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Abstract—Cardinality constraints appear in many practical
problems and have been well studied in the past. There are many
CNF encodings for cardinality constraints, although it is not
clear which encodings perform better. Indeed, different encodings
can perform well over different problems. This paper examines
a large number of cardinality encodings and evaluates their
performance for solving the problem of Maximum Satisfiability
(MaxSAT). Taking advantage of the diversification of cardinality
encodings, we propose to exploit those encodings in parallel
MaxSAT solving. Our parallel solver, pMAX, simultaneously
searches in the lower and upper bound of the optimum value, and
different cardinality encodings are used in each thread to increase
the diversification of the search. Moreover, learned clauses are
shared between threads during the search. Experimental results
show that our parallel solver outperforms other sequential and
parallel state-of-the-art MaxSAT solvers.

I. INTRODUCTION

Cardinality constraints appear in many practical problems
and can also be used in the context of Maximum Satisfiability
(MaxSAT) solving. There are several encodings that translate
cardinality constraints into clauses and these encodings have
many practical applications. For example, a translation is
necessary when we want to use a Boolean Satisfiability (SAT)
or MaxSAT solver that is not able to handle natively cardinality
constraints. Even though there are many encodings, it is not
clear which encoding should be used when facing a cardinality
constraint. This paper proposes to examine several cardinality
encodings and to perform an experimental evaluation of the
encodings for MaxSAT solving.

An increasing number of parallel SAT solvers have emerged
in the last years as a result of the predominance of multicore
processors. Even though parallel approaches are known to
boost performance, in the context of MaxSAT these ap-
proaches are scarce. Therefore, the diversification of cardi-
nality encodings can be seen as a starting point for the design
of a new parallel MaxSAT solver. By exploiting the different
cardinality encodings, we can build a portfolio of encodings
to be used in parallel algorithms that search on the lower
and upper bounds of the optimal solution. Moreover, learned
clauses can be shared during search which further boosts the
performance of the new parallel MaxSAT solver.

The main contribution of this paper is the development of a
new parallel MaxSAT solver that uses a portfolio of cardinality
encodings. Additionally, an empirical evaluation of a large
number of cardinality encodings for MaxSAT solving is also
presented.

The paper is organized as follows. The next section intro-
duces some background notions of MaxSAT and cardinality
constraints. Section III briefly resumes the several cardinality

encodings that will be used in this paper. Next, section IV
presents our parallel MaxSAT solver that uses a portfolio
of cardinality encodings. The clause sharing mechanism and
the integration of learned clauses during the search are also
presented in this section. Section V describes related work
in parallel MaxSAT solving. Next, section VI presents the
experimental results that evaluate the different cardinality
encodings and show that our parallel MaxSAT solver, pMAX,
can outperform other sequential and parallel state-of-the-art
MaxSAT solvers. Finally, section VII concludes the paper and
suggests future work.

II. PRELIMINARIES

In this section we briefly describe the MaxSAT problem and
its variants, as well as some other definitions used throughout
the remainder of the paper.

In a propositional formula, a literal lj denotes either a
variable xj or its complement x̄j . If a literal lj = xj and
xj is assigned value 1 or lj = x̄j and xj is assigned value
0, then the literal is said to be true. Otherwise, the literal is
said to be false. A propositional clause can be defined as a
disjunction of literals and a CNF formula is a conjunction of
propositional clauses. A clause is said to be unsatisfied if all
its literals are assigned value 0, and it is said to be satisfied
if at least one of its literals is assigned value 1.

Given a CNF formula ϕ, the MaxSAT problem can be
defined as finding an assignment to problem variables such that
it minimizes (maximizes) the number of unsatisfied (satisfied)
clauses. MaxSAT has several variants such as partial MaxSAT,
weighted MaxSAT and weighted partial MaxSAT. In the partial
MaxSAT problem, some clauses in ϕ are declared as hard,
while the rest are declared as soft. The objective in partial
MaxSAT is to find an assignment to problem variables such
that all hard clauses are satisfied, while minimizing the number
of unsatisfied soft clauses. Finally, in the weighted versions of
MaxSAT, soft clauses can have weights greater than 1 and the
objective is to satisfy all hard clauses while minimizing the
total weight of unsatisfied soft clauses.

A generalization of clauses are cardinality constraints. These
constraints define that a sum of n literals must be smaller
than or equal to a given value k, i.e.

