IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002 505

Search Pruning Techniques in SAT-Based
Branch-and-Bound Algorithms for the Binate
Covering Problem

Vasco M. Manquinho and Jo&o P. Marques-Silva

Abstract—Covering problems are widely used as a modeling devising new effective algorithmic techniques is the ability to
tool in electronic design automation. Recent years have seensplve new classes of problem instances.

dramatic improvements in algorithms for the unate/binate cov- ; g : ; e _
ering problem (UCP/BCP). Despite these improvements, BCP is . The main ObJ?CtNe ofthis paperis to propose additional tech
a well-known computationally hard problem with many existing nlqugs for pruning Fhe amou!’lt of search in branCh'and'pound
real-world instances that currently are hard or even impossible to  @lgorithms for solving covering problems. These techniques
solve. In this paper we apply search pruning techniques from the correspond to generalizations and extensions of similar tech-
Boolean satisfiability domain to branch-and-bound algorithms for - niques proposed in the Boolean satisfiability (SAT) domain,

BCP. Furthermore, we generalize these techniques, in particular ; ;
the ability to infer and record new constraints from conflicts where they have been shown to be highly effective [2], [15],

and the ability to backtrack nonchronologically, to situations [18]. In .parti.cular, a”‘?',to our _beSt knowledge, we provide
where the branch-and-bound BCP algorithm backtracks due to for the first time conditions which enable branch-and-bound
bounding conditions. algorithms to backtrackonchronologicallywhenever upper

Experimental results, obtained on representative real-world in- gnd lower bound conditions require bounding to take p|ace_

stances of the UCP/BCP, indicate that the proposed techniques are pmoreover. we illustrate how value probing techniques can

effective and can provide significant performance gains for specific - . B -
classes of instances. also be utilized in BCP solvers. One additional contribution

. . of this paper is detailing the procedures for applying problem
Index Terms—Backtrack search, binate covering problem, roqyction techniques from the BCP domain to backtrack search
branch-and-bound, nonchronological backtracking, propositional . S . -
satisfiability. algorithms. The proposed contributions allow the tight integra-
tion of BCP and SAT techniques within a unified algorithm for
BCP.
. INTRODUCTION This paper is organized as follows. In Section Il the no-

HE BINATE covering problem (BCP) finds many app"_tation used throughout the paper is introduced. Afterwards,
cations in electronic design automation (EDA) [10], [13]pranch—and—bound covering algorithms are briefly reviewed,
examples of which include logic and sequential synthesis (st&¥ing emphasis to solutions based on SAT algorithms. In
minimization and exact encoding), cell-library binding, an€ctions IV and V we propose new techniques for reducing
minimization of Boolean relations [13]. In recent years, severdle€ amount of search. In particular, we show how effective
powerful algorithmic techniques have been proposed féfarch pruning techniques from the SAT domain can be gener-
solving BCP, allowing dramatic improvements in the ability t@lized and extended to the BCP domain. These include clause
solving large and complex instances of BCP. Examples of thd§§ording, nonchronological backtracking search strategies,
techniques include, among others, partitioning [4], limit-loweknd selective probing of variable assignments. Experimental
bound [5], negative-thinking [9] (for unate covering), an(qesu[ts are presented in Section VI, and the paper concludes in
linear-programming lower bounds [11]. Despite these improve&ction VIL.
ments, and as with other NP-hard problems, new effective
techniques may allow significant gains, both in the amount of [I. DEFINITIONS
search and in the run times. Besides efficiency improvement

Sp ; ; - .
in solving existing problem instances, the ultimate benefit of An instancer’ of a covering problem is defined as follows:

n

. . . . minimize Z Cj - Ty
Manuscript received January 18, 2000; revised October 1, 2001. This work - (1)
was supported in part by Fundagéo para a Ciéncia e Tecnologia (FCT) under j=1
Projects 1597/95, 11249/1998, 11266/1998, and 34504/1999. This paper was subject to A-x>b ze€ {0’ 1}n

recommended by Associate Editor R. Gupta.

V. M. Manquinho is with the Computer Science Department, IST/Technicth . L iated with iabl
University of Lisbon, 1000-029 Lisbon, Portugal (e-mail: vasco.manl/N€rec; IS a nonnegative integer cost associated with variable

quinho@inesc.pt). z;,1 < j<nandA-z > b,z € {0, 1}" denote the set

J
J. P. Marques-Silva is with the Computer Science Department, IST/Technigdl ,;, |inear constraints. If every entry in tf‘(@n X n) matrix
University of Lisbon. He is also with INESC-ID and with Cadence Europe

an, . . . .
Labs, Lisbon, 1000-029 Lisbon, Portugal (e-mail: jpms@sat.inesc.pt). Ql is in the set{0, 1} and bz =1,1<4 < m,thenC IS an
Publisher Item Identifier S 0278-0070(02)02848-8. instance of theinate covering probleflCP). Moreover, if the

0278-0070/02$17.00 © 2002 IEEE



506 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

entriesa;; of A belongto{—1, 0, 1} andb; = 1— [{a;,: a;; = branches out of the node represent the assignment of 1 and 0 to
—1,1 < j < n}l|, thenCis an instance of theinate covering that variable. These variables are nardedision variablesThe
problem(BCP). Observe that if” is an instance of the binatefirst node is called theoot (or the top node) of the search tree
covering problem, then each constraint can be interpreted aanal corresponds to tHest decision level The decision level
propositional clause. of each decision is defined as one plus the decision level of the
Conjunctive normal form (CNF) formulas are introducegbrevious decision.
next. The utilization of CNF formulas is justified by noting that
the set of constraints of an instan€eof BCP is equivalent I1l. BACKTRACK SEARCH ALGORITHMS FOR COVERING
to a CNF formula and because some of the search pruning PROBLEMS
techniques described in the remainder of the paper are easier
convey in this alternative representation.
A propositional formulae in conjunctive normal fornfiCNF)
denotes a Boolean functigh {0, 1}™ — {0, 1}. The formula
 consists of a conjunction of propositional clauses, where e

t?he most widely known approach for solving covering prob-
lems is the classical branch-and-bound procedure [10] that min-
imizes a cost function, in whialpper boundsn the value of the

295t function are identified for each solution Fo the congtraints,

clausew is a disjunction of literals, and a literéis either a vari- andlower bound®n the value of the cost function are estimated

able; or its complement;. If a literal assumes value 1, thencon3|der|ng the current set of variable assignments. Each time

the clause isatisfied If all literals of a clause assume value O,a r:jevtv :jOV\_’I_ir cost S%IUt'Onb'S found,dth(; upper ?rc:ur;d Va“ée 'Sd

the clause isinsatisfied Clauses with only one unassigned jj-/PCated. Tne search can be prunec whenever the flower boun

eral are referred to asit. Finally, clauses with more than Oneestlmat|0n is higher than or equal to the most recently computed

unassigned literal are said to baresolvedIn a search proce- upper bound. In these cases we can guarantee th?t a better solu-

dure, aconflictis said to be identified when at least one claustﬁm cannot be found with the current variable assignments and

is un,satisfied therefore the search can be pruned. The algorithms described in
When a clause is unit (with only one unassigned literal) an a[é]’ [11], and [16] follow this approach.

signment can be implied. For example, consider a propositio%aelThsegg a;z:qee\lle:ilelog‘llgsbgggg deiar?ﬁgg? p:gc?:rlrj]rri_snth?;f;an
formula ¢ which contains clause = (x; + 72) and assume used, y : prog Ing X

thatzs — 1. Fore to be satisfiedz; must be assigned Valueations [11] or Lagrangian relaxations [14], but the approxima-
1 due tow. Therefore, we say that, — 1 impliesz; = 1 tion of a maximum independent set of clauses [5] is the most

due tow or that clausev explainsthe assignment; = 1. commonly useq one. The tlght'ness, of the' lower bounding pro-
5dure is crucial for the algorithm’s efficiency, because with

