
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002 505

Search Pruning Techniques in SAT-Based
Branch-and-Bound Algorithms for the Binate

Covering Problem
Vasco M. Manquinho and João P. Marques-Silva

Abstract—Covering problems are widely used as a modeling
tool in electronic design automation. Recent years have seen
dramatic improvements in algorithms for the unate/binate cov-
ering problem (UCP/BCP). Despite these improvements, BCP is
a well-known computationally hard problem with many existing
real-world instances that currently are hard or even impossible to
solve. In this paper we apply search pruning techniques from the
Boolean satisfiability domain to branch-and-bound algorithms for
BCP. Furthermore, we generalize these techniques, in particular
the ability to infer and record new constraints from conflicts
and the ability to backtrack nonchronologically, to situations
where the branch-and-bound BCP algorithm backtracks due to
bounding conditions.

Experimental results, obtained on representative real-world in-
stances of the UCP/BCP, indicate that the proposed techniques are
effective and can provide significant performance gains for specific
classes of instances.

Index Terms—Backtrack search, binate covering problem,
branch-and-bound, nonchronological backtracking, propositional
satisfiability.

I. INTRODUCTION

T HE BINATE covering problem (BCP) finds many appli-
cations in electronic design automation (EDA) [10], [13],

examples of which include logic and sequential synthesis (state
minimization and exact encoding), cell-library binding, and
minimization of Boolean relations [13]. In recent years, several
powerful algorithmic techniques have been proposed for
solving BCP, allowing dramatic improvements in the ability to
solving large and complex instances of BCP. Examples of these
techniques include, among others, partitioning [4], limit-lower
bound [5], negative-thinking [9] (for unate covering), and
linear-programming lower bounds [11]. Despite these improve-
ments, and as with other NP-hard problems, new effective
techniques may allow significant gains, both in the amount of
search and in the run times. Besides efficiency improvements
in solving existing problem instances, the ultimate benefit of

Manuscript received January 18, 2000; revised October 1, 2001. This work
was supported in part by Fundação para a Ciência e Tecnologia (FCT) under
Projects 1597/95, 11249/1998, 11266/1998, and 34504/1999. This paper was
recommended by Associate Editor R. Gupta.

V. M. Manquinho is with the Computer Science Department, IST/Technical
University of Lisbon, 1000-029 Lisbon, Portugal (e-mail: vasco.man-
quinho@inesc.pt).

J. P. Marques-Silva is with the Computer Science Department, IST/Technical
University of Lisbon. He is also with INESC-ID and with Cadence European
Labs, Lisbon, 1000-029 Lisbon, Portugal (e-mail: jpms@sat.inesc.pt).

Publisher Item Identifier S 0278-0070(02)02848-8.

devising new effective algorithmic techniques is the ability to
solve new classes of problem instances.

The main objective of this paper is to propose additional tech-
niques for pruning the amount of search in branch-and-bound
algorithms for solving covering problems. These techniques
correspond to generalizations and extensions of similar tech-
niques proposed in the Boolean satisfiability (SAT) domain,
where they have been shown to be highly effective [2], [15],
[18]. In particular, and to our best knowledge, we provide
for the first time conditions which enable branch-and-bound
algorithms to backtracknonchronologicallywhenever upper
and lower bound conditions require bounding to take place.
Moreover, we illustrate how value probing techniques can
also be utilized in BCP solvers. One additional contribution
of this paper is detailing the procedures for applying problem
reduction techniques from the BCP domain to backtrack search
algorithms. The proposed contributions allow the tight integra-
tion of BCP and SAT techniques within a unified algorithm for
BCP.

This paper is organized as follows. In Section II the no-
tation used throughout the paper is introduced. Afterwards,
branch-and-bound covering algorithms are briefly reviewed,
giving emphasis to solutions based on SAT algorithms. In
Sections IV and V we propose new techniques for reducing
the amount of search. In particular, we show how effective
search pruning techniques from the SAT domain can be gener-
alized and extended to the BCP domain. These include clause
recording, nonchronological backtracking search strategies,
and selective probing of variable assignments. Experimental
results are presented in Section VI, and the paper concludes in
Section VII.

II. DEFINITIONS

An instance of a covering problem is defined as follows:

minimize

subject to

(1)

where is a nonnegative integer cost associated with variable
and denote the set

of linear constraints. If every entry in the matrix
is in the set and , then is an

instance of theunate covering problem(UCP). Moreover, if the

0278-0070/02$17.00 © 2002 IEEE

506 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

entries of belong to and
, then is an instance of thebinate covering

problem(BCP). Observe that if is an instance of the binate
covering problem, then each constraint can be interpreted as a
propositional clause.

Conjunctive normal form (CNF) formulas are introduced
next. The utilization of CNF formulas is justified by noting that
the set of constraints of an instanceof BCP is equivalent
to a CNF formula and because some of the search pruning
techniques described in the remainder of the paper are easier to
convey in this alternative representation.

A propositional formula in conjunctive normal form(CNF)
denotes a Boolean function . The formula

consists of a conjunction of propositional clauses, where each
clause is a disjunction of literals, and a literalis either a vari-
able or its complement . If a literal assumes value 1, then
the clause issatisfied. If all literals of a clause assume value 0,
the clause isunsatisfied. Clauses with only one unassigned lit-
eral are referred to asunit. Finally, clauses with more than one
unassigned literal are said to beunresolved. In a search proce-
dure, aconflict is said to be identified when at least one clause
is unsatisfied.

When a clause is unit (with only one unassigned literal) an as-
signment can be implied. For example, consider a propositional
formula which contains clause and assume
that . For to be satisfied, must be assigned value
1 due to . Therefore, we say that implies
due to or that clause explainsthe assignment .
These logical implications correspond to the application of the
unit clause rule [6] and the process of repeatedly applying this
rule is calledBoolean constraint propagation[15].1 It should be
noted that throughout the remainder of this paper some famil-
iarity with backtrack search SAT algorithms is assumed. The
interested reader is referred to the references (see for example
[1] and [15]).