∑n
i=1 li ≤ k. Although

cardinality constraints do not occur in MaxSAT formulations,
several algorithms for MaxSAT solving rely on these con-
straints. For example, they are used in unsatisfiability-based
algorithms [13], [19], [1] and in partial MaxSAT algorithms
that perform linear search on the number of unsatisfiable soft
clauses [18].



TABLE I
ENCODINGS FOR CARDINALITY CONSTRAINTS

Encoding Clauses Variables Type
Pairwise O(n2) 0 at-most-one
Ladder O(n) O(n) at-most-one
Bitwise O(n log2 n) O(log2 n) at-most-one
Commander O(n) O(n) at-most-one
Product O(n) O(n) at-most-one
Sequential O(nk) O(nk) at-most-k
Totalizer O(nk) O(n log2 n) at-most-k
Sorters O(n log22 n) O(n log22 n) at-most-k

In both of these approaches, new cardinality constraints are
iteratively added to the original formula. Hence, in order to
continue using a SAT solver in the subsequent iterations, it
is necessary to encode cardinality constraints into clauses.
Another option is to use a pseudo-Boolean satisfiability solver
that is able to deal natively with cardinality constraints.

III. ENCODINGS FOR CARDINALITY CONSTRAINTS

Due to the practical importance of cardinality constraints,
their encoding into CNF has been the subject of several studies
in the last decade. In this section is provided a description of
several encodings that will be used in the remainder of the
paper.

Our focus is on cardinality encodings that allow unit
propagation to maintain arc consistency in the resulting CNF
encoding. Consider the following cardinality constraint x1 +
. . .+ xn ≤ k. If k variables are assigned value true, then unit
propagation will enforce the value false on the remaining n−k
variables. However, if k+ 1 variables are assigned value true,
then a conflict arises since at most k variables can be assigned
value true. An encoding that maintains arc consistency enables
the SAT solver to infer the same information with the use of
unit propagation on the resulting CNF encoding.

A special case of cardinality constraints are the at-most-one
constraints. These constraints express that at most one out of n
Boolean variables is allowed to be true. A large number of en-
codings have been proposed to handle at-most-one constraints.
Therefore, a distinction is made between encodings that are
used only for at-most-one constraints and the encodings used
for the general case of at-most-k constraints.

Table I shows the size of the evaluated encodings. Next,
the encodings are briefly described. Due to lack of space, not
much detail is given for each of the encodings and the reader
is pointed to the literature.
• Pairwise (naive): the most widely known encoding for the

at-most-one constraint. For each pair of variables (xi, xj),
we add a binary clause x̄i ∨ x̄j that guarantees that only
one of these two variables can be assigned value true.
Even though this encoding adds a quadratic number of
clauses, it does not require auxiliary variables.

• Ladder [14], [2]: it uses n − 1 auxiliary variables to
form a structure denoted by ladder. Consider the chain
of auxiliary variables y1, . . . , yn+1. If yi is false then all
variables yj with j > i are also false. Each valid state in
the ladder represented by (yi ∧ ȳi+1) is associated with

a variable of the cardinality constraint. Since each xi is
equivalent to a valid state in the ladder, this encoding
guarantees that at most one xi will have value true.

• Bitwise [12], [23]: this encoding introduces auxiliary
variables y1, . . . , ylog2 n that represent a bit string. It then
associates a unique bit string with each xi. The encoding
guarantees that only one string can occur and therefore at
most one variable xi can have value true. When n is not
a power of 2, we can perform a small optimization by
reducing the number of clauses from the encoding [12].
If n is not a power of 2, then there are more strings than
variables xi. Hence, we can associate two strings to some
of the xi until the number of remaining strings is equal
to the number of remaining xi variables.

• Commander [17]: it starts by partitioning the set of
variables xi into groups of size 3. Next, for the variables
of each group, an at-most-one constraint is encoded with
the pairwise encoding. Finally, it associates a commander
variable with each group and it recursively encodes the
at-most-one constraint over the commander variables with
the method just described.

• Product [8]: this encoding decomposes cardinality con-
straint x1 + . . .+xn ≤ 1 into two constraints, y1 + . . .+
yp1
≤ 1 and z1 + . . .+ zp2

≤ 1, where p1× p2 ≥ n. The
idea is to associate each xi with a coordinate (ya, zb).
This procedure is applied recursively until the size of the
constraint is smaller than 7. At that point, the pairwise
encoding is used.

• Sequential [24]: it encodes a circuit that sequentially
counts the number of variables xi that are assigned value
true. Each xi is associated with k variables si,j that are
used as a counter. Assigning the value false to si,j implies
that at most j of the x1, . . . , xi−1 variables can have value
true.

