Abstraction-Based Algorithm for 2QBF

Mikolas Janotal Joao Marques-Silval?

1 INESC-ID/IST, Lisbon, Portugal
2 CASL/CSI, University College Dublin, Ireland

(INESC-ID & UCD) CEGAR for 2QBF 1/18

Definition

Given: dXVY.¢, where ¢ is a propositional formula
Question: Is there value vector v such that YY.¢[X/v]?

(INESC-ID & UCD) CEGAR for 2QBF 2 /18

Definition

Given: dXVY.¢, where ¢ is a propositional formula
Question: Is there value vector v such that YY.¢[X/v]?

Note that ¢ is an arbitrary Boolean forumula, and hence, VX3Y .¢
is solved by negating: -V X3Y.¢ = IXVY .—¢

(INESC-ID & UCD) CEGAR for 2QBF 2 /18

Definition

Given: dXVY.¢, where ¢ is a propositional formula
Question: Is there value vector v such that YY.¢[X/v]?

Note that ¢ is an arbitrary Boolean forumula, and hence, VX3Y .¢
is solved by negating: -V X3Y.¢ = IXVY .—¢

Example

Ix1, x2 Vy1, y2. (x1V x2) = (yi/Ay2)

solution: x1 =0,x =0

(INESC-ID & UCD) CEGAR for 2QBF 2 /18

Motivation

o 25, ﬂg complete

e interesting problems in this class, e.g. propositional
circumscription [Janota et al., 2010],
Al [Remshagen and Truemper, 2005],
LTS diameter [Mneimneh and Sakallah, 2003],
MUS-membership [Janota and Marques-Silva, 2011]

e separate track at QBF Eval

(INESC-ID & UCD) CEGAR for 2QBF

3/18

Looking at Valuations

Y M

(INESC-ID & UCD) CEGAR for 2QBF 4 /18

Looking at Valuations

Y M

(INESC-ID & UCD) CEGAR for 2QBF 4 /18

Looking at Valuations

Y M

(INESC-ID & UCD) CEGAR for 2QBF 4 /18

Looking at Valuations

Y H

X

{110 01 1
vi1]1 1|1 1

(INESC-ID & UCD) CEGAR for 2QBF 4 /18

Looking at Valuations

Y p

X

¢l1]o 0[1 1

v[i]1 11 1
olY/ul

(INESC-ID & UCD) CEGAR for 2QBF 4 /18

Expanding into SAT

IXVY. ¢ — SAT(A\ ¢[Y/u])

“GB\”

(INESC-ID & UCD) CEGAR for 2QBF 5 /18

Expanding into SAT

IXVY. ¢ — SAT(N\ 8l /ul

/JGB‘Yl
Example
Ix1, %2 Vy1, y2. (x1V x2) = (yiAy2
(x1 Vx2) = (0A0)
A (X1 \/X2) = (0/\1)
A (x1Vx2)=(1A0)
A (X1 \/X2)Z>(1/\1)

(INESC-ID & UCD) CEGAR for 2QBF

5 /18

Expanding into SAT

IXVY. ¢ — SAT(N\ 8l /ul

,UGB‘YI
Example
Ix1, %2 Vy1, y2. (x1V x2) = (yiAy2
(x1 Vx2) = (0A0)
A (X1 \/Xz)i(O/\l)
A (x1Vx2)=(1A0)
VAN (X1 \/X2)Z>(1/\1)

(INESC-ID & UCD) CEGAR for 2QBF

5 /18

Abstraction

e Consider only some set of valuations W C BlYI

N\ ¢l /ul

new

(INESC-ID & UCD) CEGAR for 2QBF 6 /18

Abstraction

e Consider only some set of valuations W C BlYI

N\ ¢l /ul

new

e Any solution to the problem is a solution to the abstraction

A olY/m = N olY/ul

ueBlYl pew

(INESC-ID & UCD) CEGAR for 2QBF 6 /18

Abstraction

e Consider only some set of valuations W C BlYI

N ¢lY/ul

new

e Any solution to the problem is a solution to the abstraction

A olY/m = N olY/ul

ueBlYl pew

e But not the other way around, a solution to an abstraction is
not necessarily a solution to the original problem.