Observe that a clause can be
interpreted as a linear inequality , and the
complement of a variable , can be represented by .
For instance, the set of clauses , ,

is equivalent of having the inequalities

These constraints could also be represented in a matrix like

Notice that this definition fully complies with (1) for BCP, e.g.,
.

Covering problems are often solved by branch-and-bound al-
gorithms [4], [9], [16]. In these cases, each node of the search
tree corresponds to a selected unassigned variable and the two

1In the UCP/BCP literature the repeated application of the unit clause rule
corresponds to the identification of essential columns [3].

branches out of the node represent the assignment of 1 and 0 to
that variable. These variables are nameddecision variables. The
first node is called theroot (or the top node) of the search tree
and corresponds to thefirst decision level. The decision level
of each decision is defined as one plus the decision level of the
previous decision.

III. B ACKTRACK SEARCH ALGORITHMS FORCOVERING

PROBLEMS

The most widely known approach for solving covering prob-
lems is the classical branch-and-bound procedure [10] that min-
imizes a cost function, in whichupper boundson the value of the
cost function are identified for each solution to the constraints,
andlower boundson the value of the cost function are estimated
considering the current set of variable assignments. Each time
a new lower cost solution is found, the upper bound value is
updated. The search can be pruned whenever the lower bound
estimation is higher than or equal to the most recently computed
upper bound. In these cases we can guarantee that a better solu-
tion cannot be found with the current variable assignments and
therefore the search can be pruned. The algorithms described in
[4], [11], and [16] follow this approach.

There are several lower bound estimation procedures that can
be used, namely the ones based on linear-programming relax-
ations [11] or Lagrangian relaxations [14], but the approxima-
tion of a maximum independent set of clauses [5] is the most
commonly used one. The tightness of the lower bounding pro-
cedure is crucial for the algorithm’s efficiency, because with
higher estimates of the lower bound, the search can be pruned
earlier. For a better understanding of lower bounding mecha-
nisms, a method of approximation of a maximum independent
set of clauses is described in Section III-D.

Covering algorithms also incorporate several powerful reduc-
tion techniques such as clause and variable dominance, row
consensus, Gimpel’s reduction [8], the limit lower bound the-
orem [5], and partitions [4]. A comprehensive overview of these
methods can be found in [3] and [16].

In the next few sections we briefly review alternative ap-
proaches for solving BCP, which are known to be competitive
for specific types of instances, e.g., when the constraints are hard
to solve. These approaches, namely the ones based on Boolean
satisfiability algorithms, incorporate different pruning strategies
which are not commonly used in branch-and-bound algorithms
for solving BCP. Moreover, in Section III-B an algorithm which
combines features from both approaches is described.

A. SAT-Based Linear Search Algorithm

In [1], Barth describes how to solve pseudo-Boolean opti-
mization (i.e., a generalization of BCP) using a propositional
satisfiability (SAT) algorithm. However, the algorithm de-
scribed in [1] is based on the Davis–Putnam [6] procedure,
which is well known not to be competitive with modern
state-of-the-art SAT solvers for the most representative
real-world SAT problem instances. In [12], a new algorithm
based on the GRASP SAT algorithm [15] is proposed, which is
able to obtain better experimental results. Both these two algo-
rithms interpret each instance of the binate covering problem

MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 507

Fig. 1. SAT-based linear search algorithm.

as an instance of the SAT problem defined by the constraints
, but with the additional constraint of having to find

a solution with cost lower than an upper bound value. The
possible values assumed by the cost function for the different
assignments to the problem variables range from
0, when all variables are assigned value 0, to , when all
variables with are assigned value 1. Initially, the upper
bound on the value of the cost function is defined to be

(2)

SAT-based linear search algorithms perform a linear search on
the possible values of the cost function, starting from the highest
[given by (2)], at each step requiring the next computed solu-
tion to have a cost less than the most recently computed upper
bound. Whenever a new solution is found which satisfies all the
constraints, the upper bound is updated to

(3)

If the resulting instance of SAT is not satisfiable, then the so-
lution to the instance of BCP is given by . Starting with the

given by (2), SAT-based linear search algorithms consist of
applying the following steps (see Fig. 1).

1) Create a new constraint . This in-
equality basically requires that a computed solution must
have a cost lower than the best (lowest) cost found so far.

2) Solve the resulting instance of the satisfiability problem,
defined on linear inequalities. Adapting most SAT algo-
rithms to deal with this generalization is straightforward
[1].

3) If the instance is satisfiable, then update according
to (3) and go back to 1. Otherwise, the solution to the
covering problem is . In those cases where the initial
upper bound is never updated, the problem instance does
not have a solution.

B. SAT-Based Branch-and-Bound Algorithm

Additional SAT-based BCP algorithms have been proposed.
In [12] a new algorithmic organization is described, consisting
in the integration of several features from SAT algorithms in

Fig. 2. SAT-based branch-and-bound algorithm.

a branch-and-bound procedure,bsolo, to solve the binate cov-
ering problem. Thebsoloalgorithm incorporates the most sig-
nificant features from both approaches, namely the bounding
procedure and reduction techniques from branch-and-bound al-
gorithms and the search pruning techniques from SAT algo-
rithms.

Originally, the bsolo algorithm presented in [12] already
incorporated the main pruning techniques of the GRASP
SAT algorithm [15]. To our knowledge,bsolo was the first
branch-and-bound algorithm for solving BCP that imple-
mented a nonchronological backtracking search strategy,
clause recording, and identification of necessary assignments.
Mainly due to an effective conflict analysis procedure which
allows nonchronological backtracking steps to be identified,
bsoloperforms better than other branch-and-bound algorithms
in specific classes of instances, as shown in [12]. However,
nonchronological backtracking was limited to one specific type
of conflict, i.e., logical conflicts.2 In Section IV we describe
how to apply nonchronological backtracking also to other types
of conflicts. The main steps of the algorithm (see Fig. 2) can
be described follows.