• Totalizer [5]: it consists of a totalizer and a comparator.
The totalizer can be seen as a binary tree, where the
leaves are the xi variables. Each intermediate node is
labeled with a number s and uses s auxiliary variables
to represent the sum of the leaves of the corresponding
subtree. The original encoding uses O(n2) clauses. How-
ever, since we are using this encoding to encode at-most-
one constraints, the optimization proposed by Büttner and
Rintanen [7] that reduces the number of clauses to O(nk)
is used. The idea is that instead of counting up to n, it is
enough to count up to k+1, which can be used to reduce
the number of variables used in each node.

• Sorters [10]: it is based on a sorting network, i.e. a circuit
that receives n Boolean inputs x1, . . . , xn and permutes
them to obtain the sorted outputs y1, . . . , yn. Consider
the cardinality constraint x1 + . . . + xn ≤ k. If after
building the sorting network we assign false to the output
yk+1, this guarantees that at most k variables xi can have
value true. Some improvements were introduced over the
original sorting network encoding, namely, the use of
half sorting networks [3] and additional redundant clauses
over the outputs that amplify propagation [9]. Moreover,
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for the at-most-one constraints, the simplification of the
sorting network through partial evaluation [9] is used and
the size of the encoding is reduced to O(n) clauses and
variables.

IV. EXPLOITING CARDINALITY ENCODINGS

When using a pseudo-Boolean (PB) solver, cardinality con-
straints can be used natively without the need to encode them
into CNF. However, encoding cardinality constraints into CNF
can outperform the PB representation for some classes of
problems. Moreover, different encodings may have distinct
performance in various problems.

In a multicore architecture, one can exploit the variety in
the performance of cardinality encodings by using a portfolio
of algorithms using different encodings. The use of differ-
ent cardinality encodings increases the diversification of the
search. Moreover, these algorithms can cooperate with each
other by exchanging learned clauses and information about
the optimum value. Next, the architecture of our parallel solver
and the clause sharing mechanism is described.

A. Solver Architecture

Our parallel MaxSAT solver is based on two orthogonal
algorithms: (1) unsatisfiability-based algorithms that search
on the lower bound of the optimal solution and (2) linear
search algorithms that search on the upper bound. Therefore,
we propose to perform a parallel search on both sides of the
optimum solution. Moreover, to increase the diversification of
the search, different cardinality encodings for each algorithm
will be used.

Figure 1 shows an overview of parallel unsatisfiability-based
algorithms. These algorithms work by iteratively identifying
unsatisfiable sub-formulas of the original formula. While solv-
ing the formula, the algorithm checks if another thread has
found a better lower bound value, i.e. if it has found an
unsatisfiable sub-formula. If this is the case, it imports the

unsatisfiable sub-formula (core) and performs core relaxation.
For each soft clause in the identified unsatisfiable sub-formula,
a new relaxation variable is added such that when this variable
is assigned to 1, the soft clause becomes satisfiable [13].
Moreover, a cardinality constraint is also added to the relaxed
formula such that only one of the newly created relaxation
variables can be assigned value 1. Next, the solver checks if
the formula remains unsatisfiable.

If the algorithm is not informed that a better lower bound
value was found, it continues the search process until it finds
an unsatisfiable sub-formula or a solution to the formula. If it
finds an unsatisfiable sub-formula, it shares this unsatisfiable
core with the remaining lower bound threads by exporting the
core to the other threads. Next, it relaxes the unsatisfied sub-
formula as previously described and continues the search on
the relaxed formula.

The procedure ends when the working formula becomes
satisfiable and the solver returns a solution (i.e. the optimum
value was found), or if the unsatisfiable sub-formula only
contains hard clauses (i.e. the original problem instance is
unsatisfiable) [13].

To increase the diversification of the search, unsatisfiability-
based algorithms use different cardinality encodings in the
relaxation step. These cardinality constraints are at-most-one
constraints and any of the at-most-one cardinality encodings
presented in the previous section can be used.

There are a few details not shown in figure 1. In particular,
exporting a core is inside a critical region and locks are used
to avoid two or more threads of exporting a core that would
correspond to the same lower bound value. Therefore, before
exporting a core, a thread checks if its lower bound value is
the highest lower bound value among all threads. If this is the
case, then it is safe to export the core to the remaining threads.
Otherwise, it discards its own core and imports the core that
corresponds to the current lower bound value. This is done to
guarantee that all threads use the same cores. Moreover, when
a thread relaxes a core, it updates its lower bound value.

