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Abstract. This paper presents OPEN-WBO, a new MaxSAT solver. OPEN-WBO

has two main features. First, it is an open-source solver that can be easily modi-
fied and extended. Most MaxSAT solvers are not available in open-source, mak-
ing it hard to extend and improve current MaxSAT algorithms. Second, OPEN-
WBO may use any MiniSAT-like solver as the underlying SAT solver. As many
other MaxSAT solvers, OPEN-WBO relies on successive calls to a SAT solver.
Even though new techniques are proposed for SAT solvers every year, for many
MaxSAT solvers it is hard to change the underlying SAT solver. With OPEN-WBO,
advances in SAT technology will result in a free improvement in the performance
of the solver. In addition, the paper uses OPEN-WBO to evaluate the impact of
using different SAT solvers in the performance of MaxSAT algorithms.

1 Introduction

Maximum Satisfiability (MaxSAT) formulations are currently used for solving many
different real-world problems [20,1,16]. This results from the recent improvements of
MaxSAT algorithms, which are now able to solve much larger instances than before.
These improvements result mainly from (i) an increased performance of the underlying
SAT solver and (ii) novel techniques and algorithms proposed for MaxSAT solving.

Currently, MaxSAT solvers more suited for industrial instances may follow differ-
ent algorithmic approaches, although the common feature is that MaxSAT algorithms
rely on successive calls to a SAT solver. In this paper, we present OPEN-WBO, an open-
source modular MaxSAT solver that enables an easy replacement of the underlying
SAT solver for any MiniSAT-like solver. The OPEN-WBO architecture also allows an
easy implementation and extension of different MaxSAT algorithms. Another contri-
bution of the paper is an evaluation of different state of the art SAT solvers in solving
MaxSAT. We provide the results of OPEN-WBO for linear search and unsatisfiability-
based algorithm when using different underlying SAT solvers.

In what follows we assume that the reader is familiar with MaxSAT [21,26].
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Fig. 1: Overview of the architecture of OPEN-WBO.

2 Solver Description

OPEN-WBO is implemented in C++ and extends the interface of MINISAT [12] for solv-
ing MaxSAT formulas. OPEN-WBO is open-source and is available for download at
http://sat.inesc-id.pt/open-wbo. Figure 1 provides an overview of the
OPEN-WBO architecture. The main components are the following: (i) MaxSAT Parser,
(ii) MaxSAT Algorithms, (iii) CNF Encodings, and (iv) SAT Solvers. Each of the com-
ponents of OPEN-WBO is briefly described in this section.

MaxSAT Parser. OPEN-WBO can take as input any MaxSAT formula. The parser reads
the MaxSAT formula and stores the hard and soft clauses into two different data struc-
tures. Each hard and soft clauses may have private fields that describe properties of those
clauses. Currently, to each soft clause we associate an integer weight, a set of relaxation
variables, and a selector variable. (In the case of unweighted MaxSAT formulas, weight
1 is associated with each soft clause.) The integer weight is used to store the cost of
unsatisfying the soft clause. The set of relaxation variables keeps the fresh variables
that have been added to soft clauses during the relaxation procedure of the MaxSAT
algorithm. Selector variables are fresh variables that are used to extract an unsatisfiable
subformula [5]. For that we first associate each selector variable to the corresponding
soft clause. Next, the SAT solver is called with a set of assumptions, where the as-
sumptions correspond to the negation of the selector variables. Assumptions are always
picked as the first decision literals by the SAT solver. If the SAT solver returns unsatisfi-
able, then the solver is able to infer a conflict clause that only contains assumptions. As
a result, the subset of soft clauses that contains those assumption variables corresponds
to the soft clauses in an unsatisfiable subformula. (Note that unsatisfiability-based al-
gorithms do not need to relax hard clauses. Therefore, we only need to extract the soft
clauses from the unsatisfiable subformula.)

If a MaxSAT algorithm requires an additional property of the hard or soft clauses,
this can be easily added to the respective data structure. Hence, the proposed architec-
ture allows the working formula to be easily rebuilt at each iteration of the MaxSAT
algorithm.

http://sat.inesc-id.pt/open-wbo


MaxSAT Algorithms. The current implementation of OPEN-WBO has two orthogonal
MaxSAT algorithms: (i) unsatisfiability-based algorithm, and (ii) linear search algo-
rithm.

