
Abstraction-Based Algorithm for 2QBF

Mikoláš Janota1 Joao Marques-Silva1,2

1 INESC-ID/IST, Lisbon, Portugal
2 CASL/CSI, University College Dublin, Ireland

(INESC-ID & UCD) CEGAR for 2QBF 1 / 18

Definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there value vector ν such that ∀Y .φ[X/ν]?

Note that φ is an arbitrary Boolean forumula, and hence, ∀X∃Y .φ
is solved by negating: ¬∀X∃Y .φ = ∃X∀Y .¬φ

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

solution: x1 = 0, x2 = 0

(INESC-ID & UCD) CEGAR for 2QBF 2 / 18

Definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there value vector ν such that ∀Y .φ[X/ν]?

Note that φ is an arbitrary Boolean forumula, and hence, ∀X∃Y .φ
is solved by negating: ¬∀X∃Y .φ = ∃X∀Y .¬φ

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

solution: x1 = 0, x2 = 0

(INESC-ID & UCD) CEGAR for 2QBF 2 / 18

Definition

Given: ∃X∀Y .φ, where φ is a propositional formula

Question: Is there value vector ν such that ∀Y .φ[X/ν]?

Note that φ is an arbitrary Boolean forumula, and hence, ∀X∃Y .φ
is solved by negating: ¬∀X∃Y .φ = ∃X∀Y .¬φ

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

solution: x1 = 0, x2 = 0

(INESC-ID & UCD) CEGAR for 2QBF 2 / 18

Motivation

• ΣP
2 , ΠP

2 complete

• interesting problems in this class, e.g. propositional
circumscription [Janota et al., 2010],
AI [Remshagen and Truemper, 2005],
LTS diameter [Mneimneh and Sakallah, 2003],
MUS-membership [Janota and Marques-Silva, 2011]

• separate track at QBF Eval

(INESC-ID & UCD) CEGAR for 2QBF 3 / 18

Looking at Valuations

Y

X

ξ

µ

(INESC-ID & UCD) CEGAR for 2QBF 4 / 18

Looking at Valuations

Y

X

ξ

µ

1

(INESC-ID & UCD) CEGAR for 2QBF 4 / 18

Looking at Valuations

Y

X

ξ

µ

11 0 . . .

. . .
0 . . .

. . .
1

(INESC-ID & UCD) CEGAR for 2QBF 4 / 18

Looking at Valuations

Y

X

ξ

µ

11 0 . . .

. . .
0 . . .

. . .
1

ν 1 1 . . . 1 1 . . . 1

(INESC-ID & UCD) CEGAR for 2QBF 4 / 18

Looking at Valuations

Y

X

ξ

µ

φ[Y /µ]

11 0 . . .

. . .
0 . . .

. . .
1

ν 1 1 . . . 1 1 . . . 1

(INESC-ID & UCD) CEGAR for 2QBF 4 / 18

Expanding into SAT

∃X∀Y . φ −→ SAT

 ∧
µ∈B|Y |

φ[Y /µ]



Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

∧ (x1 ∨ x2)⇒ (0 ∧ 1)
∧ (x1 ∨ x2)⇒ (1 ∧ 0)
∧ (x1 ∨ x2)⇒ (1 ∧ 1)

(INESC-ID & UCD) CEGAR for 2QBF 5 / 18

Expanding into SAT

∃X∀Y . φ −→ SAT

 ∧
µ∈B|Y |

φ[Y /µ]


Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

(x1 ∨ x2)⇒ (0 ∧ 0)
∧ (x1 ∨ x2)⇒ (0 ∧ 1)
∧ (x1 ∨ x2)⇒ (1 ∧ 0)
∧ (x1 ∨ x2)⇒ (1 ∧ 1)

(INESC-ID & UCD) CEGAR for 2QBF 5 / 18

Expanding into SAT

∃X∀Y . φ −→ SAT

 ∧
µ∈B|Y |

φ[Y /µ]


Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

(x1 ∨ x2)⇒ (0 ∧ 0)
∧ (x1 ∨ x2)⇒ (0 ∧ 1)
∧ (x1 ∨ x2)⇒ (1 ∧ 0)
∧ (x1 ∨ x2)⇒ (1 ∧ 1)

(INESC-ID & UCD) CEGAR for 2QBF 5 / 18

Abstraction

• Consider only some set of valuations W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• Any solution to the problem is a solution to the abstraction∧
µ∈B|Y |

φ[Y /µ] ⇒
∧
µ∈W

φ[Y /µ]

• But not the other way around, a solution to an abstraction is
not necessarily a solution to the original problem.

(INESC-ID & UCD) CEGAR for 2QBF 6 / 18

Abstraction

• Consider only some set of valuations W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• Any solution to the problem is a solution to the abstraction∧
µ∈B|Y |

φ[Y /µ] ⇒
∧
µ∈W

φ[Y /µ]

• But not the other way around, a solution to an abstraction is
not necessarily a solution to the original problem.