Figure 2 shows an overview of parallel linear search al-
gorithms. Notice that the original MaxSAT formula ϕMS is
modified by adding a new relaxation variable ri to each soft
clause ωi from ϕMS , resulting in an equivalent formulation
ϕUB where one wants to minimize the number of relaxation
variables assigned value 1. In this approach, whenever a new
solution is found for ϕUB , the upper bound value is updated
and a new cardinality constraint on the relaxation variables
is added such that all solutions with a greater or equal value
are excluded. During search, each algorithm checks if there
is a better upper bound value. If this is the case, it adds a
cardinality constraint considering the new upper bound value.
Afterwards, it restarts the search on the constrained formula.

To increase the diversification of the search, the linear
search algorithms to be used differ between themselves on
the cardinality encoding that is used when a new upper bound
value is found. As a result of finding a new upper bound of
value k′, the cardinality constraint x1 + . . .+xn ≤ k becomes
increasingly stronger by decreasing k to k′. For the at-most-k
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encodings presented in the previous section it is only needed to
encode the cardinality constraint into CNF when the first upper
bound value is found. In the next iterations, one can set some
specific literals in the encoding to false such that it restricts
the cardinality constraint to the new upper bound value. This
is denoted by incremental strengthening. All learned clauses
from previous iterations remain valid and can therefore be
kept.

Since our parallel solver runs both unsatisfiability-based
algorithms and linear search algorithms, they can cooperate
by exchanging information about the lower and upper bound
values. If during the search, the lower and upper bound values
become the same, it means that the optimum solution has been
found. Therefore, it is not necessary for any of the threads to
continue the search to prove optimality since their combined
information already proves it. Additionally, learned clauses
can be shared among all algorithms thus reducing the search
space of each algorithm. Next, the clause sharing procedure is
explained in detail.

B. Clause Sharing

Similarly to parallel SAT solving, only learned clauses that
have less than a given number of literals are shared among
all threads. In our parallel solver, we start by sharing learned
clauses that have 8 or fewer literals. This cutoff is dynamically
changed using the throughput and quality heuristic proposed
by Hamadi et al. [15]. Additionally, all clauses with literal
block distance 2 are also shared [4].

However, in our parallel solver not all learned clauses can
be shared among all threads. This is due to the fact that
the working formulas are different. As previously explained,
unsatisfiability-based algorithms work directly with the input
formula ϕMS , while algorithms that perform a linear search
on the upper bound value, use relaxation variables on the soft
clauses, resulting in formula ϕUB .

In order to define the conditions for safe clause sharing, we

start by remembering the definition of soft and hard learned
clauses [22]. If the conflict which gave origin to a new clause
only involves hard clauses, then the learned clause is said to be
a hard learned clause. Otherwise, it is said to be a soft learned
clause. We refer to the literature for a detailed explanation of
the clause learning procedure [21], [25].

Since ϕMS contains both soft and hard clauses, it will also
have soft and hard learned clauses. On the other hand, ϕUB

only has hard clauses, and as a result will only have hard
learned clauses. Nevertheless, as mentioned previously, ϕUB

contains additional relaxation variables that are not present in
ϕMS . When using cardinality encodings, we also have to take
into account the auxiliary variables used by those encodings.
Therefore, each thread may contain variables not present in the
other threads. As a result, the safe sharing procedure between
the different algorithms is as follows:
• Hard learned clauses from unsatisfiability-based algo-

rithms that do not have auxiliary variables can be safely
shared with the other threads.

• Soft learned clauses from unsatisfiability-based algo-
rithms are not shared with the other threads. These
clauses may not be valid for formulas ϕUB and cannot
be shared with the algorithms that perform linear search
on the upper bound.
Notice that these clauses could be shared with other
threads that are using unsatisfiability-based algorithms.
However, it would be necessary to establish an equiv-
alence between the relaxation variables of the learned
soft clause and the relaxation variables of the importing
thread. Since variables are created for the encoding of
cardinality constraints, the identification of the relaxation
variables may differ between threads. Hence, even though
it would be possible to share soft learned clauses between
unsatisfiability-based algorithms it is currently not imple-
mented in our parallel solver.

• Hard learned clauses generated when solving ϕUB can be
shared with the other threads if the learned clause does
not contain relaxation or auxiliary variables.

