
UnchartIt: An Interactive Framework for
Program Recovery from Charts

Daniel Ramos
INESC-ID / IST, U. Lisboa

Lisboa, Portugal
daniel.r.ramos@tecnico.ulisboa.pt

Jorge Pereira
INESC-ID / IST, U. Lisboa

Lisboa, Portugal
jorge.m.s.pereira@tecnico.ulisboa.pt

Inês Lynce
INESC-ID / IST, U. Lisboa

Lisboa, Portugal
ines.lynce@tecnico.ulisboa.pt

Vasco Manquinho
INESC-ID / IST, U. Lisboa

Lisboa, Portugal
vasco.manquinho@tecnico.ulisboa.pt

Ruben Martins
Carnegie Mellon University

Pittsburgh, USA
rubenm@andrew.cmu.edu

ABSTRACT

Charts are commonly used for data visualization. Generating a chart
usually involves performing data transformations, including data
pre-processing and aggregation. These tasks can be cumbersome
and time-consuming, even for experienced data scientists. Repro-
ducing existing charts can also be a challenging task when infor-
mation about data transformations is no longer available.

In this paper, we tackle the problem of recovering data transfor-
mations from existing charts. Given an input table and a chart, our
goal is to automatically recover the data transformation program un-
derlying the chart. We divide our approach into four steps: (1) data
extraction, (2) candidate generation, (3) candidate ranking, and (4)
candidate disambiguation. We implemented our approach in a tool
called UnchartIt and evaluated it on a set of 50 benchmarks from
Kaggle. Experimental results show that UnchartIt successfully
ranks the correct data transformation among the top-10 programs
in 92% of the benchmarks. To disambiguate the top-ranking pro-
grams, we use our new interactive procedure, which successfully
disambiguates 98% of the ambiguous benchmarks by asking on
average fewer than 2 questions to the user.

CCS CONCEPTS

• Software and its engineering;

KEYWORDS

Recovering Data Transformations from Charts, Program Synthesis,
Interactive Disambiguation

ACM Reference Format:

Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, and Ruben Mar-
tins. 2020. UnchartIt: An Interactive Framework for Program Recovery
from Charts. In 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416613

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6768-4/20/09.
https://doi.org/10.1145/3324884.3416613

1 INTRODUCTION

In the last decade, data analysis has become one of the most im-
portant tools for organizations to drive their decisions. The huge
demand for domain experts has led many data analysts with limited
programming knowledge to be recruited. Thus, in the last years,
several tools [13, 14, 23, 25, 39, 45] have been developed to aid inex-
perienced analysts in automating some programming tasks. These
tools work by example: the user provides a set of input-output ex-
amples, and the tool finds a program that maps the inputs into the
output. However, the development of tools that work directly with
visual elements has remained unexplored. Hence, if a user prefers
to express his intent through visual elements (e.g., providing an
input table and a bar chart), there is no tool that is able to reverse
engineer the necessary data manipulations in order to reproduce it.

In this paper, we propose UnchartIt, a tool for reverse engi-
neering the necessary table manipulations to generate a given chart.
Note that, to the best of our knowledge, this is the first tool for
automatic generation of data manipulations that directly uses vi-
sual elements. In this work, we consider that the user can provide
the image of a bar chart and the raw data from which the chart
was generated. Although we only consider bar charts (one of the
most common chart types [3]), the proposed ideas can be easily
generalized to other types of charts or graphical elements. More-
over, we also address how to automatically extract the necessary
information from the chart, how to adapt program synthesis tools
to this new challenging problem, as well as how to disambiguate
several programs while minimizing user interactions. Furthermore,
experimental results on real-world instances from Kaggle show
that UnchartIt is able to reverse engineer how to build the chart
presented by the user. Specifically, the correct data transforma-
tion program is ranked among the top ten programs returned by
UnchartIt in 92% of the instances. To select the user’s intended
program from the top ten ranked programs, UnchartIt interacts
with the user by asking either yes or no questions, or multiple-
choice questions, and successfully returns the correct program in
98% of the ambiguous instances.

This paper makes the following main contributions:
• The first fully automated tool called UnchartIt that syn-
thesizes table manipulations from bar charts.

• Automated input generation methods to disambiguate a set
of programs that minimize the number of user interactions.

https://doi.org/10.1145/3324884.3416613
https://doi.org/10.1145/3324884.3416613

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

date_received product . . .
08/30/2013 Mortgage . . .
08/30/2013 Mortgage . . .
08/30/2013 Credit reporting . . .
08/30/2013 Student loan . . .
08/30/2013 Debt collection . . .
08/30/2013 Credit card . . .
08/30/2013 Credit card . . .
08/30/2013 Debt collection . . .

(a) Sample of the consumer complaints table (175.39MB).

2011 2012 2013 2014 2015 2016

0.44

0.89

1.33

1.77

·105

year

#
co
m
pl
ai
nt
s

(b) Bar chart with yearly number of consumer complaints.

Figure 1: Consumer complaints data from 2011 to 2016.

• Experimental results on real-world benchmarks that show
the success of the proposed approaches.

The paper is structured as follows: Section 2 defines the research
challenge and motivates the problem with a concrete example.
Section 3 addresses the problem of data extraction from visual
elements and Section 4 explains the necessary changes to program
synthesizers to solve this new research problem. Next, Section 5
addresses how to rank the programs generated by the synthesizer.
Section 6 proposes new models on how to disambiguate the top-𝑛
ranked programs for two different user interactionmodels. Section 7
presents the experimental results on a set of real data from different
domains. Section 8 briefly reviews related work. Finally, the paper
concludes in Section 9.

2 MOTIVATION

Consider the sample of the consumer complaints database shown
in Figure 1a. The database contains complaints submitted to the
Consumer Financial Protection Bureau between 2011 and 2016.
Figure 1b shows a bar chart with the number of complaints received
in each year.

Suppose that Alice, a data analyst with low programming skills,
needs to elaborate a report on an updated version of the consumer
complaints database.1 As a reference, she received an old report
written by a former employee. This report contains a variety of
charts, including Figure 1b, but not the programs from which the
charts originated. Therefore, Alice’s task is to recover the programs
necessary to reproduce the report’s charts. If Alice has the programs
to generate the charts, she can update them whenever new data is
added to the database.

In this paper, we describe UnchartIt, a new tool that can au-
tomatically recover a program from a given chart for people like
Alice. To recover a program from a chart, Alice needs to provide
the raw data from which the chart originated and an image of the
chart. Figure 2 illustrates the UnchartIt architecture. Given a pair
(data, chart), UnchartIt starts by extracting data from the chart,
thereby creating a tabular representation of the chart. Since this
step involves automatically interpreting a chart, the resulting table
is prone to contain imprecisions. For instance, from the chart of

1https://www.consumerfinance.gov/data-research/consumer-complaints/

Table 1: Table obtained from

the bar chart of Figure 1b.

col0 col1
bar0 2345.18
bar1 72255.90
bar2 108303.62
bar3 153090.18
bar4 168929.33
bar5 50954.98

Table 2: Real table inherent

to the bar chart of Figure 1b.

year # complaints
2011 2549
2012 72523
2013 108273
2014 153138
2015 168621
2016 50853

Figure 1b, UnchartIt generates Table 1. In contrast, Table 2 con-
tains the real table underlying the chart of Figure 1b. Note that the
numerical data of the extracted table is imprecise and the bar labels
are missing.