The unsatisfiability-based algorithm is based on the iterated use of a SAT solver to
identify unsatisfiable subformulas [13,3,23]. At each MaxSAT iteration, the working
formula is relaxed until the formula becomes satisfiable. Therefore, all calls to the SAT
solver return unsatisfiable, except for the last one which returns satisfiable. The basic
algorithm is improved in OPEN-WBO by considering techniques that have been recently
proposed. Symmetry breaking predicates are now added to the formula to break sym-
metries that arise from having multiple relaxation variables [2]. For weighted partial
MaxSAT instances, this algorithm is further improved by considering the weight-based
partitioning scheme [25] or the diversity-based heuristic [2].

The linear search algorithm [19,17] starts by adding a new relaxation variable to
each soft clause and solving the resulting formula with a SAT solver. Whenever a model
is found, a new constraint on the relaxation variables is added such that models with a
greater or equal value are excluded. The algorithm terminates when the SAT solver
returns unsatisfiable. Therefore, all calls to the SAT solver return satisfiable, except
for the last one which returns unsatisfiable. The basic algorithm is improved in OPEN-
WBO by considering lexicographic optimization for weighted partial MaxSAT instances
where the optimality criterion is lexicographical [24].

CNF Encodings. Most MaxSAT algorithms require the encoding of constraints that are
not originally expressed in CNF, such as: (i) at-most-one constraints (x1+. . .+xn ≤ 1),
(ii) cardinality constraints (x1 + . . . + xn ≤ k), and (iii) pseudo-Boolean constraints
(a1x1 + . . .+ anxn ≤ k). OPEN-WBO uses the following encodings for these different
constraints:

– Ladder encoding [4,14] (at-most-one constraints): for a constraint with n literals,
this encoding creates O(n) clauses with O(n) auxiliary variables.

– Cardinality Networks encoding [6] (cardinality constraints): for a constraint with n
literals and with right-hand side k, this encoding creates O(nlog2k) clauses with
O(nlog2k) auxiliary variables.

– Sequential encoding [15] (pseudo-Boolean constraints): for a constraint with n lit-
erals and with right-hand side k, this encoding creates O(nk) clauses with O(nk)
auxiliary variables.

These encodings are compact and maintain generalized arc consistency by unit
propagation. For the cardinality and the pseudo-Boolean constraints, the user as a pro-
grammer has two options: (i) to encode the constraint into CNF or (ii) to update the
right-hand side value of the encoding. If the encoding was already built and the MaxSAT
algorithm found a smaller right-hand side value, then the programmer may update the
encoding instead of rebuilding it [6]. In this case, all learned clauses from the previous
SAT call may be kept in the next call to the SAT solver. With these encodings, a pro-
grammer may implement MaxSAT algorithms that are based on successive calls to a
SAT solver.



Table 1: Number of instances solved by different SAT solvers in the SAT Competition
2013 in the Application SAT+UNSAT track (out of 150 + 150 = 300 instances)

#SAT #UNSAT Total
ZENN 113 95 208
SINN 120 86 206
glue bit 102 102 204
Glucose 2.3 103 98 201
GluH 99 97 196
Glueminisat 100 96 196
Glucored 93 95 188

SAT Solvers. OPEN-WBO can use any MiniSAT-like SAT solver, i.e. any SAT solver
that extends and uses the same interface as MINISAT [12]. When compiling OPEN-
WBO, the user may choose which MiniSAT-like solver is going to be used. Currently,
OPEN-WBO includes the following SAT solvers: (i) MiniSAT2.0 [12], (ii) Mini-
SAT2.2 [12], (iii) Glucose2.3 [8,9], (iv) Glucose3.0 [8,7], (v) ZENN [33], (vi)
SINN [32], (vii) Glueminisat [27], (viii) GluH [29], (ix) glue bit [11], and (x)
GlucoRed [31]. Note that Glucose3.0 was modified to support the optimizations
on assumptions [7] for MaxSAT. MiniSAT2.2 extends MiniSAT2.0 by using Luby
restarts [22] and phase saving [30]. The other solvers differ mainly in the strategy em-
ployed for deleting learned clauses and for restarting. These strategies are usually based
on the Literal Block Distance (LBD) measure [8] or in variations of LBD. For details
on the SAT solvers see the proceedings of the SAT Competition 2013 [10].

Table 1 shows the number of instances solved by the different SAT solvers that
are being used in OPEN-WBO and also participated in the Application SAT+UNSAT
track of the SAT Competition 2013. For a better understanding of the performance of
the solvers, we split the number of solved instances into unsatisfiable (#UNSAT) and
satisfiable (#SAT). Note that MiniSAT2.0, MiniSAT2.2, and Glucose3.0 are
not included in Table 1 since they did not participate in the SAT Competition 2013.