Finally, between iterations of the unsatisfiability-based al-
gorithms, the working formulas ϕMS are also extended with
additional relaxation variables. However, since these variables
are added to soft clauses, if a conflict-based learned clause
contains any relaxation variable, then it will necessarily be
considered a soft clause. This is due to the fact that at least one
soft clause would have been used in the learning procedure.

C. Integration of Learned Clauses

Whenever a learned clause is generated, if its size is lower
than the current cutoff, it is exported as a learned clause for
the other threads. At the same time, when a thread checks
if there is a better lower or upper bound value, it also
imports the learned clauses that were shared by other threads.
Since importing clauses is done during the search, the learned
clauses have to be integrated in the context of the current
search space. Therefore, for the integration of a shared clause
ω we have to take into consideration the following cases:



• ω is a unit clause. A restart is forced and the correspond-
ing literal is assigned.

• ω is unit in the current context. The SAT algorithm
backtracks to the highest decision level of the variables
in ω. A decision level of a variable denotes the depth of
the decision tree at which the variable is assigned a value.
After the backtrack, the unassigned literal is assigned and
propagated.

• ω is unsatisfied in the current context. The SAT algorithm
backtracks to the highest decision level of the variables in
ω. Conflict analysis is performed to allow further back-
tracking. Moreover, during the conflict analysis procedure
a new clause will be learned.

• ω is satisfied in the current context. If exactly one literal
in ω is satisfied and the remaining literals are falsified,
and if the decision level of the satisfied literal is higher
than the decision levels of all falsified literals, then the
algorithm backtracks to the highest decision level among
the falsified literals.

In the remaining cases the learned clause is simply added
to the importing thread and no backtracking is needed. The
integration procedure must be done in order to ensure the
correctness of the solver. A similar procedure is done in the
parallel SAT solver ManySAT [16].

V. RELATED WORK

Portfolio approaches explore the parallelism provided by
different viewpoints on the same problem. In parallel SAT
solving, portfolio approaches are becoming the most common
approach [16], [6], as they explore the sensitivity to parameter
tuning of SAT solvers. As a result, each thread has a differ-
ent combination of parameters, for example, different restart
strategies, decision heuristics or learning schemes.

Even though there is an increasing number of parallel SAT
solvers, there are only a few parallel implementations for
solving optimization problems.
SAT4J PB RES//CP 1 implements a resolution based

algorithm that runs in parallel with a cutting plane based
algorithm to find a new upper bound or to prove optimality.
When one of the algorithms finds a new upper bound, it
terminates the search of the other algorithm and both restart
their search within the new upper bound. If one of the
algorithms proves optimality, then the problem is solved and
the search is stopped. Clauses are not shared between these
two algorithms.
pwbo [22] is a parallel Boolean Optimization solver that

searches on the lower and upper bound of the objective value.
If more than two threads are used, the remaining threads search
on different local upper bound values. The parallel search on
different local upper values leads to constants updates on the
lower and upper bound values, which results in reducing the
search space. In addition, to increase diversification of the
search, pwbo uses two threads on the global upper bound

1http://www.satcompetition.org/PoS/presentations-
-pos/leberre.pdf

value. One thread encodes the cardinality constraint into CNF,
whereas the other thread uses a pseudo-Boolean constraint.
This version is called pwbo 4T-CNF and will be used in the
experimental results for comparison purposes.

The success of this approach motivated the exploitation of
cardinality encodings. Nevertheless, the use of cardinality en-
codings in pwbo was restricted to one thread, since the focus
of pwbo was the reduction of the search space by splitting
the interval between the lower and upper bound values. In this
paper, we propose to extend the use of cardinality encodings
to all threads and to have a portfolio approach. Clause sharing
was performed in pwbo at each restart and it was restricted
to clauses of size 5 or smaller. Since the integration of
learned clauses was done at decision level 0, pwbo did not
implement the learned clause integration procedure described
in the previous section.

VI. EXPERIMENTAL RESULTS

This section evaluates the different cardinality encodings
in MaxSAT solving and their application to parallel MaxSAT
algorithms. All experiments were run on the partial MaxSAT
instances from the industrial category of the MaxSAT Eval-
uation 2010 2, which correspond to a set of 497 instances.
The evaluation was performed on two AMD Opteron 6172
processors (2.1 GHz with 64 GB of RAM) running Fedora
Core 13 with a timeout of 1,800 seconds (wall clock time).