1) Initialize the upper bound to the highest possible value as
defined in (2).

2) Apply functionreduce_problemto reduce the problem in-
stance dimension by applying the techniques from stan-
dard branch-and-bound covering algorithms. Afterwards,

2See Section III-C for a full description of all types of conflicts.

508 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

identify problem partitions and branch on a given deci-
sion variable (i.e., make a decision assignment).

3) The functionconsistent_statechecks whether the current
state yields a conflict. This is done by applying Boolean
constraint propagation and, in case a conflict is reached,
by invoking the conflict analysis procedure, recording rel-
evant clauses and proceeding with the search procedure or
backtrack if necessary.

4) If a solution to the constraints has been identified, up-
date the upper bound according to (3) and issue an upper
bound conflict to backtrack on the search tree. (Observe
that the only way to reduce the value of the current solu-
tion is to backtrack with the objective of finding a solution
with a lower cost.)

5) Estimate a lower bound given the current variable assign-
ments. If this value is higher than or equal to the current
upper bound, issue a lower bound conflict and bound the
search by applying the conflict analysis procedure to de-
termine which decision node to backtrack to (using func-
tion consistent_state). Continue the search from Step 2).

C. Bound Conflicts

In bsolotwo types of conflicts can be identified:logical con-
flicts, that occur when at least one of the problem instance con-
straints becomes unsatisfied, andbound conflicts, that occur
when the lower bound is higher than or equal to the upper bound.
When logical conflicts occur, the conflict analysis procedure
from GRASP is applied and determines to which decision level
the search should backtrack to (possibly in a nonchronological
manner).

However, the other type of conflict is handled differently. In
bsolo, whenever a bound conflict is identified, a new clausemust
be added to the problem instance in order for a logical conflict to
be issued and, consequently, to bound the search. This require-
ment is inherited from the GRASP SAT algorithm where, for
guaranteeing completeness, both conflicts and implied variable
assignmentsmustbe explained in terms of the existing variable
assignments [15]. With respect to conflicts, each recorded con-
flict clause is built using the assignments that are deemed re-
sponsible for the conflict to occur. If the assignment
(or) is considered responsible, the literal (respec-
tively, literal) is added to the conflict clause. This literal ba-
sically states that in order to avoid the conflict one possibility is
certainly to have instead the assignment (respectively,

). Clearly, by construction, after the clause is built its
state is unsatisfied. Consequently, the conflict analysis proce-
dure has to be called to determine to which decision level the
algorithm must backtrack. Hence the search is bound.

Whenever a bound conflict is identified, one possible ap-
proach to building a clause to bound the search would be to
include all decision variables in the search tree. In this case,
the conflict would always depend on the last decision variable.
Therefore, backtracking due to bound conflicts would neces-
sarily be chronological (i.e., to the previous decision level),
hence guaranteeing that the algorithm would be complete.
Suppose that the set
corresponds to all the search tree decision assignments and

is the clause to be added due to a bound conflict. Then we

Fig. 3. Algorithm for computing aMIS.

would have . Again, the drawback
of this approach (which was used in [12]) is that backtracking
due to bound conflicts is always chronological, since it de-
pends on all decision assignments made. In Section IV, we
propose a new procedure to build these clauses, which enables
nonchronological backtracking due to bound conflicts.

D. Maximum Independent Set of Clauses

The maximum independent set of clauses (MIS) is a greedy
method to estimate a lower bound on the value of the cost func-
tion based on an independent set of clauses. (A more detailed
definition can be found for example in [3].)

The greedy procedure consists of finding a setMISof disjoint
unate clauses, i.e., clauses with only positive literals and with no
literals in common among them. Since maximizing the cost of
MIS is an NP-hard problem, a greedy computation is used, as
shown in Fig. 3. The lower bound returned by this method can
be arbitrarily far from the optimum and its effectiveness largely
depends on the clauses included inMIS. Usually, one chooses
the clause which maximizes the ratio between its weight and its
number of elements.

The minimum cost for satisfyingMIS is alower boundon the
solution of the problem instance and is given by

(4)

where

(5)

IV. SAT-BASED PRUNING TECHNIQUES FORBCP

One of the main features ofbsolo is the ability to back-
track nonchronologically when conflicts occur. This feature
is enabled by the conflict analysis procedure inherited from
the GRASP SAT algorithm. However, as illustrated in Sec-
tion III-C, in the original bsolo algorithm nonchronological
backtracking was only possible for logical conflicts. In the case
of a bound conflict all the search tree decision assignments were
used to explain the conflict. Therefore, these conflicts would
always depend on the last decision level and backtracking
would necessarily be chronological.

In this section, we describe how to compute sets of assign-
ments that explain bound conflicts. Moreover, we show that
these assignments are not in general associated with all decision
levels in the search tree; hence nonchronological backtracking
can take place due to bound conflicts.

MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 509

A. Dependencies in Bound Conflicts

A bound conflict in an instance of the BCPC arises when the
lower bound is equal to or higher than the upper bound. This
condition can be written as ,
where is the cost of the assignments already made,

is a lower bound estimate on the cost of satisfying the
clauses not yet satisfied (as given for example by an indepen-
dent set of clauses), and is the best solution found so
far. From the previous equation, we can readily conclude that

and are the unique components involved in
each bound conflict. (Notice that is just the lowest
value of the cost function for all assignments satisfying the
constraints that have been computed earlier in the search
process.) Therefore, we will analyze both and
components in order to establish the assignments responsible
for a given bound conflict.