(INESC-ID & UCD) CEGAR for 2QBF 6 /18

CEGAR Loop

input : IXYY.6
output: (true,v) if there exists v s.t. VY ¢[X/v],
(false,—) otherwise

W10
while true do

if outc; = false then

end

then
| return (true, v)
else
‘ Grow W
end
(INESC-ID & UCD) CEGAR for 2QBF

(outcy, v) <= SAT(A ,ew #[Y /1)) // find a candidate

‘ return (false,-) // no candidate found

if v is a solution // solution check

// refinement

7 /18

CEGAR Loop

input : IXYY.6
output: (true,v) if there exists v s.t. VY ¢[X/v],
(false,-) otherwise

W10
while true do

if outc; = false then

end

then

| return (true, v)
else

‘ Grow W

end
(INESC-ID & UCD) CEGAR for 2QBF

(outcy, v) <= SAT(A ,ew #[Y /1)) // find a candidate

‘ return (false,-) // no candidate found

if v is a solution // solution check

// refinement

7 /18

Testing for Solution

A value v is a solution to IXVY.¢ iff

VY.0[X/v] iff UNSAT(—¢[X/v])

(INESC-ID & UCD) CEGAR for 2QBF 8 /18

Testing for Solution

A value v is a solution to IXVY.¢ iff
VY.p[X/v] iff UNSAT(=¢[X/v])

If SAT(—¢[X/v]) by some p, then p is a counterexample to v

(INESC-ID & UCD) CEGAR for 2QBF

8 /18

Testing for Solution

A value v is a solution to IXVY.¢ iff
YY.$[X/v] iff UNSAT(=¢[X/v])
If SAT(—¢[X/v]) by some p, then p is a counterexample to v
Example
Ixa, %2 Vy1, yo. (xa vV x2) = (yi/y2)
e candidate: x3 =1, =0
e counterexamples: y; =0,y =0

y1=0,2=1
yi=Ly»=0

(INESC-ID & UCD) CEGAR for 2QBF 8 /18

Refinement

(INESC-ID & UCD) CEGAR for 2QBF 9 /18

Refinement

(INESC-ID & UCD) CEGAR for 2QBF 9 /18

Refinement

W/

(INESC-ID & UCD) CEGAR for 2QBF 9 /18

The Algorithm

input : IXYY.6
output: (true,v) if there exists v s.t. VY ¢[X/v],
(false,-) otherwise

w1

while true do
(outcy, v) < SAT(w) // find a candidate solution
if outc; = false then
‘ return (false,-) // no candidate found
end

if outcy = false then

end
w e w A Y /i)

end
(INESC-ID & UCD) CEGAR for 2QBF

(outcy, 1) <— SAT (—¢[X/v]) // find a counterexample
‘ return (true, v) // candidate is a solution

// refine

10 / 18

Properties of Refinement

Y 1
X
1|1 1/0
|11 1/0

(INESC-ID & UCD) CEGAR for 2QBF 11 /18

Properties

of Refinement

7
X
12) 1/0
vy 1/0

W/

(INESC-ID & UCD)

CEGAR for 2QBF

11 /18

Properties of Refinement

><>§/X><

W/

(INESC-ID & UCD) CEGAR for 2QBF 11 /18

Consequences of Refinement

e No candidate for counterexample appears more than once,
therefore the upper bound on the number of iterations is:

min(2X1, 211

(INESC-ID & UCD) CEGAR for 2QBF 12 /18

Consequences of Refinement

e No candidate for counterexample appears more than once,
therefore the upper bound on the number of iterations is:

min(2X1, 211

e Heuristic: look for such counterexamples that are also
counterexamples to many other candidates, look for u s.t.

=X /vl Amax ([{v" | ~o[X /v, Y /ul})

(INESC-ID & UCD) CEGAR for 2QBF 12 /18

Why the Choice of Counterexamples Matters?

e Consider an invalid QBF and nightmare vs. jackpot scenarios.

Xy

(INESC-ID & UCD) CEGAR for 2QBF 13 /18

Why the Choice of Counterexamples Matters?

e Consider an invalid QBF and nightmare vs. jackpot scenarios.

Xy

(INESC-ID & UCD) CEGAR for 2QBF 13 /18

Why the Choice of Counterexamples Matters?

e Consider an invalid QBF and nightmare vs. jackpot scenarios.

