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Definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there value vector ν such that ∀Y .φ[X/ν]?

Note that φ is an arbitrary Boolean forumula, and hence, ∀X∃Y .φ
is solved by negating: ¬∀X∃Y .φ = ∃X∀Y .¬φ

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

solution: x1 = 0, x2 = 0
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Motivation

• ΣP
2 , ΠP

2 complete

• interesting problems in this class, e.g. propositional
circumscription [Janota et al., 2010],
AI [Remshagen and Truemper, 2005],
LTS diameter [Mneimneh and Sakallah, 2003],
MUS-membership [Janota and Marques-Silva, 2011]

• separate track at QBF Eval
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Looking at Valuations
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Expanding into SAT

∃X∀Y . φ −→ SAT

 ∧
µ∈B|Y |

φ[Y /µ]



Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

∧ (x1 ∨ x2)⇒ (0 ∧ 1)
∧ (x1 ∨ x2)⇒ (1 ∧ 0)
∧ (x1 ∨ x2)⇒ (1 ∧ 1)
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Abstraction

• Consider only some set of valuations W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• Any solution to the problem is a solution to the abstraction∧
µ∈B|Y |

φ[Y /µ] ⇒
∧
µ∈W

φ[Y /µ]

• But not the other way around, a solution to an abstraction is
not necessarily a solution to the original problem.
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CEGAR Loop

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

W ← ∅
while true do

(outc1, ν)← SAT(
∧
µ∈W φ[Y /µ]) // find a candidate

if outc1 = false then
return (false,–) // no candidate found

end

if ν is a solution // solution check

then
return (true, ν)

else
Grow W // refinement

end

end (INESC-ID & UCD) CEGAR for 2QBF 7 / 18
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Testing for Solution

A value ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) by some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

• candidate: x1 = 1, x2 = 0

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0
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Refinement
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The Algorithm

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

ω ← 1
while true do

(outc1, ν)← SAT(ω) // find a candidate solution

if outc1 = false then
return (false,–) // no candidate found

end

(outc2, µ)← SAT (¬φ[X/ν]) // find a counterexample

if outc2 = false then
return (true, ν) // candidate is a solution

end
ω ← ω ∧ φ[Y /µ] // refine

end
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Properties of Refinement
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Consequences of Refinement

• No candidate for counterexample appears more than once,
therefore the upper bound on the number of iterations is:

min(2|X |, 2|Y |)

• Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for µ s.t.

¬φ[X/ν] ∧max
(
|{ν ′ | ¬φ[X/ν ′,Y /µ]}|

)
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Why the Choice of Counterexamples Matters?

• Consider an invalid QBF and nightmare vs. jackpot scenarios.
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Results

struqs QuBE7.1 qbf2circ AReQS AReQS-H

2qbf 10 pre (114) 30 93 37 101 101
circ pre (117) 6 113 117 117 117
icore pre (140) 30 23 33 62 62

robots pre (999) 516 921 647 974 975
noprepro (232) 15 47 18 51 55

total (1602) 597 1197 852 1305 1310
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Results QuBE/AReQS-H
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Results AReQS/AReQS-H
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Results AReQS/AReQS-H Iterations
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Conclusions

• We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

• The QBF is gradually extended to a SAT formula (exponential
size)

• For a formula ∃X∀Y . φ no valuation of X or Y repeats.

• If ¬φ[X/nu,Y /mu], we never try ν ′ s.t. ¬φ[X/nu′,Y /mu],

• It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

• A QCNF implementation of the algorithm consistently
outperforms current solvers.
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