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Definition

Given: dXVY.¢, where ¢ is a propositional formula
Question: Is there value vector v such that YY.¢[X/v]?
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Given: dXVY.¢, where ¢ is a propositional formula
Question: Is there value vector v such that YY.¢[X/v]?

Note that ¢ is an arbitrary Boolean forumula, and hence, VX3Y .¢
is solved by negating: -V X3Y.¢ = IXVY .—¢

Example

Ix1, x2 Vy1, y2. (x1V x2) = (yi/Ay2)

solution: x1 =0,x =0
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Motivation

o 25, ﬂg complete

e interesting problems in this class, e.g. propositional
circumscription [Janota et al., 2010],
Al [Remshagen and Truemper, 2005],
LTS diameter [Mneimneh and Sakallah, 2003],
MUS-membership [Janota and Marques-Silva, 2011]

e separate track at QBF Eval
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Looking at Valuations
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Expanding into SAT

IXVY. ¢ — SAT( A\ ¢[Y/u])

“GB\”
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Abstraction

e Consider only some set of valuations W C BlYI
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Abstraction

e Consider only some set of valuations W C BlYI

N ¢lY/ul

new

e Any solution to the problem is a solution to the abstraction

A olY/m = N olY/ul

ueBlYl pew

e But not the other way around, a solution to an abstraction is
not necessarily a solution to the original problem.
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CEGAR Loop

input : IXYY.6
output: (true,v) if there exists v s.t. VY ¢[X/v],
(false,—) otherwise

W10
while true do

if outc; = false then

end

then
| return (true, v)
else
‘ Grow W
end
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(outcy, v) <= SAT(A ,ew #[Y /1)) // find a candidate

‘ return (false,-) // no candidate found

if v is a solution // solution check

// refinement
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Testing for Solution

A value v is a solution to IXVY.¢ iff

VY.0[X/v] iff UNSAT(—¢[X/v])
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Testing for Solution

A value v is a solution to IXVY.¢ iff
YY.$[X/v] iff UNSAT(=¢[X/v])
If SAT(—¢[X/v]) by some p, then p is a counterexample to v
Example
Ixa, %2 Vy1, yo. (xa vV x2) = (yi/y2)
e candidate: x3 =1, =0
e counterexamples: y; =0,y =0

y1=0,2=1
yi=Ly»=0
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Refinement
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Refinement

W/
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The Algorithm

input : IXYY.6
output: (true,v) if there exists v s.t. VY ¢[X/v],
(false,-) otherwise

w1

while true do
(outcy, v) < SAT(w) // find a candidate solution
if outc; = false then
‘ return (false,-) // no candidate found
end

if outcy = false then

end
w e w A Y /i)

end
(INESC-ID & UCD) CEGAR for 2QBF

(outcy, 1) <— SAT (—¢[X/v]) // find a counterexample
‘ return (true, v) // candidate is a solution

// refine
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Properties of Refinement

Y 1
X
1|1 1/0
|11 1/0
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Consequences of Refinement

e No candidate for counterexample appears more than once,
therefore the upper bound on the number of iterations is:

min(2X1, 211
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Consequences of Refinement

e No candidate for counterexample appears more than once,
therefore the upper bound on the number of iterations is:

min(2X1, 211

e Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for u s.t.

=X /vl Amax ([{v" | ~o[X /v, Y /ul})
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Why the Choice of Counterexamples Matters?

e Consider an invalid QBF and nightmare vs. jackpot scenarios.

Xy
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Results

‘ strugs ‘ QuBE7.1 ‘ gbf2circ ‘ AReQS ‘ AReQS-H

2gbf 10 pre (114) | 30 93 37 101 101
circ pre (117) 6 113 117 117 117
icore pre (140) 30 23 33 62 62

robots pre (999) | 516 921 647 974 975
noprepro (232) 15 47 18 51 55
total (1602) | 597 | 1197 852 | 1305 | 1310
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Results QuBE/AReQS-H

QuBE7.1 and AReQS-H [s]
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Results AReQS/AReQS-H

comparison of AReQS with and without heuristics [s]
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Results AReQS/AReQS-H lIterations

number of iterations of the CEGAR loop
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Conclusions

e We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.
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Conclusions

We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

The QBF is gradually extended to a SAT formula (exponential
size)

For a formula 3XVY. ¢ no valuation of X or Y repeats.

If =p[X/nu, Y /mu], we never try v/ s.t. =¢[X/nd', Y /mu],

It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

A QCNF implementation of the algorithm consistently
outperforms current solvers.
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