For the parallel solvers, results were obtained by running
each solver three times on each instance. Similarly to what is
done when analyzing randomized solvers, the median time was
taken into account. This means that an instance must be solved
by at least two of the three runs to be considered solved. We
should note, however, that this measure is more conservative
than the one used in the SAT Race 2008 3 where solving an
instance in one run suffices to consider it solved.

This section is organized as follows: first, we present an
empirical evaluation of the cardinality encodings for the at-
most-one and at-most-k constraints. The diversification of
cardinality encodings is then exploited to build a portfolio of
encodings that is used in a parallel MaxSAT solver. Next, we
present our parallel MaxSAT solver and perform an extensive
evaluation of its performance against other sequential and
parallel state-of-the-art MaxSAT solvers.

A. Encoding Evaluation

The different cardinality encodings were implemented in
wbo [19], [20]. In wbo the search is initially done by a pseudo-
Boolean (PB) solver that performs a search on the upper bound
side of the optimal solution. However, the use of the PB solver
is limited to 10% of the time limit given to solve the instance.
If the PB solver proves optimality within this time limit, the
optimal solution has been found without having to search on
the lower bound side. On the other hand, if the PB solver was
not able to prove optimality within the given time limit, an
unsatisfiability-based algorithm is used to search on the lower

2http://www.maxsat.udl.cat/10/
3http://baldur.iti.uka.de/sat-race-2008/



TABLE II
NUMBER OF INDUSTRIAL PARTIAL MAXSAT INSTANCES SOLVED BY THE DIFFERENT CARDINALITY ENCODINGS

Benchmark #I at-most-one − Lower Bound Search at-most-k − Upper Bound Search
Pairwise Ladder Bitwise Comm. Product Seq. Totalizer Sorters PB Seq. Totalizer Sorters PB

bcp-fir 59 44 50 46 52 47 49 50 49 44 51 53 51 10
bcp-hipp-yRa1 55 21 22 21 21 22 21 23 20 20 38 40 42 18
bcp-msp 64 3 3 3 4 4 4 5 5 4 26 26 26 12
bcp-mtg 40 17 19 16 18 17 17 18 17 17 40 40 40 26
bcp-syn 74 34 35 35 35 35 34 34 34 34 32 32 32 21
CircuitTrace 4 0 1 1 1 1 1 1 1 0 4 4 4 4
Haplotype 6 5 5 5 5 5 5 5 5 5 0 5 5 0
pbo-mqc 168 46 44 35 37 36 38 39 36 47 152 151 155 168
pbo-routing 15 15 15 15 15 15 15 15 15 15 15 15 15 13
PROTEIN INS 12 1 1 1 1 1 1 1 1 1 2 2 2 1
Total 497 186 195 178 189 183 185 191 183 187 360 368 372 273

bound side. In the previous sections, we have seen that the
cardinality constraint at-most-one is used in the lower bound
search, whereas the cardinality constraint at-most-k is used
in the upper bound search. To evaluate these two types of
cardinality constraints, we have run wbo using only the lower
bound search or the upper bound search.

Table II shows the number of instances solved when using
different cardinality encodings. Since wbo can handle PB
constraints natively, we also considered this representation of
the cardinality constraints, i.e. without encoding them into
CNF. The first column of table II shows the different set
of benchmarks. The second column shows the number of
instances per benchmark set. From column 3 to column 11
we can see the number of solved instances using solely
lower bound search with the different at-most-one encodings.
Similarly, in columns 12 to 15 we present the number of solved
instances with upper bound search using different at-most-k
encodings.

For the at-most-one cardinality encodings, the ladder encod-
ing performed better overall. However, for most benchmarks
the number of solved instances by each encoding is different.
Moreover, there is no clear winner for all the benchmarks.
This shows that cardinality encodings can diversify the search,
since each encoding enables solving different instances. When
the number of variables in the at-most-one constraint is small
(less than a few hundred) then it is better to use the pairwise
encoding or a PB representation. This occurs, for example, in
the pbo-mqc benchmark. On the other hand, if the number
of variables in the at-most-one constraint is large (thousands)
then it is better to encode the constraint into CNF. This can
be observed in the bcp-fir benchmark instances.

For the at-most-k cardinality encodings, the sorter network
performed better overall. Even though the diversity of cardi-
nality encodings for at-most-k is lower than for at-most-one,
it can still show that different encodings may solve different
instances. Encoding cardinality constraints into CNF is more
effective when the number of variables is high (thousands) and
the value of k is small when compared with the number of
variables. This occurs, for example, in the bcp-fir bench-
mark. On the other hand, when given a cardinality constraint
of size n with k close to n/2, using a PB representation can
be more effective than encoding the cardinality constraint into
CNF. This is the case of the pbo-mqc benchmark set.