Overall, ZENN was the best performing MiniSAT-like solver in the SAT Competi-
tion 2013. The best solver for satisfiable instances was SINN, whereas the best solver
for unsatisfiable instances was glue bit. The difference between the number of in-
stances solved by MiniSAT-like solvers is small. For example, ZENN only solved 12
more instances than Glueminisat. On the other hand, GlucoRed was the solver
with the worst performance. GlucoRed uses two concurrent threads, which are called
the solver and the reducer. The solver uses the SAT solver as usual, while the reducer
attempts to strengthen the clauses derived by the solver. In practice, GlucoRed only
has half of the CPU time for the SAT solver since the SAT Competition 2013 enforces a
CPU time limit. Hence, it is expected to solve less instances. Nevertheless, we included
this solver in our tool since it may solve instances that are not solved by other solvers.

Note that OPEN-WBO is not restricted to these ten solvers and so any MiniSAT-
like solver can be easily plugged in. This allows OPEN-WBO to take advantage of the
constant improvement in SAT solver technology.



Table 2: Impact of different SAT solvers in MaxSAT algorithms

(a) Unsat-based algorithm

ms pms wpms Total
VBS 42 381 331 754
Glucose 3.0 41 365 313 719
Glucose 2.3 40 343 315 698
GluH 40 341 315 696
ZENN 40 341 315 696
Minisat 2.2 41 340 313 694
SINN 41 335 318 694
Glueminisat 39 329 315 683
Minisat 2.0 38 330 310 678
GlucoRed 38 293 295 626
glue bit 40 286 294 620

(b) Linear search algorithm

ms pms wpms Total
VBS 10 535 246 791
Glucose 2.3 5 525 242 772
Glucose 3.0 6 521 242 769
ZENN 6 511 242 759
Glueminisat 6 509 238 753
glue bit 7 510 232 749
GluH 5 505 235 745
GlucoRed 3 509 225 737
SINN 7 484 239 730
Minisat 2.2 7 468 235 710
Minisat 2.0 4 454 233 691

3 Experimental Results

All experiments were run on the unweighted MaxSAT (ms, 55 instances), partial Max-
SAT (pms, 697 instances) and weighted partial MaxSAT (wpms, 396 instances) in-
stances from the industrial category of the MaxSAT evaluation of 2013. The evaluation
was performed on two AMD Opteron 6276 processors (2.3 GHz) running Fedora 18
with a timeout of 1,800 CPU seconds and a memory limit of 16 GB.

Impact of Different SAT Solvers. Table 2 compares the performance of MaxSAT
algorithms when using different SAT solvers. On the left, we present the impact of
different SAT solvers in the unsatisfiability-based algorithm, and on the right, the impact
of different SAT solvers in the linear search algorithm. For each algorithm, we grouped
SAT solvers that performed similarly. The table also includes the Virtual Best Solver
(VBS), i.e. the number of instances that were solved by at least one of the SAT solvers.

The performance of SAT solvers in MaxSAT algorithms is very different from the
ranking of the SAT solvers at the SAT Competition 2013. This is particularly noticeable
for the unsatisfiability-based algorithm. Most SAT solvers have a performance similar
to MiniSAT2.2, which is the baseline solver for all SAT solvers reported in this paper.
Therefore, the remaining solvers are expected to improve the performance of MiniSAT
2.2. However, this is not the case for MaxSAT when using the unsatisfiability-based
algorithm. It has been observed that the LBD measure is affected when using assump-
tions [7]. Since each assumption has its own decision level, the LBD measure will be
similar to the clause size when learning clauses that contain a large number of assump-
tions. With the exception of MINISAT, all other solvers use the LBD measure. This may
explain why the performance of most SAT solvers is similar to MiniSAT2.2. Further-
more, assumptions may also affect other heuristics. For example, glue bit was the
best performing MiniSAT-like solver for unsatisfiable instances in the SAT Competition



2013, but is one of the worst solvers when using the unsatisfiability-based algorithm,
since it uses a restart strategy based on the depth of the search which is greatly affected
by the large number of assumptions. On the other hand, Glucose3.0was the best per-
forming solver for the unsatisfiability-based algorithm since it is the only solver with
optimizations when using assumptions [7]. The VBS solves 35 more instances than any
individual solver.