These logical implications correspond to the application of t::a h imat fthe | bound. th h b q
unit clause rule [6] and the process of repeatedly applying t \er estimates of the fower bound, the search can be prune
earlier. For a better understanding of lower bounding mecha-

rule is calledBoolean constraint propagatidi5].t It should be ~: hod of I ¢ . ind q
noted that throughout the remainder of this paper some fanfiiSMs: @ method of approximation of a maximum independent
t of clauses is described in Section IlI-D.

iarity with backtrack search SAT algorithms is assumed. THE

interested reader is referred to the references (see for exam Igoverlng algorithms also incorporate se_veral powgrful reduc-
[1] and [15]). tion techniques such as clause and variable dominance, row

consensus, Gimpel's reduction [8], the limit lower bound the-
orem [5], and patrtitions [4]. A comprehensive overview of these
methods can be found in [3] and [16].

In the next few sections we briefly review alternative ap-
proaches for solving BCP, which are known to be competitive
for specific types of instances, e.g., when the constraints are hard
to solve. These approaches, namely the ones based on Boolean
satisfiability algorithms, incorporate different pruning strategies
which are not commonly used in branch-and-bound algorithms
1 —x3 0. for solving BCP. Moreover, in Section I11-B an algorithm which
combines features from both approaches is described.

Observe that a clause = (I; + --- + ), & < n can be
interpreted as a linear inequality + --- + I, > 1, and the
complement of a variable;, z; can be represented dy— «;.
For instance, the set of clausés, + z2 + z3), (T2 + Ta),
(x1 + T3) is equivalent of having the inequalities

1+ x4+ 23 >1
—372—.’1742—1

These constraints could also be represented in a matrix like
A. SAT-Based Linear Search Algorithm

1 1 1 1
-1 -1 >1-1]. In [1], Barth describes how to solve pseudo-Boolean opti-
1 -1 0 mization (i.e., a generalization of BCP) using a propositional

satisfiability (SAT) algorithm. However, the algorithm de-
Notice that this definition fully complies with (1) for BCP, e.g.,scribed in [1] is based on the Davis—Putnam [6] procedure,
bp=1-2= -1 which is well known not to be competitive with modern
Covering problems are often solved by branch-and-bound state-of-the-art SAT solvers for the most representative
gorithms [4], [9], [16]. In these cases, each node of the sean@al-world SAT problem instances. In [12], a new algorithm
tree corresponds to a selected unassigned variable and theli&ed on the GRASP SAT algorithm [15] is proposed, which is
ble to obtain better experimental results. Both these two algo-

1in the UCP/BCP literature the repeated application of the unit clause ru?e . . . .
corresponds to the identification of essential columns [3]. rithms interpret each instance of the binate covering problem



MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 507

int min_-prime(p) {

uwb=> ¢j;

while (ub>0) {
p=¢ U {3c =z <ub};
status = solve_sat(y);
p=¢—{2 ¢ z; <ub};
if (status == SATISFIABLE)

ub = ZC]' Ty

else break;

}

return ub;

}

Fig. 1. SAT-based linear search algorithm.

as an instance of the SAT problem defined by the constraints
A -z > b, but with the additional constraint of having to find

a solution with cost lower than an upper bound value. The
possible values assumed by the cost function for the different
assignments to the problem variabjes, ..., z,} range from

0, when all variables are assigned value 3,39, c;, whenall
variables withc; > 0 are assigned value 1. Initially, the upper
boundub on the value of the cost function is defined to be

int bsolo(yp) {
ub=3¢;+1;
while (TRUE) {
if (!reduce_problem())
return ub;
identify_partitions();
decide();
if (!consistent.state())
return ub;
while (Estimate .LB() > ub) {
Issue_LB_based_conflict();
if (!'consistent_state())
return ub;
}

}
}

int consistent_state() {
do {

while (Deduce() == CONFLICT)

if (Diagnose() == CONFLICT)
return FALSE;

apply_deduction = FALSE;

if (Solution_found()) {
Update_ub();

n

ub ::jg: c; + 1.

=1

Issue_UB_based_conflict();
apply-deduction = TRUE;

} while (apply-deduction);
return TRUE;

SAT-based linear search algorithms perform a linear search on

the possible values of the cost function, starting from the highest

[given by (2)], at each step requiring the next computed soltig. 2. SAT-based branch-and-bound algorithm.

tion to have a cost less than the most recently computed upper

bound. Whenever a new solution is found which satisfies all thgbranch-and-bound procedubsolq to solve the binate cov-

constraints, the upper bound is updated to

n
ub:E cj - Ty
j=1

ering problem. Thésoloalgorithm incorporates the most sig-
nificant features from both approaches, namely the bounding
procedure and reduction techniques from branch-and-bound al-
gorithms and the search pruning techniques from SAT algo-
rithms.

If the resulting instance of SAT is not satisfiable, then the so- Originally, the bsolc_J algorit_hm preser_ned in [12] already
lution to the instance of BCP is given . Starting with the incorporated the main pruning techniques of the GRASP
ub given by (2), SAT-based linear search algorithms consist 8AT algorithm [15]. To our knowledgehsolo was the first

applying the following steps (see Fig. 1).

1) Create a new constraipt;_, ¢; - z; < wub. This in-

branch-and-bound algorithm for solving BCP that imple-
mented a nonchronological backtracking search strategy,

equality basically requires that a computed solution mugl@gse recording, and ic_ientificat_ion of necessary assignm_ents.

have a cost lower than the best (lowest) cost found so fjfainly due to an effective conflict analysis procedure which
2) Solve the resulting instance of the satisfiability problen‘fl,”OWS nonchronological backtracking steps to be |dent_|f|ed,

defined on linear inequalities. Adapting most SAT a|gobsoloperforms better than other branch-and-bound algorithms

rithms to deal with this generalization is straightforward SPecific classes of instances, as shown in [12]. However,

[1].

nonchronological backtracking was limited to one specific type

3) If the instance is satisfiable, then updatie according of conflict, i.e., logical conflictg. In Section IV we describe
to (3) and go back to 1. Otherwise, the solution to thigow to gpply nonchr(_)nological backtracki_ng alsoto o_thertypes
covering problem is:b. In those cases where the initialof conflicts. The main steps of the algorithm (see Fig. 2) can

upper bound is never updated, the problem instance d&§sdescribed follows.

not have a solution.

B. SAT-Based Branch-and-Bound Algorithm

Additional SAT-based BCP algorithms have been proposed.
In [12] a new algorithmic organization is described, consisting

1) Initialize the upper bound to the highest possible value as
defined in (2).

2) Apply functionreduce_problerto reduce the problem in-
stance dimension by applying the techniques from stan-
dard branch-and-bound covering algorithms. Afterwards,

in the integration of several features from SAT algorithms in 2See Section 11I-C for a full description of all types of conflicts.