After obtaining a tabular representation of the chart, UnchartIt
starts the candidate program generation step. During this stage,
UnchartIt uses two major components: (1) the program generator,
and (2) the program decider. The program generator enumerates
candidate programs and provides them to the program decider.
The program decider evaluates the candidate programs, decides if
they are good candidates, and provides feedback to the program
generator. Note that the program decider does not have access to
the real table underlying the chart, but rather to an approximation
of the real table extracted from the chart image. Therefore, the
program decider cannot simply discard candidates because they do
not map the raw input data into the imprecise table it extracted in
the previous step. Instead, it decides to keep or discard candidates
using a weaker criterion: a candidate program is kept if and only
if its output on the input data has the same number of rows and
columns as the extracted table. For example, using the consumer
complaints data from Figure 1a and the extracted table shown in
Table 1, UnchartIt finds 7 different programs whose output on the
input data has the same structure as Table 1 (6 rows and 2 columns).

After generating a pool of candidates, UnchartIt assigns each
candidate program a score using a cost function and ranks the
programs according to their costs. Since it is possible that the best-
ranking program does not correspond to the program the user

https://www.consumerfinance.gov/data-research/consumer-complaints/

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

Data Extraction

Candidate Generation Candidate Ranking

…

Candidates

Program Disambiguation (optional)

Q1. Consider
the input table:

Is the following
chart correct? (Y/N)

Q2. Consider
the input table:

Select the correct output:

Input data

Top-n candidates

Output chart Program

Program
Decider

Program
Generator

Candidate

Feedback

Noisy
Output Data

Figure 2: UnchartIt architecture.

Consider the following

input table:

date_received date_sent
24/07/2015 03/12/2011
10/01/2013 01/12/2012
23/01/2015 17/07/2014

Q: Is the following output table / chart correct? (Y/N)

yr count
2013 1
2015 2

2013 2015
0

1

2

3

yr

co
un

t

Figure 3: User interaction example.

desires, UnchartIt gives the user the option to answer a series
of questions in order to disambiguate the top-𝑛 programs of the
rank. In particular, UnchartIt has two different user interaction
models to disambiguate programs. In the first interaction model,
UnchartIt asks the user to pick the correct output (from a set of
options) for a given input. In the second interaction model, Un-
chartIt asks the user if a given test case is correct or not (yes/no
question). In both approaches, UnchartIt automatically generates
small test cases that minimize the number of user interactions. For
example, after enumerating the 7 different candidate programs for
the specification given by the pair (Figure 1a, Figure 1b), Unchar-
tIt only needs to ask the user 3 questions before returning the
correct program using the yes/no interaction model.

Figure 3 illustrates the user interaction in the yes/no interac-
tion model. Given a small intput table (automatically generated
by UnchartIt), the user just needs to confirm if the given chart
corresponds to the correct output. This example corresponds to the
last question of the user interaction for the problem in Figure 1,
and the returned program is shown in Figure 4.

l1 <- df %>% mutate(date = mdy(date_received))
l2 <- l1 %>% mutate(yr = year(date))
l3 <- l2 %>% group_by(yr)
l4 <- l3 %>% summarise(count = n())
l5 <- l4 %>% ggplot(aes(x=yr, y=count)) + geom_col ()

Figure 4: Program returned by UnchartIt for the instance

given by Figure 1 after the interaction of Figure 3.

3 DATA EXTRACTION

The first step in our pipeline requires us to transform the chart’s
image into a standard tabular representation (e.g., transforming the
chart of Figure 1b into Table 1). This is a crucial step because there
can be many different ways of depicting the same information. By
transforming the chart into a standard tabular representation, we
can build a simpler validation mechanism to decide the suitability
of candidate programs to the given specification. Let 𝑇𝑒 denote the
table extracted from the chart. Given a program P that outputs a
table𝑇𝑝 when P is executed on the input data, then we can compare
𝑇𝑒 against 𝑇𝑝 in order to evaluate the quality of program P. In this
section, we focus on extracting data from bar charts. Nevertheless,
the techniques discussed here can be adapted to work with other
chart types.

3.1 WebPlotDigitizer

WebPlotDigitizer [34] is one of the most prominent tools for
manual and automatic extraction of data from charts. In particular,
WebPlotDigitizer can automatically extract numerical data from
simple 2D bar charts (i.e., without stacked and grouped bars). To
extract data from a bar chart,WebPlotDigitizer requires 3 sets
of parameters: (1) the chart’s image; (2) the pixel location of two
different points (𝑃1, 𝑃2) over the continuous axis along the bars,
and their corresponding values on that axis (Figure 5 shows an
example); (3) the width in pixels of the bars (Δ𝑥), and the height in
pixels of the highest bar (Δ𝑣𝑎𝑙).

WebPlotDigitizer combines these sets of parameters to extract
the numerical data from the charts, but it does not extract the labels
of the bars.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

Figure 5: First step of WebPlotDigitizer’s axis calibration.

WebPlotDigitizer uses P1 and P2 to find the value of any

point on the axis by performing a linear interpolation.

3.2 Neural Data Extraction

An alternative approach to traditional chart digitization algorithms,
such as those employed by WebPlotDigitizer, is to use machine
learning. Tools such as ReVision [36] and ChartSense [24] have
previously used machine learning algorithms to discern between
chart types (e.g., deciding whether an image contains a bar chart or
a scatter plot). However, these tools often rely on traditional algo-
rithms to extract data from the charts. In this section, we propose
to leverage state-of-the-art Convolution Neural Networks (CNNs)
to retrieve data from bar charts.

CNNs are known for their huge success in modern computer vi-
sion systems. A computer vision benchmark of particular relevance
on which CNNs shine is the ImageNet challenge [35]. The purpose
of the ImageNet challenge is to assess the performance of algorithms
on classification and object detection tasks. The EfficientNet-B7
fulfills the current state-of-the-art performance on ImageNet chal-
lenge. The EfficientNets [37] are a family of eight CNNs ranging
from EfficientNet-B0 to EfficientNet-B7. The “X” in EfficientNet-BX
indicates the network’s complexity: the higher the “X”, the more
complex the network is.

Our goal is to leverage the architecture of one of the EfficientNets
by replacing its output layer with a custom layer that suits our task.
One important piece of information that our adapted EfficientNet
should extract is the number of bars of a given chart. To retrieve this
information, we add𝑛 nodes to the network’s output layer, each one
representing the probability that the given chart has 𝑖 ∈ {1, 2, ..., 𝑛}
bars. To achieve a probability distribution, the𝑛 nodes use a softmax
activation function:

𝜎𝑖 (z) =
exp(𝑧𝑖)∑𝑛
𝑗=1 exp(𝑧 𝑗)

, 𝑖 = 1, 2, ..., 𝑛

z = [𝑧1, 𝑧2, ..., 𝑧𝑛] ∈ IR𝑛
(1)

where 𝜎𝑖 (z) is the output of the 𝑖’th node, indicating the probability
that the given chart has 𝑖 bars. We extract the number of bars of
a given chart by taking the argmax of the obtained probability
distribution:

𝑦 = argmax
𝑖∈{1,2,...,𝑛}

𝜎𝑖 (z) (2)

Besides the number of bars, we should also retrieve the bars’ heights.
We can do this by adding 𝑛 more nodes to the network’s output

layer (nodes 𝑛 + 1 to 2𝑛) with the following activation functions:

𝑝𝑖 (𝑥) = max(0,min(𝑥, 1)),
𝑖 = 𝑛 + 1, 𝑛 + 2, ..., 2𝑛 (3)

where 𝑝𝑖 is the output of the 𝑖’th node, and it indicates how full is
the 𝑖−𝑛’th bar with respect to the maximum possible height (𝑝𝑖 = 1
means that the 𝑖 − 𝑛’th bar is full, and 𝑝𝑖 = 0 means the 𝑖 − 𝑛’th bar
is empty). Using the height of each bar, we calculate its value by
doing a linear interpolation between the axis maximum and lowest
values:

𝑦𝑖 =

{
𝐿 + 𝑝𝑖+𝑛 (𝐻 − 𝐿), if 1 ≤ 𝑖 ≤ 𝑦

0 otherwise
(4)

where 𝑦𝑖 is the value of 𝑖’th bar, 𝐻 is the axis maximum value, and
𝐿 is the axis lowest value. 𝐻 and 𝐿 are both user-provided inputs.

