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Abstract

We analyze, along the lines of the knowledge compi-
lation map, both the tractability and the succinctness
of the propositional language URC-C of unit-refutation
complete propositional formulae, as well as its disjunc-
tive closure URC-C[∨, ∃], and a superset of URC-C
where variables can be existentially quantified and unit-
refutation completeness concerns only consequences
built up from free variables.

Introduction
This paper is about the representation of propositional
knowledge as logical formulae in the classical Conjunc-
tive Normal Form (CNF). This representation formalism
is the input language of SAT solvers, and is also increas-
ingly used in other constraint solving tools as a target lan-
guage into which higher-level constraints are translated (see,
e.g. (Bessiere, Hebrard, and Walsh 2003; Bacchus 2007;
Brand et al. 2007; Quimper and Walsh 2008; Huang 2008;
Feydy and Stuckey 2009; Bessiere et al. 2009)).

The key challenge when representing problems in CNF is
to reach the two goals of tractability and succinctness. Many
automated reasoning tasks on CNF formulae have high com-
putational complexity and can only be performed efficiently
if the problem is well-posed in a certain sense. A way to ob-
tain a well-posed CNF encoding is to add information to it
in the form, notably, of extra clauses; but this process can, in
bad cases, blow-up the formula exponentially.

Unit-Refutation Completeness To shed light on the elu-
sive notion of “well-posed CNF encoding”, we consider the
key notion of Unit-Refutation Completeness. A formula is
unit-refutation complete iff any of its implicates can be re-
futed by unit propagation. Refutation refers to the process of
proving an implication α |= β by proving that α∧¬β |= ⊥.
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Unit resolution is the restriction of the well-known resolu-
tion rule where at least one of the two clauses resolved upon
is a unit clause, i.e., a clause containing a single literal. A
CNF formula α is unit-refutation complete if all clauses δ
that are implied by α can be proved by refutation using a
unit-resolution proof, i.e., there exists a finite sequence of
clauses δ1, . . . , δn = ⊥, where each δi is a clause of α, or
the complementary literal of a literal of δ, or is obtained by
unit resolution from two previous clauses of the sequence.
Hence, for a unit-refutation complete α, whether a clause δ
is implied by α or not is decided by determining whether
performing unit resolution on α ∧ ¬δ leads to the empty
clause.

Example 1 The CNF formula α = (a∨ c) ∧ (¬a∨ c)∧ d is
unit-refutation complete: for each of its implicates δ (here,
every clause implied by c or by d), there exists a unit refuta-
tion of α∧¬δ. In contrast, the CNF formula β = (a∨ b∨ c)
∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ c) ∧ d, though
equivalent to α, is not unit-refutation complete.

The class URC-C of unit-refutation complete CNF for-
mulae has well-known tractability properties for the con-
sistency query and more generally for clausal entailment;
indeed, determining whether a URC-C formula α implies
a clause δ amounts to determining whether a unit refu-
tation of α ∧ ¬δ exists, which can be decided in time
O(| α | + | δ |), while the problem of clausal entailment is
coNP-complete for unrestricted CNF formulae. Of course,
there is some price to be paid: turning CNF formulae into
equivalent URC-C ones is always feasible but the size of
the resulting formulae is exponential in the input size in the
worst case. Unless the polynomial hierarchy collapses, the
same problem occurs whenever the target language of the
translation offers tractable clausal entailment.

Unit-refutation complete CNF formulae are increasingly
used in the analysis of CNF encodings: for instance a par-
ticular case of URC-C formulae (“unit-propagation com-
pleteness”, or UPC-C) is considered by the aforementioned
papers as well as in recent papers on Clause Learning in
SAT (Atserias, Fichte, and Thurley 2011; Pipatsrisawat and
Darwiche 2011) and knowledge compilation (Bordeaux and
Marques-Silva 2012). Additionally, Sinz (Sinz 2002) ex-
plores the pre-processing of CNF formulae into URC-C to
speed-up the resolution of configuration problems.