508 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

identify problem partitions and branch on a given deci- maximal.independent_set (¢) {
sion variable (i.e., make a decision assignment). MIS = 0;
3) The functionconsistent_statehecks whether the current do {

w = choose_clause(yp);

MIS = MIS U {w};

¢ = delete_intersecting clauses(yp,w);
} while (o #®);

return MIS;

state yields a conflict. This is done by applying Boolean
constraint propagation and, in case a conflict is reached,
by invoking the conflict analysis procedure, recording rel-
evant clauses and proceeding with the search procedure or
backtrack if necessary.
4) If a solution to the constraints has been identified, up-
date the upper bound according to (3) and issue an upper. 3. Algorithm for computing MIS.
bound conflict to backtrack on the search tree. (Observe
that the only way to reduce the value of the current solwould havew,. = (Z; + =2 + x3 + Z4). Again, the drawback
tion is to backtrack with the objective of finding a solutiorof this approach (which was used in [12]) is that backtracking
with a lower cost.) due to bound conflicts is always chronological, since it de-
5) Estimate a lower bound given the current variable assigmends on all decision assignments made. In Section IV, we
ments. If this value is higher than or equal to the currepropose a new procedure to build these clauses, which enables
upper bound, issue a lower bound conflict and bound tm®nchronological backtracking due to bound conflicts.
search by applying the conflict analysis procedure to de-
termine which decision node to backtrack to (using fund®2- Maximum Independent Set of Clauses
tion consistent_stajeContinue the search from Step 2). The maximum independent set of clauskdS) is a greedy
method to estimate a lower bound on the value of the cost func-
C. Bound Conflicts tion based on an independent set of clauses. (A more detailed
definition can be found for example in [3].)
The greedy procedure consists of finding aM&s of disjoint
QiRate clauses, i.e., clauses with only positive literals and with no

o literals in common among them. Since maximizing the cost of
when the lower bound is higher than or equal to the upper bou 9 9

When logical conflicts occur, the conflict analysis procedur Sis an NP-hard problem, a greedy computation is used, as
g ! ysis p Shown in Fig. 3. The lower bound returned by this method can

from GRASP is applied and determines to which decision Ieygl arbitrarily far from the optimum and its effectiveness largely

the search should backtrack to (possibly in a nonchronologic jpends on the clauses includedvis. Usually, one chooses

manner). . L . : : .
However, the other type of conflict is handled differently. Irtlhe clause which maximizes the ratio between its weight and its

oL e number of elements.
bsolg whenever a bound conflictis identified, a new clanmsest o L .
. . . . The minimum cost for satisfyingllSis alower boundon the
be added to the problem instance in order for a logical conflict to tion of the problem instance and is aiven b
be issued and, consequently, to bound the search. This requ?%EJ : P ! IS glven by

In bsolotwo types of conflicts can be identifiethigical con-
flicts, that occur when at least one of the problem instance ¢
straints becomes unsatisfied, abdund conflicts that occur

ment is inherited from the GRASP SAT algorithm where, for Cost(MIS) = Z Weight(w) (4)
guaranteeing completeness, both conflicts and implied variable WeMIS

assignmentsustbe explained in terms of the existing variableWhere

assignments [15]. With respect to conflicts, each recorded con-

flict clause is built using the assignments that are deemed re- Weight(w) = min c¢;. (5)
sponsible for the conflict to occur. If the assignment= 1 rjEw

(or z; = 0) is considered responsible, the liteml (respec-

tively, literal ;) is added to the conflict clause. This literal ba- IV. SAT-BASED PRUNING TECHNIQUES FORBCP

sically states that in order to avoid the conflict one possibility is . ] -
certainly to have instead the assignment= 0 (respectively, ~One of the main features dfsolois the ability to back-
z; = 1). Clearly, by construction, after the clause is built itgack nonchronolog|cally when C(_)nfhcts occur. Thls_ feature
state is unsatisfied. Consequently, the conflict analysis prode-enabled by the conflict analysis procedure inherited from
dure has to be called to determine to which decision level tHte¢ GRASP SAT algorithm. However, as illustrated in Sec-
algorithm must backtrack. Hence the search is bound. tion IlI-C, in the original bsolo algorithm nonchronological
Whenever a bound conflict is identified, one possible afpacktracking was only possible for logical conflicts. In the case
proach to building a clause to bound the search would be @ba bound conflict all the search tree decision assignments were
include all decision variables in the search tree. In this casesed to explain the conflict. Therefore, these conflicts would
the conflict would always depend on the last decision variab@ways depend on the last decision level and backtracking
Therefore, backtracking due to bound conflicts would nece#ould necessarily be chronological.
sarily be chronological (i.e., to the previous decision level), In this section, we describe how to compute sets of assign-
hence guaranteeing that the algorithm would be completeents that explain bound conflicts. Moreover, we show that
Suppose that the sdtr; = 1,2z, = 0,23 = 0, x4 = 1} these assignments are notin general associated with all decision
corresponds to all the search tree decision assignments bawels in the search tree; hence nonchronological backtracking
wye 1S the clause to be added due to a bound conflict. Then wan take place due to bound conflicts.



MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 509

A. Dependencies in Bound Conflicts since the same set of decision assignments is never repeated in

A bound conflict in an instance of the Ba@Parises when the h€ search process. _
lower bound is equal to or higher than the upper bound. ThisBound conflicts arise during the search process whenever we

condition can be written a€.path + Clower > C.upper, haveC.path + C.lower > C.upper. Notice that when con-

where C.path is the cost of the assignments already madggraints are satisfiecd].lower_z_ 0 because Fhe independent set
C.lower is a lower bound estimate on the cost of satisfying tHa €MPY (all clauses are satisfied) arighath is equal to the cost
clauses not yet satisfied (as given for example by an indep&@)the new upper bound. Therefore, when we updaigper
dent set of clauses), ar@upper is the best solution found so With the new value, we havg.path + C'lower = C.upper and

far. From the previous equation, we can readily conclude tripound conflictis issued in order to backtrack in the search tree.

C.path and C.lower are the unique components involved inf hese bound conflicts just represent a particular case, and so the

each bound conflict. (Notice that.upper is just the lowest S&mMe process we described in this section is applied in order to

value of the cost function for all assignments satisfying tHild the conflict clause. o .
constraints that have been computed earlier in the searcrl\” order to illustrate a bound conflict situation, consider the
process.) Therefore, we will analyze battpath andC.lower 0llOWing example? Suppose we have, = (z1 + 1), w2 =

components in order to establish the assignments responsiBiet #4), wa = (T2 +T4) andwy = (3 + 4) in our problem
for a given bound conflict. formulation wherer; + 2 + z3 defines the objective func-

We start by studying’.path. Clearly, the variable assign-tion' Suppose also that some decision variables assignments are

ments that cause the value Gfpath to grow are solely those Made, namely:, = 1 in decision level 1z, = 0 in decision
assignments with a value of 1. Hence, we can define a set of IfY€l 2, @ndes = 1indecision level 3. Therefore, must be as-
erals for the current search path,, such that each variable inSigned value 1, a solution is found for the problem, and we have

wep has positive cost and is assigned value 1. This conditionGsupper = 2. A bound conflict is then issued and in order to
stated as follows: solve this conflict we must have either = 0 or z3 = 0. From

(8) we build the bound conflict clausg; + z3). After back-
wep = {I =T;: Cost(x;) > 0Azx; =1} (6) tracking and undo the decision variable assignment= 1,
from the bound conflict clause we must haye—= 0. Again,z4
which basically states that to decrease the value of the cost fummist be assigned value 1 and a new solution is found. Now we
tion (i.e.,C.path) at least one variable that is assigned valueHaveC.upper = 1 because of the assignment of lata From
has instead to be assigned value 0. (8) we build a new bound conflict clauge;) and the search
We now conside€.lower. Let MIS be the independent set ofprocess can backtrack nonchronologically to decision level 1.
clauses, obtained by the method described in Section 11I-D, tiNdtice that the decision assignment in level 2 is considered ir-
determines the value a@f.lower. Observe that each clause inrelevant and the search is pruned at that decision level.
MISis part ofMISbecause it is neither satisfied nor has common
literals with any other clause iMIS. Clearly, for each clause B. Reducing Dependencies in Bound Conflicts