We start by studying . Clearly, the variable assign-
ments that cause the value of to grow are solely those
assignments with a value of 1. Hence, we can define a set of lit-
erals for the current search path , such that each variable in

has positive cost and is assigned value 1. This condition is
stated as follows:

(6)

which basically states that to decrease the value of the cost func-
tion (i.e.,) at least one variable that is assigned value 1
has instead to be assigned value 0.

We now consider . Let MISbe the independent set of
clauses, obtained by the method described in Section III-D, that
determines the value of . Observe that each clause in
MIS is part ofMISbecause it is neither satisfied nor has common
literals with any other clause inMIS. Clearly, for each clause
MIS these conditions only hold due to the literals inthat are
assigned value 0. If any of these literals was assigned value 1,

would certainly not be inMIS since it would be a satisfied
clause. Consequently, we can define a set of literals thatexplain
the value of

(7)

Now, as stated above, a bound conflict is solely due to the two
components and . Hence, this bound conflict
will hold as long as the bound conflict clause is unsatisfied

(8)

(Observe that the set union symbol in the previous equation de-
notes a disjunction of literals.) As long as this clause is unsatis-
fied, the values of and will remain unchanged,
and so the bound conflict will exist. We can thus use this unsat-
isfied clause to analyze the bound conflict and decide where
to backtrack to, using the conflict analysis procedure of GRASP
[15]. We should observe that backtracking can be nonchrono-
logical because clause does not necessarily depend on all
decision assignments. Moreover, the clause recording mecha-
nism from GRASP allows to be used later in the search
process to prune the search tree. If these clauses would depend
on all decision assignments, clause recording would not be used

since the same set of decision assignments is never repeated in
the search process.

Bound conflicts arise during the search process whenever we
have . Notice that when con-
straints are satisfied, because the independent set
is empty (all clauses are satisfied) and is equal to the cost
of the new upper bound. Therefore, when we update
with the new value, we have and
a bound conflict is issued in order to backtrack in the search tree.
These bound conflicts just represent a particular case, and so the
same process we described in this section is applied in order to
build the conflict clause.

In order to illustrate a bound conflict situation, consider the
following example.3 Suppose we have ,

, and in our problem
formulation where defines the objective func-
tion. Suppose also that some decision variables assignments are
made, namely in decision level 1, in decision
level 2, and in decision level 3. Therefore, must be as-
signed value 1, a solution is found for the problem, and we have

. A bound conflict is then issued and in order to
solve this conflict we must have either or . From
(8) we build the bound conflict clause . After back-
tracking and undo the decision variable assignment ,
from the bound conflict clause we must have . Again,
must be assigned value 1 and a new solution is found. Now we
have because of the assignment of 1 to. From
(8) we build a new bound conflict clause and the search
process can backtrack nonchronologically to decision level 1.
Notice that the decision assignment in level 2 is considered ir-
relevant and the search is pruned at that decision level.

B. Reducing Dependencies in Bound Conflicts

With respect to (8) a more careful analysis allows us to con-
clude that not all literals in are actually necessary. Suppose
that the lower bound estimation is higher than the upper bound
and define this difference as

. It is clearly true that if was decreased by ,
the bound conflict would still hold since we would then have

. Therefore, we may conclude
that not all assignments in are necessary to explain the
conflict, since if some assignments were not made, we would
still have a bound conflict. In this case, it is possible to remove
some literals from as long as their total cost is lower than
or equal to .

In order to implement this technique, one interesting problem
is to decide which literals should be removed from. In bsolo
an heuristic procedure is used for removing the literals that have
been assigned at the most recent levels of the decision tree. Con-
sequently, the likelihood of backtracking nonchronologically is
higher, since these conflicts will be more dependent on the ear-
lier levels of the search tree. Notice that if a literalis removed
from , but if to explain the value in , then we
must have and there is no reduction in the dependencies
of the conflict clause .

3This example is necessarily small and solely intended to illustrate the main
points.

510 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

Moreover, it is also interesting to observe that a clause re-
sulting from a bound conflict can be simpler. We have described
how simplifications can be made to the component, but
other simplifications can also be applied to the literals added
due to the independent set of clauses (MIS), i.e., . Suppose
we have a literal , with and let . If only
belongs to one clause of the independent set and its cost is
higher than or equal to the minimum cost of, then can be
removed from . To better understand how this is possible,
suppose instead that . In this situation, would not be
in the independent set (it would be a satisfied clause) and the

component would be lower.4 However, since the cost
of the variable is higher than or equal to the minimum cost of,
the component would be higher, and hence the conflict
would still hold. So, the assignment is irrelevant for the
conflict to arise and literal can be removed from .

C. Applying Dependency Reduction Techniques

For a better understanding of the techniques mentioned in
the paper, we will present an example on how a conflict clause
can be built and the application of the dependency reduction
techniques is effective.

Consider that at some point of the search process we have
from the set of assignments , ,

, , and where all problem variables have a cost of
1 in the cost function. Consider also that we have
from the independent set of clauses ,

, and
where variables , , , , , and are unassigned.

Suppose the best solution found so far has a cost of 5
(). Hence, a bound conflict situation has been
identified, since , and the
search can be bound. As described in Section IV-A, in order
to bound the search, our algorithm will add an unsatisfied
clause explaining the conflict. Afterwards, the GRASP conflict
analysis procedure will be carried out to determine to which
level of the search tree can the algorithm backtrack without
loosing completeness.

The conflict explanation clause is created as proposed in Sec-
tion IV-A. From (6) we have and from
(7) we have . Therefore, the bound
conflict explanation clause can be built as proposed in (8) and
we have . The bound conflict
clauses implicity state which variables should be unassigned or
have a different value to proceed the search. In this example,
either , , or should be assigned value 0 or or be
assigned value 1.

In Section IV-B we presented some techniques to reduce de-
pendencies in conflict clauses from bound conflicts. The appli-
cation of such techniques is important since with a smaller set
of dependencies it is more likely that a nonchronological back-
track step can occur.