Knowledge Compilation The language URC-C is but one
specific kind of knowledge compilation language. In fact, it
is historically among the first knowledge compilation lan-
guages introduced in the literature since del Val showed in
(del Val 1994) how to render a CNF formula unit-refutation
complete by conjoining it with some of its prime implicates.
However, in many AI applications, tractable clausal entail-
ment is not enough: other queries and transformations are
expected to be feasible in polynomial time. Furthermore, the
more queries are supported by a knowledge compilation lan-
guage, the larger problem encodings in this language tend to
be. Therefore another crucial aspect of URC-C is to under-
stand its succinctness. In order to evaluate more accurately
the attractiveness of URC-C as a target language for knowl-
edge compilation, in terms of tractability and succinctness,
we study it along the lines of the knowledge compilation
map (Darwiche and Marquis 2002).

In CNF encodings, it is well-known that the introduc-
tion of existentially quantified variables can have a big im-
pact on the size. A basic example is the Boolean function
XOR(x1 · · ·xn) requiring that the number of true values
among n variables be odd. Representing this function as a
CNF formula requires 2n−1 clauses, but with the addition of
extra variables it is easy to represent it as a CNF formula
of size linear in n and whose solutions are essentially the
same (i.e., up to projecting away the introduced variables).
Similarly, it is well-known that when encoding constraints,
introducing extra variables is often necessary to obtain con-
cise well-posed encodings.

In knowledge compilation, languages that allow the intro-
duction of existentially quantified variables are called exis-
tential closures, as defined in (Fargier and Marquis 2008).
More generally, closures with ∃ and/or ∨ are collectively re-
ferred to as disjunctive closures (Fargier and Marquis 2008)
since existential quantifications can be viewed as a form of
generalized disjunctions. The well-known Tseitin transfor-
mation (Tseitin 1968) shows how every propositional for-
mula can be turned in polynomial time into CNF[∃], the ex-
istential closure of CNF, which simply amounts to the set of
CNF formulae where some variables are existentially quan-
tified. However, CNF (and a fortiori CNF[∃]) cannot be con-
sidered as an interesting target language for knowledge com-
pilation since it is does not offer a polynomial-time consis-
tency test unless P = NP.

Hence, an important issue is to identify new proposi-
tional languages based on CNF encodings which are more
tractable than CNF[∃] and CNF in the sense that they offer a
polynomial-time consistency test, but also offer succinct en-
codings via the introduction of existentially quantified vari-
ables.

Contributions Towards this objective, we introduce in
this paper the language ∃URC-C. This is a subset of CNF[∃]
consisting mainly of formulae of the form ∃X.α, whereX is
a finite (and possibly empty) set of propositional variables,
α is a CNF formula and for every implicate δ of ∃X.α there
exists a unit-refutation from α ∧ ¬δ. While URC-C[∃] is a
subset of ∃URC-C, it turns out that URC-C[∃] and ∃URC-C
are not equal. Let us slightly modify Example 1 by introduc-
ing existential variables in order to illustrate the difference:

Example 2 The CNF[∃] formula ∃{a, b, c}.β = ∃{a, b,
c}.((a∨ b∨ c)∧ (a∨¬b∨c)∧ (¬a∨b∨c)∧ (¬a∨¬b∨c)∧d)
is an ∃URC-C formula, since for any implicate δ (a clause
implied by d) unit propagation on β ∧ ¬δ yields a conflict
(denoted as β ∧ ¬δ `u ⊥). However, β is not a URC-C for-
mula, as explained before.