MIS these conditions only hold due to the literals.inthat are . .
. . . With respect to (8) a more careful analysis allows us to con-
assigned value 0. If any of these literals was assigned value

. f these litere value. e th Il literals iy, I .
w; would certainly not be iMIS since it would be a satisfied clude that not all literals i, are actually necessary. Suppose

) . .~ that the lower bound estimation is higher than the upper bound
clause. Consequently, we can define a set of literalsstk@alin and define this difference a&iff — (C.path + C.lower) —
the value ofC.lower

C.upper. Itis clearly true that ilC.path was decreased hiiff,
wa={l:1=0Al €w Aw; € MIS}. @) the bound conflict would still hold since we would then have
C.upper = C.path + Clower. Therefore, we may conclude
Now, as stated above, a bound conflict is solely due to the tWlat not all assignments ifi.path are necessary to explain the
componentsC.path and C.lower. Hence, this bound conflict conflict, since if some assignments were not made, we would
will hold as long as the bound conflict clausg. is unsatisfied still have a bound conflict. In this case, it is possible to remove
some literals fromw,;, as long as their total cost is lower than
Whe = Wep U wer. (8) or equal todiff.
In order to implement this technique, one interesting problem
(Observe that the set union symbol in the previous equation gt decide which literals should be removed from. In bsolo
notes a disjunction of literals.) As long as this clause is unsatig heuristic procedure is used for removing the literals that have
fied, the values oV.path andClower will remain unchanged, peen assigned at the most recent levels of the decision tree. Con-
and so the bound conflict will exist. We can thus use this unsalsquently, the likelihood of backtracking nonchronologically is
isfied clauseu, to analyze the bound conflict and decide whergjgher, since these conflicts will be more dependent on the ear-
to backtrack to, using the conflict analysis procedure of GRAS |evels of the search tree. Notice that if a litekis removed
[15]. We should observe that backtracking can be nonchrorym wep, bULIfI € w,; to explain the value i lower, then we
logical because clausa,. does not necessarily depend on allyyst havé € wy,. and there is no reduction in the dependencies
decision assignments. Moreover, the clause recording mechfnhe conflict clausevy,..
nism from GRASP allows.;,. to be used later in the search

process to prune the search tree. If these clauses would depesflis example is necessarily small and solely intended to illustrate the main
on all decision assignments, clause recording would not be ugets.



510 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

Moreover, it is also interesting to observe that a clause ras defined in Section 1V-B. In these conditions, a greedy proce-
sulting from a bound conflict can be simpler. We have describedre can be applied to choose which literal to remove fagm
how simplifications can be made to thigpath component, but For instance, if we remove; from we;, wep, NO longer justifies
other simplifications can also be applied to the literals addédpath = 3, but it is sufficient to justifyC.path = 2. Notice
due to the independent set of clauselS), i.e.,w.. Suppose that withC.path = 2 the bound conflict still holds and, there-
we have a literal = x;, with! € w,; and letz; = 0. If z; only  fore,wy,. = (x2 +F3 +F4 + ;) is enough to explain the bound
belongs to one clause; of the independent set and its cost isonflict.
higher than or equal to the minimum costwf, then! can be No more reductions can be made duelifi, since now we
removed fromwy,.. To better understand how this is possiblehavediff = 0, but reductions can be made og. Notice that
suppose instead that = 1. In this situationw; would not be . only appears in one clause of the independent set and is as-
in the independent set (it would be a satisfied clause) and tigned value 0. If:2 was instead assigned value 1, the conflict
Clower component would be lowérHowever, since the cost would still hold sinceC.path would be higher. The value af;
of the variable is higher than or equal to the minimum cost;of is irrelevant for the conflict situation and can be removed from
the C.path component would be higher, and hence the conflict,.. Therefore, we havey,. = (Z3 + Z4 + z5) as the bound
would still hold. So, the assignment = 0 is irrelevant for the conflict clause for this example.
conflict to arise and literal can be removed fronay,..

D. More on Dependencies in Bound Conflicts

C. Applying Dependency Reduction Techniques As we have shown in Section IV-A, whenever a bound con-

For a better understanding of the techniques mentionedligt OCCUrs, it is necessary to establish which assignments ex-
the paper, we will present an example on how a conflict clauBin the conflict. The main purpose for doing so is that the con-
can be built and the application of the dependency reductiflift may not depend on the most recent decision assignments
techniques is effective. and, consequently, nonchronological backtracking can occur.

Consider that at some point of the search process we hav&inding a set of decision assignments which explain the con-
C.path = 3 from the set of assignments = 1, 2 = 0, 3 = flict is straightforward, but if the size of the explanation can be

1,24 = 1,andz; = 0 where all problem variables have a cost ofeduced, itis more likely that the consequent backtrack step be
’ - 1 [

1 in the cost function. Consider also that we h&wer — 3 nonchronological. Therefore, it is of key importance to find a
from the independent set of clauses= (x» + 75 + xs + o) small set of assignments that explains each bound conflict. In the

wy = (T + 5 + w6 + 27), andws = (T4 + x5 + T10 + 211) previpys section we showed how thi; set.(.)f a§signmgnts can be
where variabless, 7, xs, 9, 210, andz;; are unassigned. |dent|f|gd and also propo;ed some S|mpl|f|cgt|ons vyh|ch m|ght
Suppose the best solution found so far has a cost ofP§ applied to reduce the size of the e_xplana_tlon.Thls sect_l(_)n il-
(C.upper = 5). Hence, a bound conflict situation has beeWstrqtgs how a more careful .an_alys_ls can mtroduce. additional
identified, sinceC.path + Clower > C.upper, and the simplifications, allowing the elimination of further assignments

search can be bound. As described in Section IV-A, in orgfiPm the conflict explanation. ,
to bound the search, our algorithm will add an unsatisfied AS lllustrated in Section IV-A, the number of dependencies
clause explaining the conflict. Afterwards, the GRASP conflidfom C-path.in bound conflicts can be reduced whenedir >
analysis procedure will be carried out to determine to whidh Wherediff = (C'path + C.lower) — C.upper. However, the
level of the search tree can the algorithm backtrack withog@Me Principle can be applied to dependencies itdtawer.
loosing completeness. Notice that if we remove a subset of claugesV/ IS from MIS
The conflict explanation clause is created as proposed in S&sed to obtairt’ lower) such that
tion IV-A. From (6) we havev., = (1 + T3 + T4) and from Cost(D_MIS) < diff 9)
(7) we havev, = (z2 + T3 + T4 + z35). Therefore, the bound
conflict explanation clause can be built as proposed in (8) a
we havepr _:_(El + z2 +_Eg + 5_4 + x3). The bound con_fhct Cost(D_MIS) = Z Weight(w) (10)
clauses implicity state which variables should be unassigned or
have a different value to proceed the search. In this example, _ o _
eitherzy, x3, or z4 should be assigned value 0.0 or 25 be then the bound conflict will still hold since&.upper <
assigned value 1. C.path + Clower, but Clower is now obtained from the
In Section IV-B we presented some techniques to reduce dadependent set of claused /S \ D_MIS. Therefore, the
pendencies in conflict clauses from bound conflicts. The apphound conflict clauses,. can still be built using (8), but the
cation of such techniques is important since with a smaller et ¢an now be reformulated as
of dependencies it is more likely that a nonchronological back- , , = {1: 1 = 0Al € w; Aw; € MIS\ D_MIS}.  (11)
track step can occur. S . . _

is higher than the best solution found so far and we kiaffe= 1 @S0 be applied to the resulting;.
One should note that the reduction on the number of de-