Notice that in our small example, the lower bound estimation
is higher than the best solution found so far and we have

4In fact, if theC:lower would be recomputed all over again, it is not guar-
anteed that it would decrease. Nevertheless, we know that without clause!

satisfied byx = 1,MISnf! g it is still an independent set of clauses. There-
fore,MISnf! g can be used as alow estimation ofC:lower.

as defined in Section IV-B. In these conditions, a greedy proce-
dure can be applied to choose which literal to remove from.
For instance, if we remove from , no longer justifies

, but it is sufficient to justify . Notice
that with the bound conflict still holds and, there-
fore, is enough to explain the bound
conflict.

No more reductions can be made due to, since now we
have , but reductions can be made on . Notice that

only appears in one clause of the independent set and is as-
signed value 0. If was instead assigned value 1, the conflict
would still hold since would be higher. The value of
is irrelevant for the conflict situation and can be removed from

. Therefore, we have as the bound
conflict clause for this example.

D. More on Dependencies in Bound Conflicts

As we have shown in Section IV-A, whenever a bound con-
flict occurs, it is necessary to establish which assignments ex-
plain the conflict. The main purpose for doing so is that the con-
flict may not depend on the most recent decision assignments
and, consequently, nonchronological backtracking can occur.

Finding a set of decision assignments which explain the con-
flict is straightforward, but if the size of the explanation can be
reduced, it is more likely that the consequent backtrack step be
nonchronological. Therefore, it is of key importance to find a
small set of assignments that explains each bound conflict. In the
previous section we showed how this set of assignments can be
identified and also proposed some simplifications which might
be applied to reduce the size of the explanation. This section il-
lustrates how a more careful analysis can introduce additional
simplifications, allowing the elimination of further assignments
from the conflict explanation.

As illustrated in Section IV-A, the number of dependencies
from in bound conflicts can be reduced whenever
, where . However, the

same principle can be applied to dependencies from .
Notice that if we remove a subset of clauses from MIS
(used to obtain) such that

(9)

where

(10)

then the bound conflict will still hold since
, but is now obtained from the

independent set of clauses . Therefore, the
bound conflict clause can still be built using (8), but the

can now be reformulated as

(11)

Moreover, the simplifications described in Section IV-A can
also be applied to the resulting .

One should note that the reduction on the number of de-
pendencies depends on which clauses we choose to include in

. If a clause fromMIS is selected with assigned literals
belonging to because of other clauses inMISor due to ,

MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 511

Fig. 4. Algorithm for reducingMIS.

Fig. 5. Algorithm for reducingC:path dependencies.

then the dependencies are exactly the same. Therefore, it is de-
sirable that be a subset ofMISsuch that the number of
dependencies in be minimum. As an example of reducing

, in the Appendix we propose a model for computing a min-
imum number of dependencies in , given a fixed .

In order to get a small set of dependencies,bsolohas a greedy
procedure which heuristically approximates the best
that would reduce the number of dependencies to a minimum.
We know from (7) that if a clause fromMIShas an unsatisfied
literal , then will be in . If we can remove at most
clauses fromMIS, the literals which occur in more clauses of

than the value of will always be in some clause in
MIS, and from (7), must be in . Therefore, the clauses to
be removed fromMIS are the ones that maximize the number
of literals that belong to fewer clauses inMIS than the value of

, i.e., the number of literals that can still be removed from
due to this procedure. Fig. 4 outlines this procedure. At each

step, the clause which contains more literals with potential to be
eliminated from is selected. If after this reduction in we
still have , the reduction of due to described in
Section IV-A can also be applied.

So far we have presented several procedures to reduce the
number of dependencies in bound conflicts. Among others,
it was explained how to reduce dependencies when the lower
bound value is higher than the upper bound (). After
the application of such reduction procedures, we usually have

and, therefore, we have a set which explains a
bound conflict on the form .5

Let be a literal such that and . Then is
in only due to the component of the bound conflict.
Let MIS be the independent set, computed with the procedure
described in Fig. 5, which is used to obtain the value of .
If there is a satisfied clause such that is the only literal
which currently satisfies , then can be removed from

5In (8),! explained a conflict on the formC:upper � C:path+C:lower.

under certain conditions. Namely, all other literals ofmust
be positive, unassigned, and must not intersectMIS (so that
can be added toMIS). Moreover, all of them must have a cost
higher than or equal to and no clause inMIS can contain .

This reduction step can be made because ifwas not as-
signed or , would be in the independent set and the
lower bound value would not decrease. Therefore, literalcan
be deemed irrelevant to explain the bound conflict and can be
removed from .

Suppose that variables , , and belong to the cost func-
tion and . If a bound conflict occurs, from (6) would
be in . However, suppose that clause is
satisfied only due to , i.e., and are unassigned. If and

do not belong to any clause inMIS, can be removed from
because is not relevant for the conflict. If variable

was unassigned or assigned value 0,would be inMISand
the bound conflict would still occur.

E. Handling Reduction Techniques

As mentioned in the previous sections, for implementing
nonchronological backtracking each implied variable assign-
ment needs to be properly explained in order to guarantee
that the resulting branch-and-bound algorithm is complete.
Consequently, it is necessary that, whenever there is a variable
assignment implied due to the application of a reduction tech-
nique (e.g., variable dominance, limit lower bound theorem,
etc.), a new clause is built and added to the problem instance as
an explanation for that assignment. Clearly, we could create this
new clause by using all decision assignments in the decision
tree, but this would negatively affect the ability of the search
algorithm to backtrack nonchronologically. As before, we must
identify conditions for using a reduced set of assignments
instead of all decision assignments. In this section we illustrate
how this is done for assignments implied due to the application
of the limit lower bound theorem [4]. For the other reduction
techniques, a similar approach is used.