In the following, we analyze the tractability and the suc-
cinctness of URC-C, its disjunctive closure URC-C[∨,∃] and
∃URC-C along the lines of the knowledge compilation map.
We show that the three languages have both a polynomial-
time consistency test, and a polynomial-time clausal entail-
ment test. Unlike URC-C, URC-C[∨,∃] and ∃URC-C offer
also polynomial time forgetting and closure by disjunction.
Furthermore, they are strictly more succinct than URC-C.
We also show that ∃URC-C compares favorably with the in-
fluential DNNF language, and its subsets.

Formal Preliminaries
Propositional Logic
We consider subsets L of the propositional language QDAG
of quantified propositional DAGs.

Definition 1 (QDAG) Let PS be a denumerable set of
propositional variables. QDAG is the set of all finite, single-
rooted DAGs α where:
• each leaf node of α is labeled by a literal l over PS, or by

a Boolean constant > (always true) or ⊥ (always false) ;
• each internal node of α is labeled by a connective c ∈
{∧,∨,¬,⊕} and has as many children as required by c
(¬ is a unary connective while the three other connec-
tives admit finitely many arguments), or is labeled by ∃x
(where x ∈ PS) and has a single child.

All the propositional languages considered in the follow-
ing are subsets of QDAG; DAG is the subset of QDAG where
no node labeled by a quantification is allowed (each DAG
formula thus corresponds to a Boolean circuit.)

A literal (over V ⊆ PS) is an element x ∈ V (a pos-
itive literal) or a negated one ¬x (a negative literal), or a
Boolean constant. l is the complementary literal of literal l,
so that > = ⊥, ⊥ = >, x = ¬x and ¬x = x. For a lit-
eral l different from a Boolean constant, var(l) denotes the
corresponding variable: for x ∈ PS, we have var(x) = x
and var(¬x) = x. A clause (resp. a term) is a finite disjunc-
tion (resp. conjunction) of literals. CLAUSE (resp. TERM) is
the subset of DAG consisting of all clauses (resp. term). A
CNF formula is a finite conjunction of clauses, while a DNF
formula is a finite disjunction of terms.

Each element α of QDAG is called a QDAG formula.
Var(α) denotes the set of free variables x of α, i.e., those
variables x for which there exists a leaf node nx of α labeled
by a literal l such that var(l) = x and there is a path from
the root of α to nx such that no node from it is labeled by ∃x.
The size |α| of a QDAG formula |α| is the number of nodes
plus the number of arcs in the DAG.

A key deductive technique on CNF formulae is the well-
known resolution rule whereby we deduce A ∨ B from two
clauses A ∨ x and ¬x ∨ B, where x is a variable. Unit res-
olution is the restriction when one of the clauses is reduced
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to a single literal, i.e., one of the clauses A or B is empty. A
unit derivation from a CNF α is a finite sequence of clauses
δ1, . . . , δn, where each δi is a clause of α, or is obtained by
unit resolution from two previous clauses of the sequence.
We write α `u c if there is a unit derivation ending with
δn = c. We say that α is unit-refutable if α `u ⊥.

The Knowledge Compilation Map
Within the knowledge compilation map, propositional lan-
guages are evaluated w.r.t. their ability to support some
queries and transformations in polynomial time and w.r.t.
their succinctness. The following queries and transforma-
tions are considered.

Definition 2 (queries) Let L ⊆ QDAG.

• L satisfies CO (consistency) iff there exists a polytime al-
gorithm that maps every formula α from L to 1 if α is
consistent, and to 0 otherwise.

• L satisfies VA (validity) iff there exists a polytime algo-
rithm that maps every formula α from L to 1 if α is valid,
and to 0 otherwise.

• L satisfies CE (clausal entailment) iff there exists a poly-
time algorithm that maps every formula α from L and ev-
ery clause γ to 1 if α |= γ holds, and to 0 otherwise.

• L satisfies EQ (equivalence) iff there exists a polytime al-
gorithm that maps every pair of formulae α, β from L to
1 if α ≡ β holds, and to 0 otherwise.