Similarly to WebPlotDigitizer, we do not extract the labels of
each bar. Finally, to train the network, we minimize the sum of a
categorical cross-entropy loss (nodes 1 to 𝑛) with a mean squared
error (nodes 𝑛 + 1 to 2𝑛).

4 PROGRAM SYNTHESIS

After extracting the table from the chart, UnchartIt starts search-
ing for candidate programs that can potentially transform the input
table into the table described by the chart. This problem can be
seen as a program synthesis problem where the goal is to find a
program that satisfies a given specification. Program synthesis has
been successfully used in many applications (e.g., string manipu-
lations [10, 33], list manipulations [2, 15], and table transforma-
tions [14, 39]) as well as in commercial applications (e.g., Flash Fill
feature in Microsoft Excel [20]). Programming-by-example (PBE)
synthesis [21] is the most common approach for program synthesis
where the synthesizer takes as specification a set of input-output
examples and searches for a program that maps each input to the
corresponding output. In our case, since the extracted table in the
previous step is only an approximation of the real table underlying
the chart, we cannot use this criterion to accept or reject programs.

UnchartIt modifies the open-source Trinity synthesis frame-
work [28] to tackle the problem of recovering data transformations
from charts. The synthesis process used in UnchartIt is very
similar to the one proposed forMorpheus [14]. First, we created
a Domain Specific Language (DSL) for the data transformation
domain. Note that a DSL is just a useful intermediate representa-
tion for the program that abstracts from some syntactic details of
the programming language. However, there is a direct correspon-
dence from the DSL symbols to terms in the programming language
syntax. The syntax of a DSL is described through a context-free
grammar G = (𝑉 , Σ, 𝑅, 𝑆), where 𝑉 is a finite set of non-terminal
symbols, Σ is a finite set of terminal symbols, 𝑅 is a finite relation
from 𝑉 to (𝑉 ∪ Σ)∗ called the production rules, and 𝑆 is the start
symbol. Each terminal symbol 𝜎 ∈ Σ is either a function, a vari-
able, a constant, or a special character (e.g., parenthesis or comma).
Each production rule 𝜌 ∈ 𝑅 corresponding to a function is repre-
sented in form A0 → 𝛽 (A1,A2, ...,A𝑛), where 𝛽 is a function,
and A1,A2, ...,A𝑛 ∈ 𝑉 are its arguments. A program is a string
𝑃 ∈ (Σ ∪𝑉)∗, such that 𝑆

*
=⇒ 𝑃 .

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

Example 4.1. The following grammar represents a subset of the
DSL used by UnchartIt.

𝑡𝑎𝑏 → summarize(𝑡𝑎𝑏, 𝑜𝑝𝑡, 𝑐𝑜𝑙) | group_by(𝑡𝑎𝑏, 𝑐𝑜𝑙) | 𝑥0
𝑡𝑎𝑏 → count(𝑡𝑎𝑏) | top_n(𝑡𝑎𝑏, 𝑐𝑜𝑙) | bottom_n(𝑡𝑎𝑏, 𝑐𝑜𝑙)
𝑜𝑝𝑡 → mean | median | sum
𝑐𝑜𝑙 → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | . . .

where summarize, group_by, count, top_n, and bottom_n are func-
tions of the dplyr library for R, and 𝑥0 represents the program’s
input. summarize(group_by(𝑥0, 1), mean, 2) is an example of a pro-
gram in this DSL. This program groups all the lines with the same
first column representation and for each group it computes the
mean of the numerical values in the second column.

Our full DSL has extra primitives to support common table trans-
formations for bar charts. For instance, it allows cleaning data by
removing empty cells, supports ordering the values in a column,
normalization of values, and extraction of data within a given date.
Our DSL is functional, thus our programs do not contain loops.

Second, we wrote logical specifications for each library function
in our DSL using as properties the number of rows, columns, and
groups. These specifications are a complement to the DSL and
describe the relation on the number of columns, rows, and groups
between the input and output table after using a library function.
UnchartIt can then take advantage of the pruning and learning
techniques implemented in Trinity and prune equivalent infeasible
programs that share the same logical specifications.

Example 4.2. Consider the function summarise. This function
aggregates the data in each group, which is composed by a set
of rows. Let 𝑟 = summarise(𝑎, mean, 2) be the output of running
summarise on table a. For any execution of summarise, we know
that the number of columns of the resulting table r will be at most
the number of columns in table a. Moreover, the number of rows
and groups in table r will equal the number of groups in table
a. Hence, we can write the following logical specifications that
describe the relation on the number of columns, rows and groups
between table r and table a:

• columns(r) ≤ columns(a)
• rows(r) = groups(a)
• groups(r) = groups(a)

Third, since our output table has numerical imprecisions, we
modified the search of the program synthesizer to enumerate all
programs within a time limit that have an output table with the
same number of rows and columns as the extracted table. Even
though the extracted table has numerical imprecisions, the shape
of the table is usually correct. Instead of selecting a single program,
UnchartIt maintains a list of programs that satisfies the row and
column constraints. All programs are ranked using the metrics from
Section 5.

5 RANKING CANDIDATE SOLUTIONS

In order to rank the generated candidates, we assign a cost to each
program: the highest-ranking program is the program with the
lowest cost. In this section, we present two possible cost functions
to rank the candidate programs.

Table 3: Re-scaled extracted

table.

col0 col1
bar1 0.0106
bar2 0.3269
bar3 0.4901
bar4 0.6927
bar5 0.7644
bar6 0.2306

Table 4: Re-scaled output ta-

ble.

year # complaints
2011 0.0115
2012 0.3282
2013 0.4899
2014 0.6929
2015 0.7630
2016 0.2301

Recall that the data extraction mechanisms described in Section
3 do not extract labels, only the bar values. Thus, we only consider
the numerical data extracted from the chart to calculate a program’s
cost. We propose to measure the quality of programs by comparing
the extracted bar values to those of the program output. Before
calculating the cost of the program, we re-scale the bar values using
the axis maximum and minimum values of the chart. This scaling
allows us to have a standardized range of costs independent of the
chart’s scale. We re-scale each bar to a value between 0 and 1 using
the following function:

𝑓 (𝑦) = 𝑦 − 𝐿

𝐻 − 𝐿
(5)

where 𝐻 and 𝐿 are the axis maximum and minimum values, re-
spectively. Two possible cost functions are the mean absolute error
(MAE) and the mean squared error (MSE).

MAE =
1
𝑛

𝑛∑
𝑖=1

|𝑓 (𝑦𝑖) − 𝑓 (𝑦𝑖) |1 (6)

MSE =
1
𝑛

𝑛∑
𝑖=1

|𝑓 (𝑦𝑖) − 𝑓 (𝑦𝑖) |2 (7)

where 𝑛 is the number of bars, 𝑦𝑖 is the 𝑖’th bar value of the pro-
gram’s output, and 𝑦𝑖 is the 𝑖’th bar value obtained from the data
extraction mechanism.

Example 5.1. Consider a recovery task where the data extraction
mechanism generates Table 1 on the chart of Figure 1b. Consider
also that a candidate program outputs Table 2 when applied to the
input data. To calculate the program’s cost we start by re-scaling
the bars’ values. In this case, the chart’s maximum and minimum
values are 𝐻 = 2.21 × 105 and 𝐿 = 0, respectively. Thus, using
the re-scaling function (5), we get Tables 3 and 4. Using the mean
absolute error from (6), the program would have the following cost:

MAE =
1
6

(
|0.0106 − 0.0115| + |0.3269 − 0.3282|+

|0.4901 − 0.4899| + |0.6927 − 0.6929|+

|0.7644 − 0.7630| + |0.2306 − 0.2301|
)
= 0.00075

In order to rank the candidates, the cost of each program is
calculated and the candidates are ordered. If two different programs
have the same cost, the smaller program2 is ranked higher.