The limit lower bound theorem is applied to a variable
whenever

(12)

In these cases, the assignment is implied.
Let be a clause that must be added in order to explain the

assignment , which is implied by applying the limit lower
bound theorem. Notice that this theorem is applied because of
the values of and . Thus, the assignments that
explain these two values are also the explanation sought for the
assignment . Therefore, clause is constructed as
follows:

(13)

where and are the literals which explain the values in
and , as described in Section IV-A. Therefore,

becomes a new unit clause and consequently implies the as-
signment . (Hence, we say that the assignment is
explained by .) Moreover, clause can also be used later
on in the search process to imply necessary assignments if its

512 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

state becomes unit. In those cases, the limit lower bound is ap-
plied automatically during the Boolean constraint propagation
phase (see Section II).

V. PROBING VARIABLE ASSIGNMENTS

The decisions made during the search process are vital for the
efficiency of the algorithm. With this in mind, in this section we
propose a new strategy that anticipates whether a decision leads
to a conflict. The process of probing variable assignments con-
sists of testing the assignment of 0 or 1 to unassigned variables
and, if a conflict is reached while testing an assignmentto a
variable , then the opposite valueis implied for variable .

Probing the assignment of a Boolean valueto a variable
consists of analyzing the result of Boolean constraint propaga-
tion in case the assignment is made. In cases where no conflict
(logic or due to lower bound) is detected, the opposite value of
, , is assigned to and the same analysis is performed. In

either case, whenever a conflict is reached the opposite value of
the assignment that led to the conflict situation is automatically
implied. This procedure is referred to ascomplete probing of
variable assignments.

However, this probing process involves significant computa-
tional overhead, mainly due to the application of Boolean con-
straint propagation and lower bound computation. An alterna-
tive approach is to use insteadrestricted probing of variable as-
signments. In restricted probing, when we test the assignment
of value to a variable , our main goal is to simply check
whether the assignment results in an immediate increase of the
lower bound value (by increasing). Hence, instead of
performing complete Boolean constraint propagation, we only
check the binary clauses (with just two free literals) that contain
variable . By assigning , these clauses either become sat-
isfied or unit, in which case new assignments will be implied.
However, in restricted probing, Boolean constraint propagation
is not carried out any further. Instead, we check whether these
deduced assignments increase the value of the lower bound.
If the lower bound becomes equal to or higher than the upper
bound, then the complemented value of, , can be implied for

.
Suppose that at a certain point of the search process, we have

, , and and all vari-
ables assigned value 1 would add just 1 to the cost function.
Notice that the limit lower bound theorem cannot be applied
since , which is higher than
the cost of every variable in the cost function. Suppose we have
(among others) the following set of unresolved clauses still to
satisfy:

;
;

;
;

and our approximation of the maximum independent set which
is used to estimate is:

;
.

Suppose that we would test the assignment . In this
case, just by checking the binary clauses (and) we can

conclude that and are necessary assignments.
Therefore, if we make the assignment , we would have

(since would become satisfied) and
, resulting in a lower bound conflict. Since the assignment

would result in a conflicting condition, we know that
is a necessary assignment due to the application of re-

strictive probing on the assignment .
Restricted probing of variable assignments can be formally

described as follows. Let us consider the assignment of value
to and let be the set of unassigned variables in the
independent set of clausesMIS used to compute . Let

and be two variable sets defined as follows:

(14)

and define the sets of the variables which are immediately
implied value 1 whenever and , respectively.
Moreover, these variables do not belong to any clause inMISand
have positive cost.6 Consequently, these are the variables that
will increase the lower bound if an assignment tois made.
Clearly, the cost associated with set is the sum of the costs
of the variables in .

Let be a function such that

(15)

Therefore, if the condition

(16)

is true, then the complemented value of, is a necessary as-
signment for .

Notice that the limit lower bound theorem [5] can be inter-
preted as a particular case of probing variable assignments. The
limit lower theorem is applied to a variable when

and can only imply the value
0 for . The process of probing variable assignments is able to
imply both value 0 or 1 and can be applied even when

. Moreover, probing can also
be applied to variables that are not in the cost function. We
should observe, however, that this procedure is computation-
ally less efficient than the limit lower bound when applied to
the same cases.

Section IV-E explains why a new clause must be added when
the limit lower bound theorem is applied. Furthermore, it also
described how this clause should be built. In probing variable
assignments, as in any other problem reduction technique, the
same must be done and a new clause must be built. However, for
each probing reduction technique a different set of explanations
must be considered.

Clearly, restricted probing depends on the lower bound
value. Consequently, the explanations for the value of
and must be present in the new clause. Moreover, we

6Observe thatx can be inV (MIS) as long as enough variables inV (MIS)
are picked and cause the decrease in the value of the lower bound to be offset
by the increase in the path value.

MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 513

also have to consider the clauses infrom (14) used during
probing. In addition to and , the clauses in
are also necessary for probing to yield necessary assignments.
Consequently, we must also identify the set of assignments
responsible for these clauses to be in. An explanation for
this fact is the set of literals assigned value 0 in those clauses.
Let be the set of literals assigned value 0 in the clauses of

that are considered while probing the assignment .
Thus, the clause explains the implied variable assignment
obtained by applying probing and can be defined as follows:

to explain the assignment

to explain the assignment

(17)

where and are defined as in Section IV. Notice that when
created is unit, and so it implies the value of as intended.

VI. EXPERIMENTAL RESULTS

In this section, we include experimental results of several
algorithms in two different sets of benchmarks. Table I presents
results for instances of the MCNC benchmark suite [17],
whereas the remaining tables present results for instances of
the minimum-size test pattern problem [7].