For the linear search algorithm, all SAT solvers outperform MINISAT. The linear
search algorithm does not use assumptions on the SAT calls. Hence, the heuristics of
SAT solvers are not affected. SINN was the best performing MiniSAT-like solver for
satisfiable instances in the SAT Competition 2013, but it is one of the worst solvers in
Table 2b. This is due to the formula in the last call of the linear search algorithm being
unsatisfiable. Even though SINN performs well for satisfiable instances, it does poorly
on unsatisfiable instances. Glucose2.3 was the best solver for the linear search al-
gorithm with results similar to Glucose3.0. The VBS solves only 19 more instances
than any individual solver. It seems that the performance of the linear search algorithm
does not depend much on the SAT solver performance.

State-of-the-art MaxSAT Solvers. We have compared the performance of OPEN-WBO
(with Glucose3.0) against QMAXSAT [17] and WPM1 [3] (MaxSAT Evaluation 2013
versions) in order to show that OPEN-WBO is competitive.

QMAXSAT uses a linear search algorithm similar to the one implemented in OPEN-
WBO and is particularly effective for solving industrial pms instances. QMAXSAT solved
641 instances (6 ms, 545 pms, 90 wpms). When compared to the OPEN-WBO linear
search algorithm, QMAXSAT solved the same number of ms instances, 24 more pms
instances, and 152 less wpms instances. The performance gains on the pms instances
are mostly due to a new cardinality encoding that has been recently proposed [28]. On
the other hand, QMAXSAT is much less efficient than OPEN-WBO when solvingwpms
instances for not using lexicographic optimization.

WPM1 uses an unsatisfiability-based algorithm similar to the one implemented in
OPEN-WBO and is particularly effective for solving weighted partial MaxSAT instances.
WPM1 solved 772 instances (22 ms, 405 pms, 345 wpms). When compared to OPEN-
WBO, WPM1 solved 19 less ms instances, 40 more pms instances, and 32 more wpms
instances. The current version of WPM1 uses a SMT solver instead of a SAT solver, and
is able to keep some learned clauses between iterations of the MaxSAT algorithm. This
may explain the performance gains of WPM1 when compared to OPEN-WBO for the
pms and wpms instances. On the other hand, OPEN-WBO is more efficient for solving
ms instances. These instances have a very large number of soft clauses, which results
in a considerable overhead to the current version of WPM1.

4 Conclusions

In this paper we presented OPEN-WBO, an extensible and modular open-source MaxSAT
solver. OPEN-WBO implements state of the art linear search and unsatisfiability-based
algorithms and can use any MiniSAT-like SAT solver. An experimental evaluation was
conducted to show the performance of OPEN-WBO when using different SAT solvers.
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1. Achá, R.A., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT.
Annals of Operations Research pp. 1–21 (2012)
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21. Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfiability, pp.
613–631. IOS Press (2009)

22. Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms. Informa-
tion Processing Letters 47(4), 173–180 (1993)

23. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean Optimiza-
tion. In: Kullmann [18], pp. 495–508

24. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization:
algorithms & applications. Annals of Mathematics and Artificial Intelligence 62(3-4), 317–
343 (2011)

25. Martins, R., Manquinho, V., Lynce, I.: On Partitioning for Maximum Satisfiability. In: Raedt,
L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) Euro-
pean Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applica-
tions, vol. 242, pp. 913–914. IOS Press (2012)

26. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided
MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

27. Nabeshima, H., Iwanuma, K., Inoue, K.: GLUEMINISAT2.2.7. In: Proceedings of SAT
Competition 2013 : Solver and Benchmark Descriptions [10], pp. 46–47

28. Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo Based CNF Encoding
of Cardinality Constraints and Its Application to MaxSAT Solvers. In: International Confer-
ence on Tools with Artificial Intelligence. pp. 9–17. IEEE (2013)

29. Oh, C.: gluH: Modified Version of glucose 2.1. In: Proceedings of SAT Competition 2013 :
Solver and Benchmark Descriptions [10], p. 48

30. Pipatsrisawat, K., Darwiche, A.: A Lightweight Component Caching Scheme for Satisfiabil-
ity Solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) International Conference on Theory
and Applications of Satisfiability Testing. LNCS, vol. 4501, pp. 294–299. Springer (2007)

31. Wieringa, S.: GlucoRed. In: Proceedings of SAT Competition 2013 : Solver and Benchmark
Descriptions [10], pp. 40–41

32. Yasumoto, T., Okugawa, T.: SINNminisat. In: Proceedings of SAT Competition 2013 : Solver
and Benchmark Descriptions [10], p. 85

33. Yasumoto, T., Okugawa, T.: ZENN. In: Proceedings of SAT Competition 2013 : Solver and
Benchmark Descriptions [10], p. 95


	Open-WBO: a Modular MaxSAT Solver