• L satisfies SE (sentential entailment) iff there exists a
polytime algorithm that maps every pair of formulae α,
β from L to 1 if α |= β holds, and to 0 otherwise.

• L satisfies IM (implicant) iff there exists a polytime algo-
rithm that maps every formula α from L and every term γ
to 1 if γ |= α holds, and to 0 otherwise.

• L satisfies CT (model counting) iff there exists a polytime
algorithm that maps every formula α from L to a nonneg-
ative integer that represents the number of models of α
over V ar(α) (in binary notation.)

• L satisfies ME (model enumeration) iff there exists a poly-
nomial p(., .) and an algorithm that outputs all models of
an arbitrary formula α from L in time p(n,m), where n
is the size of α and m is the number of its models (over
V ar(α).)

• L satisfies MC (model checking) iff there exists a polytime
algorithm that maps every formula α from L and every
interpretation ω over V ar(α) (represented as a term) to
1 if ω is a model of α, and to 0 otherwise.

Definition 3 (transformations) Let L ⊆ QDAG.

• L satisfies CD (conditioning) iff there exists a polytime al-
gorithm that maps every formula α from L and every con-
sistent term γ to a formula from L that is logically equiv-
alent to the conditioning α | γ of α on γ, i.e., the formula
obtained by replacing each free occurrence of variable x
of α by > (resp. ⊥) if x (resp. ¬x) is a positive (resp.
negative) literal of γ.

• L satisfies FO (forgetting) iff there exists a polytime algo-
rithm that maps every formula α from L and every subset
X of variables from PS to a formula from L equivalent to

∃X.α. If the property holds for each singleton X, we say
that L satisfies SFO (single forgetting).

• L satisfies ∧C (conjunction) iff there exists a polytime al-
gorithm that maps every finite set of formulae α1, . . . , αn
from L to a formula of L that is logically equivalent to
α1 ∧ · · · ∧ αn.

• L satisfies ∨C (disjunction) iff there exists a polytime al-
gorithm that maps every finite set of formulae α1, . . . , αn
from L to a formula of L that is logically equivalent to
α1 ∨ · · · ∨ αn.

• L satisfies ∧BC (bounded conjunction) iff there exists a
polytime algorithm that maps every pair of formulae α
and β from L to a formula of L that is logically equivalent
to α ∧ β.

• L satisfies ∨BC (bounded disjunction) iff there exists a
polytime algorithm that maps every pair of formulae α
and β from L to a formula of L that is logically equivalent
to α ∨ β.

• L satisfies ¬C (negation) iff there exists a polytime algo-
rithm that maps every formula α from L to a formula of
L logically equivalent to ¬α.

Succinctness is defined as follows.

Definition 4 (succinctness) Let L1 and L2 be two subsets
of QDAG. L1 is at least as succinct as L2, denoted L1 ≤s
L2, iff there exists a polynomial p such that for every formula
α ∈ L2, there exists an equivalent formula β ∈ L1 where
|β| ≤ p(|α|).

It turns out that the succinctness relation is a pre-order
(i.e., a reflexive and transitive relation). One also often takes
advantage of the following restriction of succinctness, where
the translation must be achieved in polynomial time (instead
of polynomial space.)

Definition 5 (polynomial translation) Let L1 and L2 be
two subsets of QDAG. L1 is said to be polynomially trans-
latable into L2, noted L2 ≤p L1, iff there exists a polytime
algorithm f such that for every α ∈ L1, we have f(α) ∈ L2

and f(α) ≡ α.