2A program P1 is considered smaller than a program P2 if P1 uses fewer operators
from the DSL than P2 .

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

1 int main() {

2 int a = read (); // (𝑎0 = 𝛼)
3 int b = read (); // (𝑏0 = 𝛽)
4 int c = 3; // (𝑐0 = 3)
5
6 if (a+b == 3) // (𝑎0 + 𝑏0 ≠ 3) =⇒ (𝑐1 = 𝑐0)
7 c += 10; // (𝑎0 +𝑏0 = 3) =⇒ (𝑐1 = 𝑐0 + 10)
8 return c; // (𝑜P = 𝑐1)
9 }

Figure 6: Symbolic representation of a program in C.

6 PROGRAM DISAMBIGUATION

The proposed ranking functions are helpful in selecting promising
candidate programs. However, in some cases, the highest ranked
program is not the desired solution. Therefore, given the top-𝑛
ranked programs, we propose to interact with the user in order to
select a program that corresponds to the user’s intent.

This section starts by briefly reviewing Satisfiability Modulo
Theories (SMT) and how SMT can be used to formalize a symbolic
execution of a program. Next, two different user interaction models
are presented. For each interaction model, we formalize how to
automatically generate an input test case that differentiates among
the candidate programs. Finally, we refer how fuzzing techniques
can also be used to this end.

6.1 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a generaliza-
tion of the well-known Propositional Satisfiability (SAT) problem.
Given a decidable first-order theory T , a T -atom is a ground atomic
formula in T . A T -literal is either a T -atom 𝑡 or its complement ¬𝑡 .
A T -formula is similar to a propositional formula, but a T -formula
is composed of T -literals instead of propositional literals. Given a
T -formula 𝜙 , the SMT problem consists of deciding if there exists
a total assignment over the variables of 𝜙 such that 𝜙 is satisfied.
Depending on the theory T , the variables can be of type integer,
real, Boolean, among other domains.

The Maximum Satisfiability Modulo Theories (MaxSMT) is the
optimization version of the SMT problem. In MaxSMT, the goal is
to find an assignment that optimizes a given objective function,
such that an SMT formula is satisfied. In the literature, MaxSMT is
sometimes defined over a set of hard and soft formulas [30]. How-
ever, it can also be defined as optimizing an objective function [5].
For ease of understanding, we use the latter formalization.

6.2 Symbolic Representation of Programs

Symbolic execution is a technique that allows executing a program
with symbolic values instead of concrete values. In essence, given a
program P, one can build an SMT formula 𝜙P that represents the
symbolic execution of P. Hence, 𝜙P represents all possible execu-
tions of program P when all possible input values are considered.

Example 6.1. Consider the program P in Figure 6 with two input
variables (a and b). To generate an SMT formula to represent the
symbolic execution of P, we start by converting the program to a
static single assignment (SSA) form. In SSA form, a new variable

is created for each assignment in the program. For example, since
variable c is assigned twice (lines 4 and 7), we create two instances of
c: 𝑐0, and 𝑐1, used to represent the value of c after each assignment.
Moreover, each input is assigned a symbolic value: 𝑎0 = 𝛼 , and
𝑏0 = 𝛽 . Note that the symbolic values 𝛼 and 𝛽 represent all possible
values that can be assigned to a and b, respectively. Finally, we
build the SMT formula that represents the program’s execution
flow. For program P the formula is as follows:

𝜙P := (𝑎0 = 𝛼) ∧ (𝑏0 = 𝛽) ∧ (𝑐0 = 3) ∧
((𝑎0 + 𝑏0 ≠ 3) =⇒ (𝑐1 = 𝑐0)) ∧
((𝑎0 + 𝑏0 = 3) =⇒ (𝑐1 = 𝑐0 + 10))
(𝑜P = 𝑐1)

Symbolic execution is often used to check a given property of a
program. Let P be a program and 𝑜P denotes the symbolic repre-
sentation of the return value of P. It is possible to check if there is
an execution of P that returns 0 by using an SMT solver to check
the satisfiability of 𝜙𝑟𝑒𝑡0, where 𝜙𝑟𝑒𝑡0 = 𝜙P ∧ (𝑜P = 0). Observe
that if the SMT solver finds 𝜙𝑟𝑒𝑡0 to be unsatisfiable, then there is
no input of P such that P returns 0. Otherwise, if the SMT solver
provides a satisfying assignment for 𝜙𝑟𝑒𝑡0, then the assignment to
the symbolic representation of the inputs ofP contains the concrete
input values (i.e. the input test case) for when P returns 0.

Symbolic execution can also be used to differentiate between two
programs P1 and P2. Let 𝜙P𝑖

be the SMT formula that corresponds
to the symbolic execution of program P𝑖 . Let 𝐼𝑖 represent the input
and 𝑜𝑖 the output of P𝑖 . Hence, we can built a formula 𝜙𝑒𝑞 such as:

𝜙𝑒𝑞 = 𝜙P1 ∧ 𝜙P2 ∧ (𝐼1 = 𝐼2) ∧ (𝑜1 ≠ 𝑜2) (8)

Observe that if 𝜙𝑒𝑞 is satisfiable, then there is an input test case for
which P1 and P2 provide different outputs. As a result, one can ask
the user to answer which is the correct output and disambiguate
between P1 and P2. Otherwise, if 𝜙𝑒𝑞 is unsatisfiable, then there is
no input test case that differentiates between P1 and P2 and the
programs are deemed equivalent.

6.3 User Interaction Models

UnchartIt is able to rank candidate programs, but the best ranked
program might not correspond to the user’s intent. Moreover, it can
occur that the ranking value is the same for two different programs.
Hence, our goal is to interact with the user in order to correctly
select the desired program among the top ranked candidates.

In UnchartIt, we define two different user interaction mod-
els. The Options model shows the user an input table, as well as
several output options corresponding to the output of candidate
programs for that input table. In this case, the user selects the cor-
rect output among the several options. If the selected output still
corresponds to the output of several candidate programs, additional
rounds of questions are performed to disambiguate solely among
those programs. In the Options model, ideally, there is a single
input table such that each candidate program produces a different
output. In this best-case scenario, a single question is sufficient to
disambiguate among the candidate programs. On the other hand,
the Options model requires the user to solve the problem for the
given input table in order to select the correct option.

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

min.
𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝑏𝑖 𝑗 (9)

s.t. 𝜙P1 ∧ . . . ∧ 𝜙P𝑛
(10)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : 𝐼𝑖 = 𝐼 𝑗 (11)
∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (𝑜𝑖 = 𝑜 𝑗) ⇔ (𝑏𝑖 𝑗) (12)
𝑛∨
𝑖=1

𝑛∨
𝑗=𝑖+1

¬𝑏𝑖 𝑗 (13)

Figure 7: Input generation for the Options model.

UnchartIt also implements the Y/N user interaction model. In
this case, the user is presented with an input table and an output.
Next, the user answers yes or no, depending if the output is correct
for that input table. Note that the user only needs to check the
correctness of a single output option. In the Y/N model, the goal is
to split the set of candidate programs in two, such that the output
of half the candidate programs matches the proposed output, while
the other half produces a different output. If it is always possible
to split the set of programs in two, the number of questions in the
Y/N interaction model would be 𝑂 (𝑙𝑔(𝑛)).

6.4 Model Formalization

Section 6.3 presented the Options and the Y/N user interaction
models implemented inUnchartIt. In this section, we propose two
MaxSMT formalizations that allow us to automatically generate
input examples for both user models.