4In fact, if the C.lower would be recomputed all over again, it is not guar-pendencies depends on which clauses we choose to include in
anteed that it would decrease. Nevertheless, we know that without clauseD MIS. If | fromMISi lected with . d lit |
satisfied byr; = 1, MIS\{w;} itis still an independent set of clauses. There’ - - Ira clausefro IS selected with assigned literals

fore, MI5\{w,} can be used aslaw estimation ofC lower. belonging tow;,. because of other clausesNHS or due tow,,

W@ere

weED_MTS



MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 511

reduce_independent_set (MIS, diff ) { under certain conditions. Namely, all other literalsugfmust
D-MIS = empty set; be positive, unassigned, and must not inters#& (so thatw;
dof can be added tMIS). Moreover, all of them must have a cost

w = choose MIS_clause(MIS, diff);
D_MIS=DMISU{w};

MIS =MIS\ w;

diff ==

higher than or equal t and no clause iMIS can contairi;.
This reduction step can be made becaude ias not as-
signed or/; = 0, w; would be in the independent set and the

} while ((MIS not empty) A (diff > 0)); lower bound value would not decrease. Therefore, literahn
} be deemed irrelevant to explain the bound conflict and can be
removed fromuwy,..
Fig. 4. Algorithm for reducingvIS. Suppose that variables, 2, andzs belong to the cost func-

tion andz; = 1. If a bound conflict occurs, from (6j; would

reduce_path_dependencies (MIS, wep) { be inwy,.. However, suppose that clausg= (1 + 22 + z3) is

NEW _MIS = MIS; satisfied only due te, i.e.,z2 andz3 are unassigned. if; and
while (w = choose_SAT_clause(NEW_MIS, wep)) { x3 do not belong to any clause MIS, 1 can be removed from
NEW_MIS = NEW_MIS U w; whe becauser; = 1 is not relevant for the conflict. If variable
satd] = sat_literal(w); 21 was unassigned or assigned value:Owould be inMIS and
) wep = wep \ satd; the bound conflict would still occur.
3 E. Handling Reduction Techniques
Fig. 5. Algorithm for reducing”.path dependencies. As mentioned in the previous sections, for implementing

nonchronological backtracking each implied variable assign-

ent needs to be properly explained in order to guarantee

ther;)lth?hd(tagej\rl[dle;ges arebex?ggl)llsthe sr?:rk\]e.t:[l'hherefors It 'f{a%f the resulting branch-and-bound algorithm is complete.
sirabie thatt- €asubse such that tne number o Consequently, it is necessary that, whenever there is a variable

dependencies in,. be minimum. As an example of reducm.gassignment implied due to the application of a reduction tech-

Whe, 1N the ﬁppefnglx Wedprop_ose_ a m(_)del fo;_co(rindputmg a mlrHique (e.g., variable dominance, limit lower bound theorem,
imum number of dependenciesdn;, given a fixedwey. etc.), a new clause is built and added to the problem instance as

rln o;d?r t\(/)vﬁiethar? m?i" zet ﬁf depern()ii(;érscifs’i)ﬁhaz@as?‘}i?y an explanation for that assignment. Clearly, we could create this
procedure ch heunstically approximates the new clause by using all decision assignments in the decision

that would reduce the number of dependencies to a minimu, : : -
We know from (7) that if a clause; from MIShas an unsatisfied mée, but this would negatively affect the ability of the search

. . _ . algorithm to backtrack nonchronologically. As before, we must
literal I;, thent; will be.m Wet- If\_/ve can remo"e at moskift jdentify conditions for using a reduced set of assignments
clauses fromMIS, the I|t§raI§ which oceur in more cIauses_ Ofnstead of all decision assignments. In this section we illustrate
MIS than the value ofliff will always be in some clause in how this is done for assignments implied due to the application

MIS, and from (7)/; must be inw. Thereforv_a, _the clauses tOof the limit lower bound theorem [4]. For the other reduction
be removed fronMIS are the ones that maximize the numbe

. . trechnlques, a similar approach is used.
of Iltgrals that belong to f_ewer cIausesMiS_than the value of The limit lower bound theorem is applied to a variablg
diff, i.e., the number of literals that can still be removed from
. . : . V\ﬁ1enever
we due to this procedure. Fig. 4 outlines this procedure. At eac
st_ep_, the clause Wh_lch contains more Iltgrals Wlth_ pot_entlal to be Cupper — (C.path + Clower) < Cost(z;).  (12)
eliminated fromw,; is selected. If after this reduction in.; we

still havediff > 0, the reduction ok, due todiff described in In these cases, the assignment= 0 is implied.

Section IV-A can also be applied. Letwy, be a clause that must be added in order to explain the
So far we have pres'entgd several progedures to reduce &E?lgnmentj — 0, which isimplied by applying the limit lower
number of dependencies in bound conflicts. Among othelgy ng theorem. Notice that this theorem is applied because of
it was explained how to reduce dependencies when the IOWgE yajues of ' path and C.lower. Thus, the assignments that
bound value is higher than the upper bouddi( > 0). After gy ain these two values are also the explanation sought for the

the application of such reduction procedures, we usually haé(?signmenb:j — 0. Therefore, clausey, is constructed as
diff = 0 and, therefore, we have a set. which explains a follows:

bound conflict on the forn@.upper = C.path + C.lower.5

Let/; be a literal such that; € w., andl; € w.. Thenl; is Wiy = wep U wey U T} (13)
in wy,. only due to the”.path component of the bound conflict. S
Let MIS be the independent set, computed with the procedyfere,,, andw,; are the literals which explain the values in
describedin Fig. 5, which is used to obtain the valu€déwer. ¢ path andC.lower, as described in Section IV-A. Therefore,
If there is a satisfied clause; such thatl; is the only literal ,,, hecomes a new unit clause and consequently implies the as-
which currently satisfiess;, thenl; can be removed from,, signmentz; = 0. (Hence, we say that the assignmept= 0 is

explained bywy;,.) Moreover, clausey;, can also be used later
5In (8),ws. explained a conflict on the for@.upper < C.path+C.lower. 0N in the search process to imply necessary assignments if its



512 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

state becomes unit. In those cases, the limit lower bound is apnclude that:, = 1 andz3 = 1 are necessary assignments.
plied automatically during the Boolean constraint propagatidrherefore, if we make the assignment= 1, we would have

phase (see Section ). C.lower = 1 (sincews would become satisfied) ar@.path =
4, resulting in a lower bound conflict. Since the assignment
V. PROBING VARIABLE ASSIGNMENTS z1 = 1 would result in a Conflicting condition, we know that

o ) . 3 = 0is a necessary assignment due to the application of re-
The decisions made during the search process are vital for the .\ o probing on the assignment = 1.

efficiency of the algorithm. With this in mind, in this sectionwe - pagyricted probing of variable assignments can be formally
propose a new strategy that anticipates whether a decision léggs;rihed as follows. Let us consider the assignment of value
to a conflict. The process of probing variable assignments CO[B'a:j and letV' (M1IS) be the set of unassigned variables in the

sists of testing the assignment of 0 or 1 to unassigned Variatﬂﬁ&ependent set of claus&sS used to comput€’.lower. Let
and, if a conflict is reached while testing an assignmetd a V, andV; be two variable sets defined as follows:

variablez;, then the opposite valaeis implied for variabler;.