Thus, whenever L1 is polynomially translatable into L2,
L2 is at least as succinct as L1. Furthermore, when L1 is
polynomially translatable into L2, every query which is sup-
ported in polynomial time in L2 also is supported in poly-
nomial time in L1; and conversely, every query which is not
supported in polynomial time inL1 unless P = NP (resp. un-
less the polynomial hierarchy PH collapses) cannot be sup-
ported in polynomial time inL2, unless P = NP (resp. unless
PH collapses.)
∼s (resp. ∼p) is the symmetric part of ≤s (resp. ≤p.) <s

(resp. <p) is the asymmetric part of ≤s (resp. ≤p.) When
L1 ∼p L2, L1 and L2 are said to be polynomially equiva-
lent. Obviously enough, polynomially equivalent fragments
are equally efficient (and succinct) and possess the same set
of tractable queries and transformations. L1 6≤∗s L2 means
that L1 is not at least as succinct as L2 unless PH collapses.
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Disjunctive Closures
Intuitively, a closure principle applied to a propositional lan-
guage L defines a new propositional language, called a clo-
sure of L, through the application of “operators” (i.e., con-
nectives or quantifications.) The resulting closure is said to
be disjunctive when the operators are among ∨ and ∃x with
x ∈ PS. It is called the disjunction closure L[∨] of L when
the operator is ∨, and the existential closure L[∃] of L when
the operators are of the form ∃x.

Definition 6 (disjunctive closures) Let L ⊆ QDAG and 4
⊆ {∨,∃}. The closure L[4] of L by4 is the subset of QDAG
inductively defined as follows:

1. if α ∈ L, then α ∈ L[4],
2. if ∨ ∈ ∆ and αi ∈ L[4] for each i ∈ 1, . . . , n,

then ∨(α1, . . . , αn) ∈ L[4];
3. if ∃ ∈ ∆, x ∈ PS, and α ∈ L[4], then ∃x.α ∈ L[4].

In order to avoid heavy notations, when 4 = {δ1, . . . , δn},
we write L[δ1, . . . , δn] instead of L[{δ1, . . . , δn}].

Thus, an element ofL[4] can be viewed as a tree in which
internal nodes are labeled by quantifications of the form ∃x
or by ∨ and leaf nodes are labeled by elements ofL. Accord-
ingly, the formulae αi considered in item 2 of Definition 6
do not share any common subgraphs.

(Fargier and Marquis 2008) provide several general-scope
characterization results for disjunctive closures. Especially,
they show that for a given L ⊆ QDAG, under very weak
conditions on L (stability by renaming), only three disjunc-
tive closures are worth considering since L[∃][∃] = L[∃],
L[∨][∨] = L[∨] and L[∃][∨] ∼p L[∨][∃] ∼p L[∨,∃] (see
item 4 of Proposition 1 and item 1 of Proposition 2 in
(Fargier and Marquis 2008).) They also study the disjunc-
tive closures of the languagesL among OBDD<, DNF, DNNF,
CNF, PI, IP, MODS considered in (Darwiche and Marquis
2002). (Fargier and Marquis 2008) study the disjunction clo-
sures L[∨] of some incomplete fragments L, mainly the
KROM-C language (the subset of CNF consisting of conjunc-
tions of binary clauses), the HORN-C language (the subset
of CNF consisting of conjunctions of Horn clauses), and the
AFF language (the set of affine formulae, which are con-
junctions of XOR-clauses.) (Marquis 2011) investigates the
existential closures of those languages L and of their dis-
junction closures L[∨].

URC-C, URC-C[∨,∃], and ∃URC-C
Definition 7 (URC-C) (del Val 1994) URC-C is the subset
of CNF consisting of formulae α which are unit-refutation
complete, i.e., for every implicate δ = l1 ∨ ... ∨ lk of α, we
have α ∧ l1 ∧ ... ∧ lk `u ⊥.

The following lemma shows that focusing on the prime
implicates of a CNF formula α is enough when one wants
to determine whether it belongs to URC-C. The main advan-
tage is that a propositional formula always has finitely many
prime implicates (up to logical equivalence), while it has in-
finitely many implicates (up to logical equivalence) when
PS is denumerable.

Lemma 1 A CNF formula α is a URC-C formula iff for
every prime implicate δ = l1 ∨ ... ∨ lk of α, we have
α ∧ l1 ∧ ... ∧ lk `u ⊥.