In the Options user model, in order to minimize the number of
user interactions, the goal is to find a small input test case such that
all the top-𝑛 ranked programs provide a different output. Figure 7
presents a MaxSMT formulation to solve the problem of finding
an input that maximizes the pairwise differences between the 𝑛
programs to disambiguate. In this formula, we encode the symbolic
representation of all𝑛 candidate programs (10) and force the input of
all programs to be the same (11). Moreover, for each pair of programs
P𝑖 and P𝑗 we create a Boolean variable 𝑏𝑖 𝑗 that is assigned to 1 if
and only if the outputs of programs P𝑖 and P𝑗 are the same (12).
Note that inputs that do not differentiate any pair of programs are
excluded (13). Since the goal is to minimize the number of variables
𝑏𝑖 𝑗 assigned to 1 (9), any optimal solution of this formulation will
find an assignment to the input variables 𝐼𝑖 (corresponding to an
input test case) that maximizes the pairwise difference between the
𝑛 programs. Ideally, the solution for the formulation in Figure 7
contains all variables 𝑏𝑖 𝑗 assigned value 0.

On the Y/N interaction model, the goal is to identify an input
test case 𝐼 such that the set of 𝑛 programs is split into two sets 𝐴
and 𝐵 with half programs in each set. Moreover, for test case 𝐼 , all
programs P𝑖 ∈ 𝐴 would provide the same output P𝑖 (𝐼), and all
programs P𝑗 ∈ 𝐵 would provide a different output (i.e. P𝑖 (𝐼) ≠

P𝑗 (𝐼)) than the programs in 𝐴.
Figure 8 contains a formulation that splits a given set of 𝑛 pro-

grams into two sets (𝐴 and 𝐵). As in the previous model, this formu-
lation includes the symbolic representation of all 𝑛 programs (15),
the program inputs are constrained to be the same (16) and Boolean

min.

����� 𝑛∑
𝑖=1

𝑝𝐴𝑖 −
𝑛∑
𝑖=1

𝑝𝐵𝑖

����� (14)

s.t. 𝜙P1 ∧ . . . ∧ 𝜙P𝑛
(15)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : 𝐼𝑖 = 𝐼 𝑗 (16)
∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (𝑜𝑖 = 𝑜 𝑗) ⇔ (𝑏𝑖 𝑗) (17)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (𝑏𝑖 𝑗) ⇒
(
(𝑝𝐴𝑖 ∧ 𝑝𝐴𝑗) ∨ (𝑝𝐵𝑖 ∧ 𝑝𝐵𝑗)

)
(18)

∀𝑖, 𝑗 ∈{1..𝑛},𝑖< 𝑗 : (¬𝑏𝑖 𝑗) ⇒ (¬𝑝𝐴𝑖 ∨ ¬𝑝𝐴𝑗) (19)

∀𝑖∈{1..𝑛} : 𝑝𝐴𝑖 + 𝑝𝐵𝑖 = 1 (20)
𝑛∑
𝑖=1

𝑝𝐵𝑖 ≤ 𝑛 − 1 (21)

Figure 8: Input generation for the Y/Nmodel.

variables 𝑏𝑖 𝑗 are assigned to 1 if and only if the output of program
P𝑖 is equal to the output of program P𝑗 (17). Additionally, for each
program P𝑖 two new Boolean variables are created 𝑝𝐴

𝑖
and 𝑝𝐵

𝑖
,

denoting if program P𝑖 belongs to set 𝐴 or to set 𝐵, respectively.
In our formulation, if two programs P𝑖 and P𝑗 produce the same

output, then they both have to be assigned to the same set (18).
Moreover, if two programs P𝑖 and P𝑗 produce different outputs
(i.e. variable 𝑏𝑖 𝑗 is 0), then at most one of them can be in set 𝐴 (19).
Therefore, as a result of constraints (18) and (19), all programs in
set 𝐴 must produce the same output. Furthermore, each program
must be assigned to one and only one set (20). Constraint (21)
is used to make sure that if there is an input that differentiates
among programs, then not all programs are assigned to set 𝐵 and a
partition is produced. Finally, our formulation’s goal is to minimize
the difference between the number of programs in each set (14).

6.5 Input Constraints

In the symbolic representation of a program, each input is associated
with a symbolic value that represents an arbitrary concrete value
that can be assigned to that input. Since the inputs of our programs
are tables, each symbolic value represents a table with a number of
rows and columns. However, allowing input tables with an arbitrary
structure can be a problem. For instance, it would not be feasible to
ask the user to verify or select the correct output for a large input
table. Therefore, we impose restrictions on the structure of the input
tables we allow in the symbolic representation of our programs. In
our case, the columns are restricted to those that are relevant in
at least one of the programs to disambiguate. For instance, if we
want to disambiguate 2 programs that only use the first and the
last columns of the input table, then the input table to be generated
only contains data for those 2 columns. Moreover, since we want to
obtain small input tables, the number of rows must also be bounded.

The table’s content must also be restricted since each table entry
should be associated with a meaningful value to the user. For in-
stance, if the user expects a given column to contain country names,
then the only concrete values we should allow on that column are
country names. In order to generate inputs that are familiar to the
user, we base our distinguishing inputs on the input table the user

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

provided. In UnchartIt, the following rules are used to decide
the available values for each column: (a) in columns of strings we
restrict the available values to those present in the respective col-
umn of the input table; (b) in columns of integers, floats, and dates
we restrict the values to the interval between the minimum and
maximum values of the respective column of the input table.

6.6 Input Generation

The MaxSMT formulations proposed in section 6.4 give us a theo-
retical guarantee that the resulting distinguishing input is the best
possible input for the respective interaction model. However, an
issue with both approaches is that our MaxSMT formulas grow
exponentially with the number of programs to disambiguate. In
scenarios where it is necessary to disambiguate a large number of
programs, one might sacrifice optimality in order to have a mean-
ingful user interaction.

There is a plethora of input generation methods commonly used
for program testing [9]. For example, in the context of UnchartIt,
one could apply delta debugging [42, 43] on the example input table
to try to generate a smaller input table that would differentiate the
programs. However, the input tables provided in our test cases can
be very large, resulting in a very time-consuming procedure.

Another alternative is to use fuzzing-based methods [31]. Instead
of building a MaxSMT formula, we can generate random inputs
(guided by the example input table) until we find an optimal solu-
tion for a given interaction model or a time limit is reached. For
example, using the Options interaction model, we can randomly
generate inputs until an example that disambiguates all programs
is found. Otherwise, if a time limit is reached, the generated input
that splits the programs in a larger number of sets is returned. In
UnchartIt, this technique was also implemented as a stand alone
method to disambiguate programs. Moreover, a hybrid method
was also developed that first applies fuzzing-based techniques and
then applies the proposed MaxSMT models when the number of
programs to disambiguate is small.

7 EXPERIMENTAL RESULTS

In order to evaluate our approach, we collected 50 benchmarks
from Kaggle,3 a popular website for data scientists with diverse
open datasets. Each benchmark is comprised of a pair (table, bar
chart). The experimental results presented in this section aim to
answer the following research questions:
Q1. How effectively can UnchartIt recover programs from real

data?
Q2. How long do we have to explore the search space to find

good candidates?
Q3. How does the Neural Network approach compare to the

WebPlotDigitizer’s approach?
Q4. How many questions do we have to ask the user in order

to distinguish the best ranking programs, using the two
interaction models?

The results described herein were obtained from an Intel(R)
Xeon(R) CPU E5-2630 v2 @ 2.60GHz, with 64GB of RAM, running
Debian GNU/Linux 10.