(INESC-ID & UCD) CEGAR for 2QBF 6 / 18

Abstraction

• Consider only some set of valuations W ⊆ B|Y |∧
µ∈W

φ[Y /µ]

• Any solution to the problem is a solution to the abstraction∧
µ∈B|Y |

φ[Y /µ] ⇒
∧
µ∈W

φ[Y /µ]

• But not the other way around, a solution to an abstraction is
not necessarily a solution to the original problem.

(INESC-ID & UCD) CEGAR for 2QBF 6 / 18

CEGAR Loop

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

W ← ∅
while true do

(outc1, ν)← SAT(
∧
µ∈W φ[Y /µ]) // find a candidate

if outc1 = false then
return (false,–) // no candidate found

end

if ν is a solution // solution check

then
return (true, ν)

else
Grow W // refinement

end

end (INESC-ID & UCD) CEGAR for 2QBF 7 / 18

CEGAR Loop

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

W ← ∅
while true do

(outc1, ν)← SAT(
∧
µ∈W φ[Y /µ]) // find a candidate

if outc1 = false then
return (false,–) // no candidate found

end

if ν is a solution // solution check

then
return (true, ν)

else
Grow W // refinement

end

end (INESC-ID & UCD) CEGAR for 2QBF 7 / 18

Testing for Solution

A value ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) by some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

• candidate: x1 = 1, x2 = 0

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

(INESC-ID & UCD) CEGAR for 2QBF 8 / 18

Testing for Solution

A value ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) by some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

• candidate: x1 = 1, x2 = 0

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

(INESC-ID & UCD) CEGAR for 2QBF 8 / 18

Testing for Solution

A value ν is a solution to ∃X∀Y .φ iff

∀Y .φ[X/ν] iff UNSAT(¬φ[X/ν])

If SAT(¬φ[X/ν]) by some µ, then µ is a counterexample to ν

Example

∃x1, x2 ∀y1, y2. (x1 ∨ x2)⇒ (y1∧y2)

• candidate: x1 = 1, x2 = 0

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

(INESC-ID & UCD) CEGAR for 2QBF 8 / 18

Refinement

Y
X

ν 1 1 1 1.

(INESC-ID & UCD) CEGAR for 2QBF 9 / 18

Refinement

Y
X

ν

µ

1 1 1 0.

W

(INESC-ID & UCD) CEGAR for 2QBF 9 / 18

Refinement

Y
X

ν

µ

1 1 1 0.

W

W ′

(INESC-ID & UCD) CEGAR for 2QBF 9 / 18

The Algorithm

input : ∃X∀Y .φ
output: (true, ν) if there exists ν s.t. ∀Yφ[X/ν],

(false, –) otherwise

ω ← 1
while true do

(outc1, ν)← SAT(ω) // find a candidate solution

if outc1 = false then
return (false,–) // no candidate found

end

(outc2, µ)← SAT (¬φ[X/ν]) // find a counterexample

if outc2 = false then
return (true, ν) // candidate is a solution

end
ω ← ω ∧ φ[Y /µ] // refine

end
(INESC-ID & UCD) CEGAR for 2QBF 10 / 18

Properties of Refinement

Y

X

ν

µ

1 1 1

ν1 1 1 1 0

ν2 1 1 1 0

0.

W

(INESC-ID & UCD) CEGAR for 2QBF 11 / 18

Properties of Refinement

Y

X

νν

µ

1 1 1

ν1 1 1 1 0

ν2 1 1 1 0

0.

W

W ′

(INESC-ID & UCD) CEGAR for 2QBF 11 / 18

Properties of Refinement

Y

X

νν

µ

1 1 1

ν1ν1 1 1 1 00

ν2ν2 1 1 1 00

0.

W

W ′

(INESC-ID & UCD) CEGAR for 2QBF 11 / 18

Consequences of Refinement

• No candidate for counterexample appears more than once,
therefore the upper bound on the number of iterations is:

min(2|X |, 2|Y |)

• Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for µ s.t.

¬φ[X/ν] ∧max
(
|{ν ′ | ¬φ[X/ν ′,Y /µ]}|

)

(INESC-ID & UCD) CEGAR for 2QBF 12 / 18

Consequences of Refinement

• No candidate for counterexample appears more than once,
therefore the upper bound on the number of iterations is:

min(2|X |, 2|Y |)

• Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for µ s.t.

¬φ[X/ν] ∧max
(
|{ν ′ | ¬φ[X/ν ′,Y /µ]}|

)

(INESC-ID & UCD) CEGAR for 2QBF 12 / 18

Why the Choice of Counterexamples Matters?