Example 3 The CNF formula α = (a ∨ b) ∧ (¬b ∨ c) ∧
(¬a ∨ c) belongs to URC-C. c is a prime implicate of it and
we have α ∧ ¬c `u ⊥; indeed, the sequence ¬c, ¬b ∨ c, ¬b,
¬a ∨ c, ¬a, a ∨ b, a, ⊥ is a unit refutation of α ∧ ¬c.

The language URC-C is not closed under logical equiva-
lence within CNF. For instance, the formula (a ∨ b ∨ c) ∧
(a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ c)
is not URC-C while equivalent to α from Example 3. Never-
theless, it is easy to show that a CNF α is URC-C iff the for-
mula obtained by removing in α every clause that is strictly
implied by another clause of α also is a URC-C formula.
Furthermore, a CNF α is URC-C iff the saturation of α by
unit-propagation is also URC-C (the formula is obtained by
repeatedly applying unit-resolution on α and replacing every
clause by its resolvent when the latter subsumes the former.)

These two easy results show that URC-C satisfies a certain
form of stability by simplification.

In order to compare URC-C with other subsets of CNF,
like PI (the Blake formulae, also known as prime implicate
formulae), the following easy lemma is useful.

Lemma 2 Let α be a CNF formula containing each of its
prime implicates. Then α is an URC-C formula.

As a direct consequence, we have the inclusion PI ⊆
URC-C. This shows that URC-C is a complete propositional
language: for every Boolean function, there exists a URC-C
formula representing it. Another easy consequence is that
MONO-C ⊆ URC-C, where MONO-C is the subset of CNF
consisting of monotone formulae (a CNF formula α being
monotone iff for every variable x ∈ V ar(α), either x oc-
curs as a literal in α or ¬x occurs as a literal in α.) Indeed, a
monotone CNF formula contains each of its prime implicate.

Other influential subsets of CNF are KROM-C, HORN-C,
renH-C (the set of CNF formulae α which are renamable
Horn, i.e. such that there exists a subset V of V ar(α) for
which the formula obtained by replacing in α every literal
l over a variable of V by the complementary literal l is a
HORN-C formula.) Clearly, renH-C is a subset of URC-C.
Indeed, it is well-known that a clause δ = l1∨...∨lk is an im-
plicate of a renH-C formula α iff α∧l1∧...∧lk `u ⊥. Since
HORN-C is a subset of renH-C, we obtain that HORN-C is a
subset of URC-C. This is also the case of CLAUSE (another
subset of renH-C) but this does not extend to KROM-C;
for instance the KROM-C formula (a ∨ b) ∧ (¬a ∨ b) ∧
(a ∨ ¬b) ∧ (¬a ∨ ¬b) is not a URC-C formula since it is
contradictory but no unit refutation of it exists. However,
since every consistent KROM-C formula is a renH-C for-
mula and since KROM-C satisfies CO, we immediately ob-
tain that KROM-C is polynomially translatable into URC-C.
The inclusion renH-C ⊂ URC-C is a strict one since for
instance the URC-C formula (a∨ b∨ c)∧ (¬a∨¬b∨¬c) is
an URC-C formula but not a renH-C one.

This shows that many interesting subsets of CNF are also
subsets of URC-C (or at least are polynomially translatable
into it.) In particular, URC-C is “bounded” by the two com-
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plete languages PI and CNF, in the sense that

PI ⊂ URC-C ⊂ CNF.

Both inclusions are strict ones since a ∧ (¬a ∨ b) is URC-C
formula but not a PI one, while (a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨
¬b) ∧ (¬a ∨ ¬b) is a CNF formula but not a URC-C one.
Furthermore, we will show in the following that URC-C is
strictly more succinct then PI, while being strictly less suc-
cinct than CNF unless the PH collapses.