3https://www.kaggle.com/

Implementation. UnchartIt integrates several tools and tech-
nologies. In particular, our neural data extraction mechanism is
implemented using the Keras framework [6]. Furthermore, our can-
didate generator is implemented on top of the Trinity synthesis
framework [28]. While the candidate generator uses the R language
(version 3.5.2), the program disambiguation is performed in C. For
that, all of our DSL operators have an equivalent implementation
in C so that the symbolic representation of the programs can be
generated using CBMC [7], a Bounded Model Checker for C. Since
CBMC generates Boolean formulas, the final MaxSMT formula only
contains Boolean variables. As a result, the Open-LinSBPS [8] solver
was used instead of a generic MaxSMT solver. Finally, the number
of rows of the generated input tables was bounded to 5.

Benchmarks. The average and median size of the input table
files is 16.52MB and 1MB, respectively. However, there are much
larger instances in our benchmark set. The motivational example
in Section 2 has one of the largest input tables (Table 1a), con-
taining 175.39MB, 715,437 rows and 18 columns. Moreover, the
median number of rows and columns is 10,841 and 13, respectively,
whereas the mean number of rows and columns is 71,293.92 and
17.66, respectively. Regarding the bar charts, the number of bars of
each chart varies between 2 and 15 bars. Every solution involves
grouping the data by some column, and then summarizing each
group using an aggregate function (e.g., median, min or max). Some
solutions require operations such as calculating the days between
two dates or filtering null values. It might also be necessary to
normalize the values of a numerical column, or selecting only the
top ranking rows.

Data Extraction. When evaluating a data extraction procedure
for bar charts we must consider its two outputs: the number of
bars, and the bars’ values. Thus, to measure its accuracy we use
two metrics: the percentage of plots in which the procedure suc-
cessfully retrieved the number of bars, and the mean absolute error
of the bar’s values. To test both WebPlotDigitizer and the neural
network we used the bar charts of the benchmarks.

Recall that WebPlotDigitizer requires a considerable amount
of input. Before extracting the bars’ values, it is necessary to mark
the pixel location of two different points along the vertical axis of
each bar chart and the values of the respective points.WebPlotDig-
itizer’s bar extraction algorithm also requires tuning parameters
before extracting the bars. It was found that the parameters that
worked best with our benchmarks were Δ𝑥 = 30 and Δ𝑣𝑎𝑙 = 500.
Using these parameters, WebPlotDigitizer successfully retrieved
the number of bars in 96% of the instances and achieved a mean
absolute error of 0.002201.

To evaluate the accuracy of the neural-based data extraction, we
trained an adapted version of the EfficientNet-B1. We generated
a set of 90,000 bar charts of various forms and split it into train-
ing (90%) and validation (10%) sets. To train the network, we used
RAdam [27] coupled with Lookahead [44] using the default param-
eters of the respective papers. We used batch sizes of 15 and a max-
imum number of epochs of 100, but we performed early stopping
once the validation loss stopped decreasing. On the benchmarks,
EfficientNet-B1 retrieved the correct number of bars in 92% of the
instances. Considering the mean absolute error, the network has a

https://www.kaggle.com/

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

0 2 4 6 8 10
50

60

70

80

90

100

Timeout (min)

In
st
an
ce
ss

ol
ve
d
(%
)

top-1
top-3
top-5
top-10

Figure 9: Success rate with different timeouts, using Web-

PlotDigitizer and the MAE ranking.

Table 5: Success rate for a time limit of 3 minutes.

WebPlotDigitizer EfficientNet-B1
MAE MSE MAE MSE

top-1 88% 86% 66% 66%
top-3 90% 88% 72% 72%
top-5 90% 88% 76% 74%
top-10 92% 92% 78% 80%

mean absolute error of 0.037356. Although the adapted EfficientNet-
B1 is not as accurate as WebPlotDigitizer, it is important to note
that it requires significantly less input from the user.

Candidate Generation and Ranking. Since it is not feasible to
explore the whole program space, UnchartIt terminates when
a given time limit is reached. In Figure 9, we show the success
rate for different timeouts. The top-1, top-3, top-5, and top-10 lines
show the number of benchmarks in which the correct solution was
ranked first (top-1), among the first three (top-3), five (top-5), and
ten (top-10) programs, respectively. We can see that UnchartIt
performs best when using a timeout of 3 minutes, and it does not
improve thereafter. In fact, the percentage of correct programs in
top-1 decreases with higher time limits. This occurs due to the
fact that if we explore the search space longer, we are more prone
to finding programs that overfit to the cost function (especially
programs with a high number of lines). Moreover, there might be
other programs with more lines of code that are equivalent to the
overfitting (e.g., adding a filter operation that does nothing on the
input table). Since these spurious programs have the same cost of
the overfitting program, they push the solution downwards. Overall,
UnchartIt is able to find programs up to 7 lines of code within
the time limit, which is the same order to magnitude as other state
of the art tools for table manipulation [14].

Table 5 shows the success rate with a timeout of 3 minutes,
using the two data extraction mechanisms, and the two ranking
functions. We can see that both ranking functions perform similarly,
regardless of the data extraction mechanism. The correct solution
is the top ranked program in 88% of the instances when using
WebPlotDigitizer, and the MAE ranking function. Using the
adapted EfficientNet-B1 neural network we obtain slightly worse
results. Nonetheless, we can still rank the correct solution on the
top-10 in 80% of the instances. When using WebPlotDigitizer
this value increases to 92%. Recall that WebPlotDigitizer is more
precise than EfficientNet-B1 with respect to the numerical extracted
values and number of extracted bars. However, EfficientNet-B1 is a
fully automated process, while WebPlotDigitizer needs the user
to indicate the precise location of two pixels in the chart image and
tune some parameters before extracting data.

In the best performing approach (WebPlotDigitizer + MAE),
there are 8% instances in which a correct solution was not ranked
among the top-10. These benchmarks correspond to 2 instances in
which the number of bars was incorrectly extracted and 2 instances
in which 3 minutes is not sufficient to find a correct candidate.

Program Disambiguation. To ascertain that UnchartIt returns
a correct program, the top-10 ranking programs are to be disam-
biguated by interacting with the user. UnchartIt integrates two
interaction schemes: the Options and the Y/N model. For each
model, questions can be generated using the following approaches:
(1) MaxSMT; (2) Fuzzing; (3) Hybrid Approach. In the hybrid ap-
proach, we combine fuzzing and MaxSMT as follows: if we need to
disambiguate more than 5 programs, then we use fuzzing. Other-
wise, we use MaxSMT. In our experiments, we consider the top-10
programs (usingWebPlotDigitizer) generated for each instance.
From the 50 instances, we consider 48 instances, since for one in-
stance we only generated one candidate, and there was another
instance for which we did not generate a single candidate.

Figure 10 shows the average time necessary to generate the best
possible question with a timeout of 3 minutes per question. We
can see that when using fuzzing, we either find the best question
very quickly, or we cannot find it within the time limit. In the Op-
tionsmodel, fuzzing can only stop early when it finds an input test
case for which all programs provide a different output. However,
that input test case might not exist. The same occurs for the Y/N
model, where an input test case that splits the set of programs
in half might not exist. However, the proposed MaxSMT formula-
tion is able to detect these cases. We can also see that the hybrid
approach generates questions faster than the MaxSMT approach.
This happens because the formulas generated by CBMC grow expo-
nentially with the number of programs to disambiguate. Thus, the
first MaxSMT call usually takes much longer than the remaining
calls. However, fuzzing is particularly effective when the number
of programs is larger. Hence, by using fuzzing in the first call, we
reduce the time necessary to generate the first question, thereby
reducing the average time to generate all questions.

Table 6 presents statistics on the number of questions asked to
the user using the two interaction models and the three different
implementations. Observe that we can disambiguate 47 out of the 48
instances using the hybrid approach. Although the average number

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

12 24 36 4810−1

100

101

102

103

Instances solved

Av
er
ag
e
tim

e
(s)

MaxSMT Y/N
MaxSMT Options

Fuzzing Y/N
Fuzzing Options

Hybrid Y/N
Hybrid Options

Figure 10: Average time necessary to generate a question us-

ing the different interaction models and implementations.