Probing the assignment of a Boolean vaiue a variabler; Vo = {z;: unresolved((z; + z;)) A Cost(x;)
consists of analyzing the result of Boolean constraint propaga- >0Az; & V(MIS)}
tion in case the assignment is made. In cases where no conflict
(logic or due to lower bound) is detected, the opposite value of
v, 7, is assigned ta:; and the same analysis is performed. In > 0Nz ¢ V(MIS)}. (14)
either case, whenever a conflict is reached the opposite valug ot 4y, define the sets of the variables which are immediately
the assignment that led to the conflict situation is automat|ca“¥|p|ied value 1 whenever; = 0 andz; = 1, respectively.
implied. This procedure is referred to asmplete probing of Moreover, these variables do not belong to any clausti8and

variable assignments _ o have positive cost. Consequently, these are the variables that
However, this probing process involves significant computgji|| increase the lower bound if an assignmentitois made.

tional overhead, mainly due to the application of Boolean CORlearly, the cost associated with 3étis the sum of the costs
straint propagation and lower bound computation. An alterngs ihe variables ir/...

tive approach is to use instesgbtricted probing of variable as- Let 7(z;, v) be a function such that
signmentsin restricted probing, when we test the assignment

of valuev to a variablex,;, our main goal is to simply check g, 0) = { ifv= Oy x; € MIS
whether the assignment results in an immediate increase of the 7 Cost(z;) otherwise.

lower bound value (by increasing.path). Hence, instead of Therefore, if the condition

performing complete Boolean constraint propagation, we only

check the binary clauses (with just two free literals) that containC.path + C.lower + Cost(V,,) + 7(z;, v) > C.upper (16)

variablez ;. By assigningr;, these clauses either become sat- .
o 7 : . . L true, then the complemented valuewofs is a necessary as-
isfied or unit, in which case new assignments will be implied:.

However, in restricted probing, Boolean constraint propagatigﬁgnmem forz;.

: - ' Notice that the limit lower bound theorem [5] can be inter-
is not carried out any further. Instead, we check whether these

deduced assignments increase the value of the lower boui%r(?ted as a particular case of probing variable assignments. The

If the lower bound becomes equal to or higher than the uppImlt lower theorem is applied to a variablg whenC'.upper —

bound, then the complemented value;of, can be implied for -path + Clower) < COSt(x.j) and'can only_lmply the_value
. 0 for ;. The process of probing variable assignments is able to
J

: . . imply both value 0 or 1 and can be applied even wiarpper—
Suppose that at a certain point of the search process, we h Sath + C.lower) > Cost(x;). Moreover, probing can also

_ — — i-
C.upper = 5, Clower = 2, andC.path = 1 and all vari- applied to variables that are not in the cost function. We
ables assigned value 1 would add just 1 to the cost function:; . . .
s(rould observe, however, that this procedure is computation-

Vi = {z;: unresolved((z; + T;)) A Cost(x;)

(15)

Notice that the limit lower bound theorem cannot be appli€ - o .
. C ally less efficient than the limit lower bound when applied to
sinceC.upper — C.lower — C.path = 2, which is higher than the same cases

the cost of every variable i_n the cost function. Suppose we .haveSection IV-E explains why a new clause must be added when
(among others) the following set of unresolved clauses still {He limit lower bound theorem is applied. Furthermore, it also

satisfy: _ described how this clause should be built. In probing variable
w1 = (fl + 22); assignments, as in any other problem reduction technique, the
wy = (T1 + 73); same must be done and a new clause must be built. However, for
wy = (w3 + 27 + ws); each probing reduction technique a different set of explanations
wy = (x5 + T6); must be considered.

and our approximation of the maximum independent set Whichc|ear|y, restricted probing depends on the lower bound

is used to estimaté€'lower is: value. Consequently, the explanations for the valu€ gfath
w3 = (23 + 27 + 23); and C'lower must be present in the new clause. Moreover, we

was = (x5 + xg)..
S 4 ( F] + 7o) Id h . 1. In thi 60bserve that; can be in/ (M 1S) as long as enough variablesi{ A/ 1.5)
uppose that we would test the assignmegnt= 1. In this are picked and cause the decrease in the value of the lower bound to be offset

case, just by checking the binary clauses @ndws) we can by the increase in the path value.



MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 513

also have to consider the clauseslinfrom (14) used during TABLE |
probing. In addition ta”.path andC.lower, the clauses iV, RESULTS FORbSOIOAND scherzo
are also necessary for probing. to yi.eId necessary ass:ignments. beolo scherzo
Conseql_JentIy, we must also identify the set of a§S|gnments Benchmark | min. CPU | Dec. | CPU Dec.
responsible for these clauses to belin An explanation for 5xplb 12 11.42 [ 1314 e 2234
this fact is the set of literals assigned value 0O in those clauses. 9sym.b 5 10.78 | 263 36 320
Let wy, be the set of literals assigned value 0 in the clauses of alud.b - ub 51 | time - time
V. that are considered while probing the assignmgnt= v. apex4.a | 776 | ub 792 | time | 87.4 | 48359
Thus, the clause,,., explains the implied variable assignment benchl.pi — || ub 123 | time - time
obtained by applying probing and can be defined as follows: clip.b 15 6.52 | 1734 0.6 97
count.b 24 2.66 94 | 478.0 | 299780
Wep Uwa Uwy, UL{T,} ef4.b - || ub48 | time - | mem.
_ to explain the assignment = 0 (17) exb.pi — || ub67 | time - time
“rre = wep Uwa Uwy, Uy} Himb | T u}; (153 ;17122 o :ls)nslg
to explain the assignment = 1 a3 ET b T time s 592
wherew,, andw,; are defined as in Section IV. Notice thatwhen ~ _max1024.pi — || ub 262 | time — | time
createdv,,, is unit, and so itimplies the value of as intended. prom2.pi — || ub 305 | time — | time
rot.b — |t ub 121 | time - time
sa02.b 25 1.32 444 0.9 279
VI. EXPERIMENTAL RESULTS testd.pi ~ 1 ub 101 | time = time

