% 24.08

Sorting Genotypes Figure 2 (right) compares the performance of PedRPoly-
LB with PedRPoly-LB-Ord. PedRPoly-LB-Ord does not solve 12 instances but
is able to solve 17 instances which PedRPoly-LB aborts. However, there are
3 instances which PedRPoly-LB solves and PedRPoly-LB-Ord is not able to
solve. Moreover, PedRPoly-LB-Ord is faster than PedRPoly-LB for 86% of the
instances.

Symmetries Figure 3 (left) compares the performance of PedRPoly-LB-Ord
with PedRPoly-LB-Ord-Sym. The final model is able to solve 938 out of 945
instances. PedRPoly-LB-Ord-Sym solves 7 instances which PedRPoly-LB-Ord
aborts and aborts 2 instances which PedRPoly-LB-Ord solves. Moreover, PedRPoly-
LB-Ord-Sym is faster than PedRPoly-LB-Ord for 99% of the instances.

Moreover, figure 3 (right) compares the performance of plain PedRPoly and
PedRPoly-LB-Ord-Sym. The later is faster than the former for all instances,
and solves 52 instances which the plain model aborts. These facts illustrate the
importance of the improved model in the efficiency of PedRPoly.

Table 4 summarizes the improvement achieved by combining modeling tech-
niques. Overall, PedRPoly-LB-Ord-Sym outperforms all other models, being ca-
pable of solving 99.26% of the instances within 1000 seconds, and using an
average run time of 24 seconds. In the remainder of the paper, PedRPoly-LB-
Ord-Sym will be denoted simply by PedRPoly.

Solvers A key issue for the efficiency of the haplotype inference solver is to
select an adequate underlying optimization solver. In this subsection, 8 differ-
ent optimization solvers were tested for solving the final version of the Ped-
RPoly model. Integer linear programming, pseudo-Boolean optimization and
also weighted Max-SAT solvers were considered. Scip [1] (version 1.2.0) combines
constraint programming and mixed integer programming methodologies. Cplex
(version 12.1) is an IBM/ILOG commercial linear programming optimization
tool. Weighted Max-SAT solvers were also tested: MaxSat bmo [4], WPM1 [3],
WMaxSatz [18] (version 2.5), and IncWMaxSatz [23]. MiniSat+ [7] and
Bsolo [27] (version 3.5) are pseudo-Boolean optimization solvers, also known
as 0-1 ILP solvers.
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Table 5. The PedRPoly model: comparison using different solvers (timeout 1000 sec;
memory limit 3.5 GB)

Solver # Solved inst. % Solved inst. Avg run time (sec)

MaxSat bmo 938/945 99.26% 24.08
WPM1 911/945 96.40% 14.75
Cplex 553/945 58.52% 84.73
Scip 455/945 48.15% 139.07
MiniSat+ 260/945 27.51% 238.45
IncWMaxSatz 221/945 23.39% 71.04
Bsolo 160/945 16.93% 170.26
WMaxSatz 16/945 1.69% 113.16

Table 5 summarizes the performance of the different solvers. Clearly, the
solver which is able to solve a larger number of instances is MaxSat bmo,
which solves 99.26% of the instances.

The second best performing solver is WPM1 which solves 96.40% of the
instances. The third and fourth best performing solvers are the integer program-
ming solvers. Cplex solves 58.52% and Scip solves 48.15% of the instances,
followed by MiniSat+ which solves 27.51% and IncWMaxSatz which solves
23.39% of the problem instances. Bsolo solves 16.93% and WMaxSatz solves
1.69% of the instances. Most of the instances aborted by IncWMaxSatz and
WMaxSatz were due to limitations in the internal data structures used by these
solvers.

5.2 Accuracy

This section analyzes the gains in accuracy of PedRPoly, that integrates both
HIPP with MRHC, with PedPhase [20], which uses only the MRHC approach.
Two different commonly used error rates were considered. The switch error rate
measures the percentage of possible switches in haplotype orientation, used to
recover the correct phase in an individual [24]. Missing alleles are not considered
for computing the switch error. The missing error rate (or genotype inference
error rate) is the percentage of incorrectly inferred missing data [28].

Note that instances for which at least one of the solvers is unable to give
a solution have been removed from the comparison. PedPhase is able to solve
99.8% of the instances, whereas and PedRPoly is able to solve 99.3%. As a result,
9 out of 945 instances have been left out.

Figure 4 presents a bar graph comparing the switch error rate of PedR-
Poly with the switch error rate of PedPhase. Results have been organized by
parameter value: missing rate, recombination rate and pedigree. Each value is
the average of the error rate for the instances generated with the corresponding
parameter value. PedRPoly is more accurate than PedPhase for 67.09% of the
instances. The two solvers have equal error rates for 19.55% of the instances. For
13.35% of the instances, PedRPoly is less accurate than PedPhase.
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Fig. 4. Switch error: comparing PedRPoly and PedPhase

Figure 5 presents a bar graph for evaluating the missing error rate of the two
tools. PedRPoly is more accurate than PedPhase for 73.93% of the instances.
The two solvers have equal error rate for 12.39% of the instances. For 13.68% of
the instances, PedRPoly is less accurate than PedPhase. Indeed, the population
information included by the PedRPoly model is shown to be particularly impor-
tant for inferring missing genotypes. Overall, we can conclude that PedRPoly
consistently outperforms PedPhase in terms of accuracy.

Although the goals of the paper are to show that MRHC combined with HIPP
has better accuracy than MRHC alone, and the development of optimizations to
the plain model, two distinct statistical methods for haplotype inference within
pedigrees were also evaluated. The methods evaluated are Superlink [8] and
PhyloPed [15], and both exhibit error rates higher than PedRPoly.

Finally, the number of distinct haplotypes in the PedRPoly solution and in
the PedPhase solution was compared with the number of haplotypes used in the
real solution. The number of haplotypes in the PedRPoly solution is exactly the
same as in the real solution for 60% of the instances, and for more than 99.6%
the number of haplotypes in the PedRPoly solution differs from the number of
haplotypes in the real solution by less than 5 haplotypes. PedPhase solutions,
however, are less similar to the real solutions with respect to the number of
haplotypes. For the same set of instances, PedPhase has the same number of
haplotypes as the real solution for 12.3% of the instances, and differs from the
real solution by less than 5 haplotypes for 45.8% of the instances.

6 Conclusions

This paper addresses the problem of haplotype inference from pedigrees, and
proposes a new Boolean optimization model for haplotype inference which com-
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Fig. 5. Missing error: comparing PedRPoly and PedPhase

bines the pure parsimony approach with the minimum recombinant approach.
Moroever, the paper details the integration of well-known modeling techniques
exploited in order to improve the performance of the method. These techniques
include integration of lower bounds, ordering heuristics and symmetry breaking,
as well as the selection of an appropriate constraint solver. The new PedRPoly
approach was tested on a set of instances of considerable dimension. Experi-
mental results show that the new approach is both accurate and efficient when
compared to other methods.

The problem instances generated by the combined model represent challeng-
ing combinatorial optimization problems, related with multi-objective optimiza-
tion. A number of techniques was suggested to improve the performance for this
class of problem instances. Future research will address further optimizations to
the model, aiming at improving both accuracy and efficiency. The topic of im-
proved efficiency will also involve the development of solvers capable of solving
Boolean-based multi-objective optimization problems.
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