Table 6: Median (𝑥), mean (𝑥), standard deviation (𝜎) of the

number of questions asked. Number of instances solved (𝑛).

MaxSMT Fuzzing Hybrid
Options Y/N Options Y/N Options Y/N

𝑥 1 3 1 3 1 3
𝑥 1.53 3.28 1.17 3 1.32 3.23
𝜎 0.631 0.854 0.537 0.698 0.556 0.813
𝑛 43 43 42 42 47 47

of questions using fuzzing is slightly smaller, fuzzing can only dis-
ambiguate 42 instances, since it cannot prove the bounded program
equivalence. Thus, fuzzing presents inconclusive results to the user
in 6 instances. The same happens to the MaxSMT approach, where
sometimes the given time limit is not enough to prove the program
equivalence for the bounded input.

Threats to Validity. Since our tool is limited to bar charts, our
techniques may not generalize for other types of charts. For other
types of charts, the data extraction stage must be adapted. However,
if the data extraction procedure from other chart types results in
imprecisions similar to those found in bar charts, one can expect a
similar success rate.

The other issue is the simulation of the user interaction. In this
paper, we assume the user would select the correct answer in each
question. However, it is not clear how difficult it is for the user to
answer the generated questions, since an empirical study of user
interaction was not performed. Additionally, we bound the time
limit to 3 minutes in order to generate a question. For tighter time
limits, the MaxSMT solver might produce a solution that is far from
optimal. As an alternative, an incomplete solver might be used
instead. In general, incomplete solvers cannot prove optimality,
but are able to provide a good enough solution within tighter time
limits.

8 RELATEDWORK

In this section, we briefly discuss prior work that is closely related
to our approach, in the context of program verification, program
synthesis, and interactive program synthesis.

8.1 Program Verification

The goal of program verification is to formally prove that a cer-
tain specification or property holds for all executions of the pro-
gram. The last few decades have seen a significant improvement
in verification tools based on SAT and SMT [4]. In this work, we
leverage bounded model checking tools [7, 16] to either prove the
equivalence between programs or find a counterexample that dis-
ambiguates the programs. In our context, since the tables for the
disambiguation phase are small, it is possible to completely unroll
all loops and check if programs are equivalent to a bounded input.
Even though program equivalence of C programs has been studied
before [12, 18, 19], to the best of our knowledge this is the first appli-
cation of it for disambiguation of programs written in a real-world
programming language in the context of program synthesis.

8.2 Program Synthesis

Program synthesizers for table transformations work by combining
enumerative search and pruning techniques over a space of pro-
grams defined by a DSL. Scythe [39] generates SQL queries from
examples and prunes the search using equivalence classes. Mor-
pheus [14] synthesizes table transformations for the R language and
uses logical specifications for each library function combined with
SMT-based reasoning to prune the search space. Neo [13] general-
izesMorpheus to other domains and incorporates learning from
failed synthesis attempts which further prunes the search space.
Trinity [28] is a program synthesizer framework that makes it
easier to build new program synthesizers while taking advantage of
pruning and learning techniques based on SMT reasoning [13, 14].

Viser [40] is built on top of Trinity for the domain of plot
visualization. It takes as input a table and a trace that partially
describes the plot. For instance, in the case of a bar chart, the trace
describes the height of some bars. The specification used in Viser is
not as strong as in traditional PBE systems since it does not involve
a concrete output table but a set of table inclusion constraints. In
contrast, UnchartIt takes as input a chart image instead of a trace.
Given a chart image, we perform data extraction and our output
table will have numerical imprecisions that are not part of the
result of the table transformation program. Moreover, since we
are tackling the problem of recovering data transformations from
existing plots, the user would not be able to provide the trace of
the plot required by Viser.

Another application of program synthesis to visualization is
the inference of graphics programs from hand-drawn images and
synthesis of the corresponding LATEX code that generates that im-
age [11]. This approach combines techniques from deep learning
and program synthesis. They learn a convolutional neural network
that proposes a set of traces in the form of primitive drawings
(e.g., line, circle, rectangle) that explains the image. These primitive
drawings serve as specification, and a program synthesizer is then
used to generate a program that generalizes these traces with condi-
tionals and loops. Even though our approach can also use a neural

UnchartIt: An Interactive Framework for Program Recovery from Charts ASE ’20, September 21–25, 2020, Virtual Event, Australia

network for data extraction, our synthesis goal is very different
since it requires a sequence of table transformation operations and
not trace generalization.

8.3 Interactive Program Synthesis

Since PBE systems have incomplete specifications, it is often re-
quired to do an interactive step with the user in order to find the
correct program. There are different forms of user interaction, but
the most commonly used by program synthesizers are: (i) the user
provides additional examples to the program synthesizer until there
is no more ambiguity [29, 41], (ii) the synthesizer returns a ranked
list of programs to be selected by the user [17, 26, 41], (iii) the
synthesizer creates a distinguishing input and asks the user for
feedback [29, 32, 38].

There are different ways to create a distinguishing input, i.e. an
input for which at least two programs have a different output. One
approach is to randomly generate distinguishing inputs [29, 38].
This is similar to our input generation approach described in Sec-
tion 6.6. Another approach that is closer to our work is done by Ji
et al. [22]. They sample the space of valid programs and encode
the problem into SMT to determine an input that minimizes the
number of programs that have the same output for a given input.
Afterward, they ask the user to provide the correct output for that
input. This approach is similar to ourOptionsmodel where we also
minimize the number of different outputs for the same input. Our
interactive approach can be seen as a generalization of Ji et al. [22]
work. First, we show how to formalize the optimization problem
with MaxSMT. Second, we show that different user interactions can
be formalized in this way, namely the Options and Y/N user inter-
action models. Third, we use symbolic model checking to encode
programs written in real-world programming languages to SMT,
whereas the previous approach uses programs from the Syntax-
Guided Synthesis Competition (SyGuS) [1] that are expressed using
the SMT language and restricted to SMT constructs.

9 CONCLUSIONS AND FUTUREWORK

Data visualization is crucial for data analysts. However, many data
analysts are not proficient programmers and it is often the case that
data analysts are unable to generate a given chart from the data.

The main contribution of this paper is a comprehensive approach
to handle the problem of recovering data transformations from
charts. UnchartIt receives the input data and an output chart
(generated from the input data) and can automatically find the
underlying table transformation to build the chart. Experimental
results on real data from Kaggle show that UnchartIt can find
and rank the correct program in the top-10 programs in 92% of
instances. To reduce the ambiguity of the programs returned by
UnchartIt, we developed a new interactive synthesis procedure
that can disambiguate 98% of the ambiguous instances by asking
on average fewer than 2 questions to the user.

UnchartIt is the first tool for automatic generation of data
transformations that directly uses visual elements. An integrated
prototype of our tool will become available online soon.4

For future work, we propose to extend UnchartIt with other
visual elements in the input examples besides bar charts. Ideally,
4http://sat.inesc-id.pt/unchartit/

one should be able to use an hand-drawn image of a chart instead
of a digital chart image. Currently, the chart labels are not yet used.
However, labels provide useful information on the chart interpreta-
tion. Hence, we also propose to extend the data extraction model to
identify and use the labels in the chart image to direct the program
synthesis process.

ACKNOWLEDGMENTS

This work was partially supported by NSF award number 1762363
and by Portuguese national funds through FCT, Fundação para a
Ciência e a Tecnologia, under PhD grant SFRH/BD/150688/2020
and projects UIDB/50021/2020, DSAIPA/AI/0044/2018, and project
ANI 045917 funded by FEDER and FCT.

REFERENCES

[1] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit
Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund
Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthe-
sis. In Dependable Software Systems Engineering. IOS Press, 1–25.