In this section, we include experimental results of several

algorithms in two different sets of benchmarks. Table | presens;y pattern problem [7]. (As shown in [7], the minimum-size test
results for instances of the MCNC benchmark suite [17battern problem can be formulated as a special case of the binate
whereas the remaining tables present results for instancesﬂpering problem.) Each problem instance captures the test pat-
the minimum-size test pattern problem [7]. tern minimization problem in which the objective is to compute
For the experimental results given below, the CPU times weggs; patterns with a minimum number of specified primary input
obtained on a SUN Sparc Ultra |, running at 170 MHz, with 1ogssignments. For exampléyke_Fv5@1 denotes the problem
MByte of physical memory. In all cases the maximum CPU tim@stance defining the minimum-size test pattern problem for cir-
that each algorithm was allowed to spend on any given instangg: duke2 with fault given by line Fv5 stuck-at 1.
was 1 h. When the algorithm was unable to solve the instancqp, thjs table, and besides the CPU time and the number of
due totime restrictions, the best upper bound found atthe timgjiscisions, the number of nonchronological backtracks and the
shown. Otherwise, if no upper bound was computed, the reaggghest jump made in the search tree are also included. On the
of failure is shown, which was either due to the timeinfe) |eft side, bsolodoes not use the bound explanation techniques
or memory fiem.) limits imposed. In Table I, besides the timejescribed in Section IV and nonchronological backtracking is
taken and the number of decisions made to solve the instanﬁfssi due to logical conflicts [12]. On the right side, both the
(Dec.), it is also shown the number of nonchronological backypper and lower bound explanation of Section IV and restricted
tracks (ICB) and the highestjump made in the search t0@@().  probing of variable assignments are used. As we can readily
In Table I we present a comparison betweissplo and  conclude, for mostinstancksolois able to increase the number
scherzoon the MCNC benchmark seétscherzais a classical of nonchronological backtracks while significantly reducing the
branch-and-bound algorithm with powerful problem reductiogmount of search and the execution time.
techniques and very effective for this set of benchmarks, sinceraple || shows that the use of conflict explanations increases
most clauses are unate (i.e., only have positive literals). Cleaglye number of nonchronological backtracks, thus proving that
scherzois able to solve more instances and is, in genergjpnchronological backtracking can be observed in bound con-
faster. In this benchmark set, the main featurebsdloare flicts. \We should note that in earlier versions lgolo [12],
not extensively used. We note, however, that there are sogify |ogical-based conflicts were able to produce nonchrono-
problem instances in which fewer decisions are madesdmja  |ogical backtracks. Moreover, by using bound conflict explana-
In general, the bookkeeping associated with implementigns, bsoloreduces the number of explored nodes on the search
the proposed SAT-based pruning techniques can introdygge therefore improving its efficiency. In several cases we can
noticeable computational overheadtisola For the instances gpserve an increase on both the number of nonchronological
above, the gains obtained from applying the SAT-based te@ycktracks and on the highest jump in the search tree. For ex-
niques are small since nonchronological backtracking is a'”‘%?ﬁple, instance3540_F20@1 could not be solved withsolo
nonexisting, suggesting that further work must be done towafghen not using explanations, but was solved in less than one
reducing the total number of dependencies. third of the given time limit with the identification of dependen-
As noted earlier, SAT-based BCP algorithms are better suitg@ds in bound conflicts.
for instances whose constraints are hard to satisfy. In Table Il WeFinally, in Table Ill we present a comparison between sev-
present the results bolofor instances from the minimum-sizegra) aigorithms for this set of instances. Table 1l clearly shows

7Results from other algorithms not shown in this table since they were unaﬁéat the general purpose algorithm for SOW'”Q Ol-Integer Linear
to solve any of the instances in the given time limit. Programdp-solveperforms poorly. The same is true fasherzo



514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

TABLE I
LOWER BOUND EXPLANATIONS
bsolo || no explanations | using explanations
Benchmark | min. CPU Dec. | NCB | Jmp. CPU Dec. | NCB | Jmp.
c1908_F469Q0 11 || 2106.43 105181 19 8 | 1405.03 65563 592 41
¢c1908_F953Q0 4 143.73 3036 3 3 105.02 2131 61 41
¢3540_F20@1 6 ub6 38002 137 10 | 1112.60 10601 771 56
c432_Flgat@l 8 282.46 22983 31 5 52.11 4637 804 28
c432_F37gat@1 9 ubl4 834819 15 4 | 1020.11 291450 | 58822 30
c499_Fic2@1 - ub41 | 1000030 0 1 ub41 | 1000066 1 38
c6288_F35gat@1 4 187.13 2160 1 3 43.84 731 34 67
c6288_F69gat@1 6 || 1486.77 13052 129 5 312.20 3829 263 63
9symm] F1Q@1 9 2.52 309 5 2 2.64 300 23 17
9symml F6Q0 9 2.52 298 8 2 2.58 294 16 14
alud_Fj@0 6 60.56 1244 25 4 49.46 1077 73 21
alu4_Fl@1 6 59.34 1042 14 4 36.92 681 41 14
apex2_Fv14@1 10 3.76 765 0 1 2.60 451 36 15
apex2 Fv17@1 12 4.43 924 1 4 2.64 447 43 12
duke2 Fv5@1 5 9.86 496 10 3 5.04 390 25 18
duke2 Fv7@0 5 4.93 383 0 1 3.62 342 18 24
misex3 Fa@0 9 28.09 1330 17 6 15.98 718 52 32
misex3_Fb@1 8 27.12 1025 5 5 23.96 873 43 42
spla.Fv10@0 7 16.25 689 2 3 11.61 647 16 47
spla_Fv14@0 8 16.82 889 2 2 9.83 693 32 66
TABLE I
ALGORITHM COMPARISON
[ 1p-solve | scherzo | opbdp | min-prime | bsolo
Benchmark | min. CPU CPU CPU CPU CPU
c1908_F469Q0 11 time time ub 24 ub 29 [ 1405.03
c1908_F953Q0 4 time | 3424.81 ub 26 ub 15 105.02
¢3540_F20@1 6 time mem. ub 13 2672.40 | 1112.60
c432_Flgat@l 8 ub 15 time | 1148.27 901.90 52.11
c432_F37gat@1 9 time time | 3574.44 447.39 | 1020.11
c499_Fic2@1 - time time ub 41 ub 41 ub41
¢5315.F43@0 3 2.6 0.92 30.38 10.08 0.44
¢c5315_F54@1 5 time mem. time ub 38 17.68
¢6288_F35gat@1 4 time mem. | 1330.95 128.66 43.84
¢6288_F69gat@1 6 time mem. ub 9 ub 7 312.20
9symml] F1@1 9 ub 9 28.64 3.15 8.13 2.64
9symml F6Q0 9 ub 9 29.44 1.43 17.99 2.58
alu4.Fj@0 6 time 879.05 413.71 29.42 49.46
alud_Fl@1 6 time | 1638.98 557.14 14.82 36.92
apex2_Fv14@1 10 ub 10 mem. 639.25 13.73 2.60
apex2 Fv17@1 12 time mem. 545.97 48.89 2.64
duke2_Fv5Q@1 5 time mem. 90.02 22.80 5.04
duke2 Fv7Q0 5 time mem. 24.83 6.50 3.62
misex3_Fa@Q 9 time mem. 180.42 85.70 15.98
misex3 Fb@1 8 time mem. 987.35 394.73 23.96
spla_Fv10@0 7 time mem. 202.98 33.61 11.61
spla_Fv14@0 8 time mem. 264.23 64.84 9.83

which is not able to apply its main features in solving these i@l cases wherbsolotakes more time thamin-primeto solve
stances. The SAT-based linear search algoritdphdp[1] is the problem instance, the number of decisions madesbyois
able to solve most of the benchmarks. Similarly, we can obsersmaller than the number of decisions madentig-prime The
that min-prime[12] can also solve most instances, with bettdime overhead of the features incorporatedaolowhich are
results mainly due to the incorporation of the features fromot presentimin-prime(namely problem reduction techniques,
GRASP SAT algorithm [15]. Moreovelsolois in general faster lower bound estimation, limit lower bound, probing, and expla-
than bothopbdpand min-prime mainly due to the new tech- nation for bound conflicts, among others) are responsible for
nigques proposed in this paper. One should note that in aimtstse results.