To exploit the diversity showed by the cardinality encodings
we propose to build a parallel solver as described in section IV.
The new solver is called pMAX and can use 4 or 8 threads. To
maintain a balance between lower and upper bound search,
pMAX always uses the same number of threads for both
approaches. pMAX uses a portfolio of cardinality encodings
for algorithms that search on the lower and upper bounds.
To build a portfolio of encodings for 4 and 8 threads we
analyze table II and for each benchmark we tried to maximize
the number of solved instances by our portfolio of encodings
for the at-most-one and at-most-k constraints. Note that the
fact that one encoding does not solve more instances than the
others does not imply not using it, since it may solve many
instances that were not solved when using other encodings.

With 4 threads pMAX uses the Commander and Totalizer
encodings for the lower bound search and Sorters and PB
encodings for the upper bound search. Although the ladder
encoding performed better for the at-most-one constraint, it
performed better mainly in the bcp-mtg and pbo-mqc
benchmarks. However, the performance of the upper bound
search in those benchmarks is much better than the lower
bound search. Therefore, the main gains of the ladder en-
coding are already covered by the at-most-k encodings for
the upper bound search. A similar reasoning applies to the
PB representation for the upper bound search. Even though
this representation is less effective in general, it is the best
performing encoding for the pbo-mqc benchmarks. Hence,
this portfolio of cardinality encodings allows for a large
diversification of the search in all benchmarks.

With 8 threads pMAX can use more encodings and therefore
can further increase the diversification of the search. For the
upper bound search, all the four available encodings are used.
For the lower bound search, we have selected the following
encodings: Commander, Totalizer, Ladder and Product. The
ladder encoding was now selected due to its overall robustness.
On the other hand, even though the product encoding is less
effective than other encodings, we have noticed that when it
solves the instance, it can be faster than when using other
encodings. This has already been observed before [11]. Hence,
for speedup reasons, we have decided to include the product
encoding on our portfolio of cardinality encodings for 8
threads.



Fig. 3. Cactus plot with running times of solvers
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B. Solver Evaluation

We now compare our new parallel MaxSAT solver, pMAX,
with other state-of-the-art sequential and parallel MaxSAT
solvers. Figure 3 shows a cactus plot with running times of
sequential and parallel solvers. The sequential solvers consid-
ered were QMaxSAT 4 (ranked 1st in the MaxSAT Evaluation
2010), pm2 [1] (ranked 2nd) and wbo [19], [20] (ranked 3rd).
The parallel solvers considered were pwbo T4-CNF [22]
and our new solver pMAX T4. SAT4J MAXSAT [18] and
SAT4J MAXSAT RES//CP were not evaluated since their
performance is not comparable to the remaining state-of-the-
art partial MaxSAT solvers. For the 497 instances tested,
SAT4J MAXSAT 2.2.3 and SAT4J MAXSAT RES//CP can
only solve 277 and 290 instances, respectively.

The results are clear: when considering wall clock time,
pMAX with 4 threads outperforms the best sequential and
parallel solvers. When evaluating a parallel solver, the wall
clock time is always considered since it measures the real
time that a solver used to solve the instances. From a user
point of view, real time is clearly more important than CPU
time. On the other hand, if we analyze the CPU resources then
parallel solvers with 4 threads are allowed to use four times
more CPU time than sequential solvers. Figure 3 shows that
pMAX T4 can outperform all sequential solvers even with a
time limit of 1800 CPU seconds, i.e. within 450 wall clock
seconds. Indeed, pMAX 4T is able to solve 389 instances in
the same CPU time that QMaxSAT uses to solve 372 instances.
To further analyze the resources point of view we increase
the timeout of sequential solvers to 7,200 CPU seconds. With
this experiment we are allowing the same CPU time for all
solvers. Table III shows the number of instances solved with
this new timeout. All sequential solvers can now solve more
instances. In fact, PM2 is now able to solve more instances than
QMaxSAT. However, pMAX 4T still outperforms all solvers.