For the experimental results given below, the CPU times were
obtained on a SUN Sparc Ultra I, running at 170 MHz, with 100
MByte of physical memory. In all cases the maximum CPU time
that each algorithm was allowed to spend on any given instance
was 1 h. When the algorithm was unable to solve the instance
due to time restrictions, the best upper bound found at the time is
shown. Otherwise, if no upper bound was computed, the reason
of failure is shown, which was either due to the time ()
or memory () limits imposed. In Table I, besides the time
taken and the number of decisions made to solve the instances
(), it is also shown the number of nonchronological back-
tracks () and the highest jump made in the search tree ().

In Table I we present a comparison betweenbsolo and
scherzoon the MCNC benchmark set.7 scherzois a classical
branch-and-bound algorithm with powerful problem reduction
techniques and very effective for this set of benchmarks, since
most clauses are unate (i.e., only have positive literals). Clearly,
scherzois able to solve more instances and is, in general,
faster. In this benchmark set, the main features ofbsolo are
not extensively used. We note, however, that there are some
problem instances in which fewer decisions are made bybsolo.

In general, the bookkeeping associated with implementing
the proposed SAT-based pruning techniques can introduce
noticeable computational overhead inbsolo. For the instances
above, the gains obtained from applying the SAT-based tech-
niques are small since nonchronological backtracking is almost
nonexisting, suggesting that further work must be done toward
reducing the total number of dependencies.

As noted earlier, SAT-based BCP algorithms are better suited
for instances whose constraints are hard to satisfy. In Table II we
present the results ofbsolofor instances from the minimum-size

7Results from other algorithms not shown in this table since they were unable
to solve any of the instances in the given time limit.

TABLE I
RESULTS FORbsoloAND scherzo

test pattern problem [7]. (As shown in [7], the minimum-size test
pattern problem can be formulated as a special case of the binate
covering problem.) Each problem instance captures the test pat-
tern minimization problem in which the objective is to compute
test patterns with a minimum number of specified primary input
assignments. For example, denotes the problem
instance defining the minimum-size test pattern problem for cir-
cuit duke2 with fault given by line Fv5 stuck-at 1.

In this table, and besides the CPU time and the number of
decisions, the number of nonchronological backtracks and the
highest jump made in the search tree are also included. On the
left side,bsolodoes not use the bound explanation techniques
described in Section IV and nonchronological backtracking is
just due to logical conflicts [12]. On the right side, both the
upper and lower bound explanation of Section IV and restricted
probing of variable assignments are used. As we can readily
conclude, for most instancesbsolois able to increase the number
of nonchronological backtracks while significantly reducing the
amount of search and the execution time.

Table II shows that the use of conflict explanations increases
the number of nonchronological backtracks, thus proving that
nonchronological backtracking can be observed in bound con-
flicts. We should note that in earlier versions ofbsolo [12],
only logical-based conflicts were able to produce nonchrono-
logical backtracks. Moreover, by using bound conflict explana-
tions,bsoloreduces the number of explored nodes on the search
tree, therefore improving its efficiency. In several cases we can
observe an increase on both the number of nonchronological
backtracks and on the highest jump in the search tree. For ex-
ample, instance could not be solved withbsolo
when not using explanations, but was solved in less than one
third of the given time limit with the identification of dependen-
cies in bound conflicts.

Finally, in Table III we present a comparison between sev-
eral algorithms for this set of instances. Table III clearly shows
that the general purpose algorithm for solving 01-Integer Linear
Programslp-solveperforms poorly. The same is true forscherzo

514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

TABLE II
LOWER BOUND EXPLANATIONS

TABLE III
ALGORITHM COMPARISON

which is not able to apply its main features in solving these in-
stances. The SAT-based linear search algorithmopbdp [1] is
able to solve most of the benchmarks. Similarly, we can observe
that min-prime[12] can also solve most instances, with better
results mainly due to the incorporation of the features from
GRASP SAT algorithm [15]. Moreover,bsolois in general faster
than bothopbdpandmin-prime, mainly due to the new tech-
niques proposed in this paper. One should note that in almost

all cases wherebsolotakes more time thanmin-primeto solve
the problem instance, the number of decisions made bybsolois
smaller than the number of decisions made bymin-prime. The
time overhead of the features incorporated inbsolowhich are
not present inmin-prime(namely problem reduction techniques,
lower bound estimation, limit lower bound, probing, and expla-
nation for bound conflicts, among others) are responsible for
these results.

MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 515

VII. CONCLUSION

This paper extends well-known search pruning techniques,
from the Boolean satisfiability domain, to branch-and-bound al-
gorithms for solving the unate and binate covering problems.
Besides detailing a branch-and-bound BCP algorithm built on
top of a SAT solver, the paper describes conditions that allow for
nonchronological backtracking in the presence of bound con-
flicts. In addition, the paper also describes how reduction tech-
niques, commonly used in BCP solvers, can be redefined and
utilized within a conflict analysis procedure, in such a way that
nonchronological backtracking is enabled. To our best knowl-
edge, this is the first time that branch-and-bound algorithms are
augmented with the ability for backtracking nonchronologically
in the presence of conflicts that result from bound conditions.
Moreover, we also describe simplification techniques for the
explanations of bound conflicts. Finally, we have shown how
probing techniques, also commonly used in the Boolean satis-
fiability domain, can be extended to algorithms for the binate
covering problem.

Preliminary results obtained on several instances of the unate
and binate covering problems indicate that the proposed tech-
niques are indeed effective and can be significant for specific
classes of instances.

A key aspect of the proposed techniques is the identification
of a small set of dependencies explaining each identified con-
flict. In each case the main goal is to minimize the size of this set
of dependencies, while guaranteeing that the resulting set still
provides a sufficient explanation for the given conflict to occur.
Future research work will naturally include seeking further sim-
plification of the clauses created for bound conflicts. Moreover,
additional techniques from the SAT domain can potentially be
applied to solving BCP. These techniques are likely to be signif-
icant for instances of covering problems with sets of constraints
that are hard to satisfy.