[2] Matej Balog, Alexander Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. 2017. DeepCoder: Learning to Write Programs. In Proc. Interna-
tional Conference on Learning Representations.

[3] Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang,
and Michael Stonebraker. 2018. Beagle: Automated Extraction and Interpreta-
tion of Visualizations from the Web. In Proc. Conference on Human Factors in
Computing Systems. ACM, 594.

[4] Dirk Beyer, Matthias Dangl, and Philipp Wendler. 2018. A Unifying View on
SMT-Based Software Verification. Journal of Automated Reasoning 60, 3 (2018),
299–335.

[5] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. 𝜈Z - An Optimiz-
ing SMT Solver. In Proc. International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 194–199.

[6] François Chollet et al. 2015 (accessed May 8, 2020). Keras. https://keras.io.
[7] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking

ANSI-C Programs. In Proc. International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 168–176.

[8] Emir Demirovic and Peter J. Stuckey. 2019. Techniques Inspired by Local Search
for Incomplete MaxSAT and the Linear Algorithm: Varying Resolution and
Solution-Guided Search. In Proc. International Conference Principles and Practice
of Constraint Programming. Springer, 177–194.

[9] Frank Elberzhager, Alla Rosbach, Jürgen Münch, and Robert Eschbach. 2012.
Reducing test effort: A systematic mapping study on existing approaches. Inf.
Softw. Technol. 54, 10 (2012), 1092–1106.

[10] Kevin Ellis and Sumit Gulwani. 2017. Learning to Learn Programs from Examples:
Going Beyond Program Structure. In Proc. International Joint Conference on
Artificial Intelligence. ijcai.org, 1638–1645.

[11] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. 2018.
Learning to Infer Graphics Programs from Hand-Drawn Images. In Proc. Annual
Conference on Neural Information Processing Systems. 6062–6071.

[12] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mat-
tias Ulbrich. 2014. Automating regression verification. In Proc. International
Conference on Automated Software Engineering. ACM, 349–360.

[13] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis
using conflict-driven learning. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 420–435.

[14] Yu Feng, RubenMartins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017.
Component-based synthesis of table consolidation and transformation tasks from
examples. In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 422–436.

[15] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure
transformations from input-output examples. In Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 229–239.

[16] Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd
Fischer, and Denis A. Nicole. 2018. ESBMC 5.0: An Industrial-Strength C Model
Checker. In Proc. International Conference on Automated Software Engineering.
ACM, 888–891.

[17] Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: dynamic and interactive synthesis of code snippets. In Proc.
International Conference on Software Engineering. ACM, 653–663.

[18] Benny Godlin and Ofer Strichman. 2008. Inference rules for proving the equiva-
lence of recursive procedures. Acta Informatica 45, 6 (2008), 403–439.

http://sat.inesc-id.pt/unchartit/
https://keras.io

ASE ’20, September 21–25, 2020, Virtual Event, Australia Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, Ruben Martins

[19] Benny Godlin and Ofer Strichman. 2009. Regression verification. In Proc. Design
Automation Conference. ACM, 466–471.

[20] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proc. ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 317–330.

[21] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages 4, 1-2 (2017), 1–119.

[22] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu. 2020. Ques-
tion Selection for Interactive Program Synthesis. In Proc. ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. ACM.

[23] Zhongjun Jin, Michael R. Anderson, Michael J. Cafarella, and H. V. Jagadish.
2017. Foofah: Transforming Data By Example. In Proc. International Conference
on Management of Data. ACM, 683–698.

[24] Daekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeongin Hwang, Bongshin Lee,
Bo Hyoung Kim, and Jinwook Seo. 2017. ChartSense: Interactive Data Extraction
from Chart Images. In Proc. Conference on Human Factors in Computing Systems.
ACM, 6706–6717.

[25] Dmitri V. Kalashnikov, Laks V. S. Lakshmanan, and Divesh Srivastava. 2018.
FastQRE: Fast Query Reverse Engineering. In Proc. International Conference on
Management of Data. ACM, 337–350.

[26] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive Visual Specification of Data Transformation Scripts. In Proc.
SIGCHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, 3363–3372.

[27] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. 2019. On the Variance of the Adaptive Learning Rate and
Beyond. CoRR abs/1908.03265 (2019).

[28] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity:
An Extensible Synthesis Framework for Data Science. PVLDB 12, 12 (2019),
1914–1917.

[29] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin G. Zorn, and Sumit Gulwani. 2015. User
Interaction Models for Disambiguation in Programming by Example. In Proc.
Symposium on User Interface Software & Technology. ACM, 291–301.

[30] Robert Nieuwenhuis and Albert Oliveras. 2006. On SATModulo Theories and Op-
timization Problems. In Proc. International Conference on Theory and Applications
of Satisfiability Testing. Springer, 156–169.

[31] Peter Oehlert. 2005. Violating Assumptions with Fuzzing. IEEE Secur. Priv. 3, 2
(2005), 58–62.

[32] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani,
and Todd D. Millstein. 2018. FlashProfile: a framework for synthesizing data
profiles. Proc. ACM Program. Lang. 2, OOPSLA (2018), 150:1–150:28.

[33] Mohammad Raza and Sumit Gulwani. 2017. Automated Data Extraction Using
Predictive Program Synthesis. In Proc. AAAI Conference on Artificial Intelligence.
AAAI Press, 882–890.

[34] Ankit Rohatgi. 2019 (accessed May 8, 2020). WebPlotDigitizer, Version 4.2. https:
//automeris.io/WebPlotDigitizer.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. 2015. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision 115, 3 (2015), 211–252.

[36] Manolis Savva, Nicholas Kong, Arti Chhajta, Fei-Fei Li, Maneesh Agrawala, and
Jeffrey Heer. 2011. ReVision: automated classification, analysis and redesign of
chart images. In Proc. Annual ACM Symposium on User Interface Software. ACM,
393–402.

[37] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In Proc. International Conference on Machine
Learning. 6105–6114.

[38] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Interactive Query
Synthesis from Input-Output Examples. In Proc. International Conference on
Management of Data. ACM, 1631–1634.

[39] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthesizing highly
expressive SQL queries from input-output examples. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 452–
466.

[40] Chenglong Wang, Yu Feng, Rastislav Bodík, Alvin Cheung, and Isil Dillig. 2020.
Visualization by example. PACMPL 4, POPL (2020), 49:1–49:28.

[41] Kuat Yessenov, Shubham Tulsiani, Aditya Krishna Menon, Robert C. Miller, Sumit
Gulwani, Butler W. Lampson, and Adam Kalai. 2013. A colorful approach to
text processing by example. In Proc. Symposium on User Interface Software and
Technology. ACM, 495–504.

[42] Andreas Zeller. 2001. Automated Debugging: Are We Close. IEEE Computer 34,
11 (2001), 26–31.

[43] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.

[44] Michael R. Zhang, James Lucas, Jimmy Ba, and Geoffrey E. Hinton. 2019. Looka-
head Optimizer: k steps forward, 1 step back. In Proc. Annual Conference on Neural
Information Processing Systems. 9593–9604.

[45] Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing SQL queries from
input-output examples. In Proc. International Conference on Automated Software
Engineering. IEEE, 224–234.

https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer

	Abstract
	1 Introduction
	2 Motivation
	3 Data Extraction
	3.1 WebPlotDigitizer
	3.2 Neural Data Extraction

	4 Program Synthesis
	5 Ranking Candidate Solutions
	6 Program Disambiguation
	6.1 Satisfiability Modulo Theories
	6.2 Symbolic Representation of Programs
	6.3 User Interaction Models
	6.4 Model Formalization
	6.5 Input Constraints
	6.6 Input Generation

	7 Experimental Results
	8 Related Work
	8.1 Program Verification
	8.2 Program Synthesis
	8.3 Interactive Program Synthesis

	9 Conclusions and Future Work
	Acknowledgments
	References