In section IV we have described the sharing mechanism of
pMAX. It is expected that sharing learned clauses can help to
further prune the search space and boost the performance of
the parallel solver. Figure 4 provides a scatter plot with the

4http://www.maxsat.udl.cat/10/solvers/QMaxSat.pdf

TABLE III
NUMBER OF INSTANCES SOLVED WITH TIMEOUT 7,200S (CPU TIME)

# I PM2 QMaxSAT wbo pwbo 4T-CNF pMAX 4T
497 388 381 329 390 400

Fig. 4. Runtimes for pMAX 4T with and without sharing
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Fig. 5. Runtimes for pMAX 4T and pMAX 8T
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runtimes of pMAX 4T with and without sharing. Each point
in the plot corresponds to a problem instance, where the x-
axis corresponds to the runtime required by pMAX 4T with
sharing and the y-axis corresponds to the runtime required by
pMAX 4T without sharing. Instances that are trivially solved
by both approaches (in less than 10 seconds) are not shown in
the plot. Even though we can only solve a few more instances
with sharing than without sharing, figure 4 clearly shows that
sharing learned clauses speeds up the solver.

Figure 5 compares pMAX with 4 and 8 threads. pMAX 8T
is able to solve more instances and to outperform pMAX 4T
on most instances. This shows that even with 8 threads we
are still able to increase the diversification of the search by
adding different cardinality encodings.

Table IV shows an overview of the speedup on instances
that were solved by wbo and the parallel solvers. pMAX 4T
is almost 6× faster than wbo. This is due to the portfolio of
cardinality encodings and to the fact that we are simultane-
ously searching on the lower and upper bound sides of the
optimal solution. Moreover, pMAX 4T is 1.6× faster than our
previous solver pwbo 4T-CNF. When using 8 threads, pMAX
8T is 8.5× faster than wbo and 1.4× faster than pMAX 4T.



TABLE IV
SPEEDUP ON THE 329 INSTANCES SOLVED BY ALL OUR SOLVERS

Solver Time (s) Speedup
wbo 67,947.41 1.00
pwbo 4T-CNF 18,015.69 3.77
pMAX 4T 11,382.91 5.97
pMAX 8T 7,990.10 8.50

VII. CONCLUSIONS AND FUTURE WORK

Several cardinality encodings have been proposed in the last
decade. This paper examined a large number of cardinality
encodings and evaluated their performance for solving the
MaxSAT problem. Overall, the ladder encoding showed the
best performance for the at-most-one cardinality constraints.
As expected, when the number of variables is small it is better
to use the pairwise encoding or PB representation. On the other
hand, when the number of variables in the cardinality con-
straint is large, it is better to encode the at-most-one cardinality
constraint into CNF. For the at-most-k cardinality constraint
the sorter encoding showed the best performance. In general,
it is better to translate the at-most-k cardinality constraint
into CNF. However, when given a cardinality constraint of
size n with k close to n/2, using a PB representation can
be more effective than encoding the cardinality constraint
into CNF. As future work, we propose to build a dynamic
heuristic that given a portfolio of cardinality encodings and
a cardinality constraint, chooses the more adequate encoding
for that constraint. Such an heuristic can also be helpful for
sequential solvers that use cardinality encodings.

Motivated with the existing diversity of effective cardinality
encodings, we propose pMAX, a parallel partial MaxSAT solver
that uses a portfolio of cardinality encodings and shares
learned clauses between the different threads. pMAX clearly
outperforms state-of-the-art sequential and parallel partial
MaxSAT solvers on industrial benchmarks. Moreover, pMAX
4T is able to solve more instances than the best sequential
solver with the same CPU time, i.e. using four times less wall
clock time. Experimental results show that clause sharing has
a strong impact on the solving speed. When using 8 threads,
pMAX 8T scales well since it is 1.4× faster than pMAX 4T.
Future directions include the implementation of other at-most-
k encodings, namely, cardinality networks [3] and pairwise
cardinality networks [9]. These encodings are also based on
sorters and are expected to further improve our portfolio of
algorithms.
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[2] C. Ansótegui and F. Manyà, “Mapping problems with finite-domain vari-
ables into problems with boolean variables,” in International Conference
on Theory and Applications of Satisfiability Testing, 2004, pp. 1–15.

[3] R. Ası́n, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Cardinality Networks: a theoretical and empirical study,” Constraints,
vol. 16, no. 2, pp. 195–221, 2011.

[4] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in International Joint Conference on Artificial
Intelligence, 2009, pp. 399–404.

[5] O. Bailleux and Y. Boufkhad, “Efficient CNF Encoding of Boolean
Cardinality Constraints,” in International Conference on Principles and
Practice of Constraint Programming, 2003, pp. 108–122.

[6] A. Biere, “Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010,” SAT Race, Solver Description, 2010.
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