• Consider an invalid QBF and nightmare vs. jackpot scenarios.

ξ

ν

YX

(INESC-ID & UCD) CEGAR for 2QBF 13 / 18

Why the Choice of Counterexamples Matters?

• Consider an invalid QBF and nightmare vs. jackpot scenarios.

ξ

ν

YX

(INESC-ID & UCD) CEGAR for 2QBF 13 / 18

Why the Choice of Counterexamples Matters?

• Consider an invalid QBF and nightmare vs. jackpot scenarios.

ξ

ν

2|X |

YX

(INESC-ID & UCD) CEGAR for 2QBF 13 / 18

Why the Choice of Counterexamples Matters?

• Consider an invalid QBF and nightmare vs. jackpot scenarios.

ξ

ν

YX

(INESC-ID & UCD) CEGAR for 2QBF 13 / 18

Results

struqs QuBE7.1 qbf2circ AReQS AReQS-H

2qbf 10 pre (114) 30 93 37 101 101
circ pre (117) 6 113 117 117 117
icore pre (140) 30 23 33 62 62

robots pre (999) 516 921 647 974 975
noprepro (232) 15 47 18 51 55

total (1602) 597 1197 852 1305 1310

(INESC-ID & UCD) CEGAR for 2QBF 14 / 18

Results QuBE/AReQS-H

10-3

10-2

10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103

A
R

eQ
S

-H

QuBE7.1

QuBE7.1 and AReQS-H [s]

(INESC-ID & UCD) CEGAR for 2QBF 15 / 18

Results AReQS/AReQS-H

10-3

10-2

10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103

A
R

eQ
S

-H

AReQS

 comparison of AReQS with and without heuristics [s]

(INESC-ID & UCD) CEGAR for 2QBF 16 / 18

Results AReQS/AReQS-H Iterations

100

101

102

103

104

105

100 101 102 103 104 105

A
R

eQ
S

-H

AReQS

number of iterations of the CEGAR loop

(INESC-ID & UCD) CEGAR for 2QBF 17 / 18

Conclusions

• We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

• The QBF is gradually extended to a SAT formula (exponential
size)

• For a formula ∃X∀Y . φ no valuation of X or Y repeats.

• If ¬φ[X/nu,Y /mu], we never try ν ′ s.t. ¬φ[X/nu′,Y /mu],

• It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

• A QCNF implementation of the algorithm consistently
outperforms current solvers.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

• We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

• The QBF is gradually extended to a SAT formula (exponential
size)

• For a formula ∃X∀Y . φ no valuation of X or Y repeats.

• If ¬φ[X/nu,Y /mu], we never try ν ′ s.t. ¬φ[X/nu′,Y /mu],

• It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

• A QCNF implementation of the algorithm consistently
outperforms current solvers.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

• We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

• The QBF is gradually extended to a SAT formula (exponential
size)

• For a formula ∃X∀Y . φ no valuation of X or Y repeats.

• If ¬φ[X/nu,Y /mu], we never try ν ′ s.t. ¬φ[X/nu′,Y /mu],

• It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

• A QCNF implementation of the algorithm consistently
outperforms current solvers.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

• We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

• The QBF is gradually extended to a SAT formula (exponential
size)

• For a formula ∃X∀Y . φ no valuation of X or Y repeats.

• If ¬φ[X/nu,Y /mu], we never try ν ′ s.t. ¬φ[X/nu′,Y /mu],

• It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

• A QCNF implementation of the algorithm consistently
outperforms current solvers.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

• We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

• The QBF is gradually extended to a SAT formula (exponential
size)

• For a formula ∃X∀Y . φ no valuation of X or Y repeats.

• If ¬φ[X/nu,Y /mu], we never try ν ′ s.t. ¬φ[X/nu′,Y /mu],

• It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

• A QCNF implementation of the algorithm consistently
outperforms current solvers.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

• We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

• The QBF is gradually extended to a SAT formula (exponential
size)

• For a formula ∃X∀Y . φ no valuation of X or Y repeats.

• If ¬φ[X/nu,Y /mu], we never try ν ′ s.t. ¬φ[X/nu′,Y /mu],

• It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

• A QCNF implementation of the algorithm consistently
outperforms current solvers.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Janota, M., Grigore, R., and Marques-Silva, J. (2010).
Counterexample guided abstraction refinement algorithm for
propositional circumscription.
In JELIA ‘10.

Janota, M. and Marques-Silva, J. (2011).
On deciding MUS membership with qbf.
In CP ‘11, to appear.

Mneimneh, M. N. and Sakallah, K. A. (2003).
Computing vertex eccentricity in exponentially large graphs:
QBF formulation and solution.
In SAT ‘03.

Remshagen, A. and Truemper, K. (2005).
An effective algorithm for the futile questioning problem.
JAR ‘05.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