MANQUINHO AND MARQUES-SILVA: SEARCH PRUNING TECHNIQUES IN SAT-BASED BRANCH-AND-BOUND ALGORITHMS 515

VII. CONCLUSION containing/; is also selected to include the finsllS. Conse-

quently, this constraint can be formulated as follows:
This paper extends well-known search pruning techniques,

from the Boolean satisfiability domain, to branch-and-bound al- ‘ Z —

) ) . i i — Y F, (18)
gorithms for solving the unate and binate covering problems.
Besides detailing a branch-and-bound BCP algorithm built on
top of a SAT solver, the paper describes conditions that allow for
nonchronological backtracking in the presence of bound con
flicts. In addition, the paper also describes how reduction tech- Z zs < diff. (29)
nigues, commonly used in BCP solvers, can be redefined and wsCMIS

utilized within a conflict analySiS procedure, in such a way that Moreover, our goa| is to minimize the number of dependen_
nonchronological backtracking is enabled. To our best knovdres that ar@otin w.,, since these are known to be already in-
edge, this is the first time that branch-and-bound algorithms aigded inwy,.. Thus, any literal;8 already included i, Must
augmented with the ability for backtracking nonchronologicallsiot be considered for reducing the total number of dependen-
in the presence of conflicts that result from bound conditionsies. This yields the additional set of constraints
Moreover, we also describe simplification techniques for the .
explanations of bound conflicts. Finally, we have shown how vi=1, iFi € wep. (20)
probing techniques, also commonly used in the Boolean satisFinally, the cost function associated with minimizing the
fiability domain, can be extended to algorithms for the binateumber of dependencies from the lower bound estimate
covering problem. becomes
Preliminary results obtained on several instances of the unate k
and binate covering problems indicate that the proposed tech- minimize Z Yi. (22)
niques are indeed effective and can be significant for specific i=1
classes of instances. Putting it all together, we get the overall BCP problem for-
A key aspect of the proposed techniques is the identificatigiy|ation
of a small set of dependencies explaining each identified con- k
flict. In each case the main goal is to minimize the size of this sahinimize Z Yi
of dependencies, while guaranteeing that the resulting set still i=1
provides a sufficient explanation for the given conflict to occurg subject to Z 2. < diff
Future research work will naturally include seeking further sim-

In addition, the number of clauses eliminated frdfis has
0 beno greaterthandiff. As a result, another constraint is

plification of the clauses created for bound conflicts. Moreover, wechrs . .

additional techniques from the SAT domain can potentially be vi=1 if 1 € wep AE €L, .., K}
applied to solving BCP. These techniques are likely to be signif- ) )

icant for instances of covering problems with sets of constraints vi + Z Ziss ifl; @ wep N ELL, ..o K
that are hard to satisfy. i=t 22)

Clearly, and in general, our goal is not to solve exactly
the above BCP formulation, but only to obtain approximate
APPENDIX heuristic solutions.
MINIMIZING DEPENDENCIES INBOUND CONFLICTS
REFERENCES
I'j‘ this Appendlx we derive an optlmlza.tlon model fc.)r-com- [1] P. Barth, “A Davis—Putnam enumeration algorithm for linear pseudo-
puting a minimum number of dependencies for explaining the  Boolean optimization,” Max Plank Institute Computer Science, Tech-

current value oMIS. Notice that we are not explicitly mini- nical Report MPI-I-95-2-003, 1995. ,

.. . . . . [2] R.Bayardo,Jr.andR. Schrag, “Using CSP look-back techniques to solve
mizing the size ofuy,., but SOlely the size o taklng Into real-world SAT instances,” ifProc. Nat. Conf. Artificial Intelligence
account the set of literals in.;,, which is assumed to dixed 1997.

Without loss of generality, Idf, with i € {17 e k}, be the [3] O. Coudert, “Two-level logic minimization, An overviewihtegration,

. . . VLSI J, vol. 17, no. 2, pp. 677-691, Oct. 1993.
set of literals in clauses dflISthat have been assigned value 0. 47—~ “op solving covering problems,” iRroc. ACM/IEEE Design Au-
Furthermore, let;,, with j € {1, ..., k;}, denote each clause tomation Conf.June 1996.

in MIS that contains literal; that is aSSIgned value 0. We define [5] - Coudertand ), ©. Madre, fhew ideas for ;o'vmglgg‘ée””g problems,”
In Proc. esign utomation Condune .

variabley; to be 1 '_f and Onl}’ '_f literall; is 'nCIUde_d inthefinal 5] M. Davis and H. Putnam, “A computing procedure for quantification
set of dependencies explaining the valueviig (i.e., wy). In theory,”J. Assn. Computing Machineryol. 7, pp. 201-215, 1960.
addition, we defines;. to be 1 if and onIy ifu: is notincluded [7] P.F.Flores, H. C. Neto, and J. P. Marques Silva, “An exact solution to the
in th ' It d ' IS K minimum-size test pattern problem,”#roc. IEEE Int. Conf. Computer
In the resulting reducem|S. _ _ _ Design Oct. 1998, pp. 510515,

Each literal; is only required to be included in the final set of [8] J. Gimpel, “A reduction technique for prime implicant tabletfEE
dependencies provided at least one of the clauses contdjning ~ Trans. Electron. Computersol. EC-14, pp. 535-541, Aug. 1965.
is also included in the find}lIS. Thus we can say that selecting sgpeerve that; must correspond to a varialig, where, is currently as-

[; to be in the final set of dependencies implies that some clausghed value 1.



516

El

(10]

(11]

(12]

(23]

(14]

(15]

(16]

(17]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 5, MAY 2002

E. Goldberg, L. Carloni, T. Villa, R. K. Brayton, and A. L. Sangio- [18] H.Zhang, “SATO: An efficient propositional prover,” Proc. Int. Conf.
vanni-Vincentelli, “Negative thinking by incremental problem solving: Automated Deductigrduly 1997, pp. 272-275.

Application to unate covering,” ifProc. ACM/IEEE Int. Conf. Com-

puter-Aided Design1997, pp. 91-98.

G. Hachtel and F. Somentipgic Synthesis and Verification Algorithms

Kluwer, 1996.

S. Liao and S. Devadas, “Solving covering problems using LPR-bas®dsco M. Manquinho obtained the B.Sc. and M.Sc. degrees from the Technical
lower bounds,” irProc. ACM/IEEE Design Automation Conf997, pp.  University of Lisbon, Portugal, in 1996 and 1999, respectively. He is currently
117-120. pursuing the Ph.D. degree at the Technical University of Lisbon.

V. M. Manquinho, P. F. Flores, J. P. Marques Silva, and A. L. Oliveira, Since 2001, he has been a Teaching Assistant at the Computer Science De-
“Prime implicant computation using satisfiability algorithms,” inpartment, Technical University of Lisbon, Portugal. His research interests in-
Proc. IEEE Int. Conf. Tools with Artificial Intelligenc&ov. 1997, pp. clude unate/binate covering, integer programming, and propositional satisfia-
232-239. bility.

D. De Micheli, Synthesis and Optimization of Digital CircuitsNew

York: McGraw-Hill, 1994.

G. L. Nemhauser and L. Wolselyiteger and Combinatorial Optimiza-

tion. New York: Wiley, 1988.

J. P. Marques Silva and K. A. Sakallah, “GRASP: A new search algde&o P. Marques-Silvaobtained the B.Sc. and M.Sc. degrees at the Technical
rithm for satisfiability,” inProc. ACM/IEEE Int. Conf. Computer-Aided University of Lisbon, Portugal, in 1988 and 1991, respectively, and the Ph.D.
Design Nov. 1996, pp. 220-227. degree at the University of Michigan, Ann Arbor, in 1995.

T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, ~Since 1995, he has been an Assistant Professor at the Computer Science De-
“Explicit and implicit algorithms for binate covering problem$ZEE  partment, Technical University of Lisbon, Portugal, and a member of the Ca-
Trans. Computer-Aided Desigwol. 16, no. 7, pp. 677-691, July 1997. dence European Laboratories. His research interests include algorithms for dis-
S. Yang, “Logic synthesis and optimization benchmarks user guidestete optimization problems, namely satisfiability, unate/binate covering and in-
Microelectronics Center of North Carolina, Jan. 1991. teger programming, and applications of discrete optimization in EDA.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