Xy

2lX]

(INESC-ID & UCD) CEGAR for 2QBF 13 /18

Why the Choice of Counterexamples Matters?

e Consider an invalid QBF and nightmare vs. jackpot scenarios.

Xy

(INESC-ID & UCD) CEGAR for 2QBF 13 /18

Results

‘ strugs ‘ QuBE7.1 ‘ gbf2circ ‘ AReQS ‘ AReQS-H

2gbf 10 pre (114) | 30 93 37 101 101
circ pre (117) 6 113 117 117 117
icore pre (140) 30 23 33 62 62

robots pre (999) | 516 921 647 974 975
noprepro (232) 15 47 18 51 55
total (1602) | 597 | 1197 852 | 1305 | 1310

(INESC-ID & UCD)

CEGAR for 2QBF

14 / 18

Results QuBE/AReQS-H

QuBE7.1 and AReQS-H [s]

103 n
102 SR o
.‘.' ".'; o
101 * Y L. o " o o
I 3 s° .
T I LL,
& 100 2 W
o NIy TN .
EE o 1 .\'::' . "
10" o ER »g .o
~ 2 A
102 14— &
el & *
10-3 T

QUBE7.1

(INESC-ID & UCD) CEGAR for 2QBF 15 / 18

Results AReQS/AReQS-H

comparison of AReQS with and without heuristics [s]

108 -
10 T
) e
e A
101 0 * o0 = -t
T
0 . oo’
© 10° .
[o ®e
: SRR
10° 1
102 |- gl .
10-3 T

AReQS

(INESC-ID & UCD) CEGAR for 2QBF 16 / 18

Results AReQS/AReQS-H lIterations

number of iterations of the CEGAR loop

10°

10* S
I ..l o : ’ L]
gOS 2 2 3

& e

G p? ol .
101 (] 4 :

10° .

AReQS

(INESC-ID & UCD) CEGAR for 2QBF 17 /18

Conclusions

e We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

e We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

e The QBF is gradually extended to a SAT formula (exponential
size)

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

e We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

e The QBF is gradually extended to a SAT formula (exponential
size)

e For a formula 3XVY. ¢ no valuation of X or Y repeats.

(INESC-ID & UCD) CEGAR for 2QBF 18 / 18

Conclusions

We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

The QBF is gradually extended to a SAT formula (exponential
size)

For a formula 3XVY. ¢ no valuation of X or Y repeats.
If =p[X/nu, Y /mu], we never try v/ s.t. =¢[X/nd', Y /mu],

(INESC-ID & UCD) CEGAR for 2QBF

18 / 18

Conclusions

We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

The QBF is gradually extended to a SAT formula (exponential
size)

For a formula 3XVY. ¢ no valuation of X or Y repeats.
If =p[X/nu, Y /mu], we never try v/ s.t. =¢[X/nd', Y /mu],

It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

(INESC-ID & UCD) CEGAR for 2QBF

18 / 18

Conclusions

We designed an algorithm for solving 2QBF, which is using
SAT solver as an oracle.

The QBF is gradually extended to a SAT formula (exponential
size)

For a formula 3XVY. ¢ no valuation of X or Y repeats.

If =p[X/nu, Y /mu], we never try v/ s.t. =¢[X/nd', Y /mu],

It is to be expected that the algorithm will work well for
formulas where counterexamples takes out many candidates.

A QCNF implementation of the algorithm consistently
outperforms current solvers.

(INESC-ID & UCD) CEGAR for 2QBF

18 / 18

Janota, M., Grigore, R., and Marques-Silva, J. (2010).
Counterexample guided abstraction refinement algorithm for
propositional circumscription.

In JELIA '10.

Janota, M. and Marques-Silva, J. (2011).
On deciding MUS membership with qbf.
In CP ‘11, to appear.

Mneimneh, M. N. and Sakallah, K. A. (2003).

Computing vertex eccentricity in exponentially large graphs:
QBF formulation and solution.

In SAT ‘03.

Remshagen, A. and Truemper, K. (2005).
An effective algorithm for the futile questioning problem.
JAR ‘05.

(INESC-ID & UCD) CEGAR for 2QBF

18 / 18