APPENDIX

MINIMIZING DEPENDENCIES INBOUND CONFLICTS

In this Appendix we derive an optimization model for com-
puting a minimum number of dependencies for explaining the
current value ofMIS. Notice that we are not explicitly mini-
mizing the size of , but solely the size of taking into
account the set of literals in , which is assumed to befixed.

Without loss of generality, let , with , be the
set of literals in clauses ofMIS that have been assigned value 0.
Furthermore, let , with , denote each clause
in MIS that contains literal that is assigned value 0. We define
variable to be 1 if and only if literal is included in the final
set of dependencies explaining the value ofMIS (i.e.,). In
addition, we define to be 1 if and only if is not included
in the resulting reducedMIS.

Each literal is only required to be included in the final set of
dependencies provided at least one of the clauses containing
is also included in the finalMIS. Thus we can say that selecting

to be in the final set of dependencies implies that some clause

containing is also selected to include the finalMIS. Conse-
quently, this constraint can be formulated as follows:

(18)

In addition, the number of clauses eliminated fromMIS has
to beno greaterthan . As a result, another constraint is

(19)

Moreover, our goal is to minimize the number of dependen-
cies that arenot in , since these are known to be already in-
cluded in . Thus, any literal 8 already included in must
not be considered for reducing the total number of dependen-
cies. This yields the additional set of constraints

if (20)

Finally, the cost function associated with minimizing the
number of dependencies from the lower bound estimate
becomes

minimize (21)

Putting it all together, we get the overall BCP problem for-
mulation

minimize

subject to

if

if

(22)
Clearly, and in general, our goal is not to solve exactly

the above BCP formulation, but only to obtain approximate
heuristic solutions.

REFERENCES

[1] P. Barth, “A Davis–Putnam enumeration algorithm for linear pseudo-
Boolean optimization,” Max Plank Institute Computer Science, Tech-
nical Report MPI-I-95-2-003, 1995.

[2] R. Bayardo, Jr. and R. Schrag, “Using CSP look-back techniques to solve
real-world SAT instances,” inProc. Nat. Conf. Artificial Intelligence,
1997.

[3] O. Coudert, “Two-level logic minimization, An overview,”Integration,
VLSI J., vol. 17, no. 2, pp. 677–691, Oct. 1993.

[4] , “On solving covering problems,” inProc. ACM/IEEE Design Au-
tomation Conf., June 1996.

[5] O. Coudert and J. C. Madre, “New ideas for solving covering problems,”
in Proc. ACM/IEEE Design Automation Conf., June 1995.

[6] M. Davis and H. Putnam, “A computing procedure for quantification
theory,”J. Assn. Computing Machinery, vol. 7, pp. 201–215, 1960.

[7] P. F. Flores, H. C. Neto, and J. P. Marques Silva, “An exact solution to the
minimum-size test pattern problem,” inProc. IEEE Int. Conf. Computer
Design, Oct. 1998, pp. 510–515.

[8] J. Gimpel, “A reduction technique for prime implicant tables,”IEEE
Trans. Electron. Computers, vol. EC-14, pp. 535–541, Aug. 1965.

8Observe thatl must correspond to a variablex , wherex is currently as-
signed value 1.

516 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

[9] E. Goldberg, L. Carloni, T. Villa, R. K. Brayton, and A. L. Sangio-
vanni-Vincentelli, “Negative thinking by incremental problem solving:
Application to unate covering,” inProc. ACM/IEEE Int. Conf. Com-
puter-Aided Design, 1997, pp. 91–98.

[10] G. Hachtel and F. Somenzi,Logic Synthesis and Verification Algorithms:
Kluwer, 1996.

[11] S. Liao and S. Devadas, “Solving covering problems using LPR-based
lower bounds,” inProc. ACM/IEEE Design Automation Conf., 1997, pp.
117–120.

[12] V. M. Manquinho, P. F. Flores, J. P. Marques Silva, and A. L. Oliveira,
“Prime implicant computation using satisfiability algorithms,” in
Proc. IEEE Int. Conf. Tools with Artificial Intelligence, Nov. 1997, pp.
232–239.

[13] D. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[14] G. L. Nemhauser and L. Wolsey,Integer and Combinatorial Optimiza-
tion. New York: Wiley, 1988.

[15] J. P. Marques Silva and K. A. Sakallah, “GRASP: A new search algo-
rithm for satisfiability,” inProc. ACM/IEEE Int. Conf. Computer-Aided
Design, Nov. 1996, pp. 220–227.

[16] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Explicit and implicit algorithms for binate covering problems,”IEEE
Trans. Computer-Aided Design, vol. 16, no. 7, pp. 677–691, July 1997.

[17] S. Yang, “Logic synthesis and optimization benchmarks user guide,”
Microelectronics Center of North Carolina, Jan. 1991.

[18] H. Zhang, “SATO: An efficient propositional prover,” inProc. Int. Conf.
Automated Deduction, July 1997, pp. 272–275.

Vasco M. Manquinhoobtained the B.Sc. and M.Sc. degrees from the Technical
University of Lisbon, Portugal, in 1996 and 1999, respectively. He is currently
pursuing the Ph.D. degree at the Technical University of Lisbon.

Since 2001, he has been a Teaching Assistant at the Computer Science De-
partment, Technical University of Lisbon, Portugal. His research interests in-
clude unate/binate covering, integer programming, and propositional satisfia-
bility.

João P. Marques-Silvaobtained the B.Sc. and M.Sc. degrees at the Technical
University of Lisbon, Portugal, in 1988 and 1991, respectively, and the Ph.D.
degree at the University of Michigan, Ann Arbor, in 1995.

Since 1995, he has been an Assistant Professor at the Computer Science De-
partment, Technical University of Lisbon, Portugal, and a member of the Ca-
dence European Laboratories. His research interests include algorithms for dis-
crete optimization problems, namely satisfiability, unate/binate covering and in-
teger programming, and applications of discrete optimization in EDA.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