We now introduce formally the language ∃URC-C.

Definition 8 (∃URC-C) ∃URC-C is the subset of CNF[∃]
consisting of URC-C formulae, and formulae of the form
∃X.α where X is a finite subset of PS and α is a CNF for-
mula, such that for every implicate δ = l1∨ ...∨ lk of ∃X.α,
we have α ∧ l1 ∧ ... ∧ lk `u ⊥.

Obviously enough, URC-C is a subset of ∃URC-C. We
also have that URC-C[∃] is a subset of ∃URC-C. Indeed,
consider a URC-C[∃] formula of the form ∃X.α; then for
every implicate δ = l1 ∨ ... ∨ lk of α, we have α ∧ l1 ∧ ... ∧
lk `u ⊥ since α is a URC-C formula. Then the fact that the
implicates of ∃X.α are among the implicates of α completes
the proof.

We have for ∃URC-C direct counterparts to Lemmas 1
and 2.

Lemma 3 A CNF[∃] formula α is an ∃URC-C formula iff
for every prime implicate δ = l1 ∨ ... ∨ lk of α, we have
α ∧ l1 ∧ ... ∧ lk `u ⊥.

Lemma 4 Let α be a CNF[∃] formula containing each of its
prime implicates. Then α is a URC-C[∃] formula.

Note that the (prime) implicates of an existentially quan-
tified formula are clauses built on the free variables of this
formula, therefore these lemmas allow us to reason in terms
of free variables only.

Tractability and Succinctness
We now prove a number of results that shed light on the
tractability and succinctness of URC-C, URC-C[∨,∃], and
∃URC-C.

Relating ∃URC-C[∨] with ∃URC-C
We first explain why considering the disjunctive closures of
∃URC-C yields a language that is equivalent to ∃URC-C
from the tractability and succinctness point of view. While it
is obvious that ∃URC-C =∃URC-C[∃], we also show that:

Proposition 1 ∃URC-C ∼p ∃URC-C[∨].

As a consequence, we have that ∃URC-C ∼p
∃URC-C[∨,∃]. Prop. 1 hides a subtlety. The idea is
to eliminate the disjunctions from a ∃URC-C[∨] (or
URC-C[∨,∃]) formulae, in order to construct a new
CNF formula (possibly with more existentially quantified
variables) and that is, importantly, also unit-refutation
complete. There are two standard ways to eliminate such
disjunctions. The brute-force approach takes advantage of
the distributivity of ∨ over ∧; when two (or, more generally,
a fixed number of) CNF formulae are considered, this can

be achieved in polynomial time (stated otherwise, CNF
satisfies ∨BC), but this does not extend to an unbounded
number of CNF formulae. The other approach exploits the
familiar Tseitin encoding (Tseitin 1968) which introduces
new (existentially quantified) variables (and this approach
runs in polynomial time for an unbounded number of CNF
formulae to be disjoined.) However, none of the methods
preserves unit-refutation completeness in the general case:

Example 4 Consider the formula α1 ∨ α2 where α1 ≡
(¬a∨ b)∧ (a∨ b) and α2 ≡ (¬c∨d)∧ (c∨d). Both α1 and
α2 are URC-C formulae, hence ∃URC-C formulae. Using
the brute-force approach, α1 ∨ α2 is turned into the equiva-
lent CNF formula αb = (¬a∨b∨¬c∨d) ∧ (¬a∨b∨c∨d) ∧
(a∨b∨¬c∨d) ∧ (a∨b∨c∨d). It turns out that αb does not
belong to ∃URC-C since the clause (b∨d) is an implicate of
α1∨α2 but αb∧¬b∧¬d 6`u ⊥. Similarly, to express α1∨α2

in CNF using Tseitin encoding, we can introduce two new
variables τ1, τ2 that capture the truth value of each disjunct.
We obtain the CNF[∃] formula: αT = ∃τ1, τ2. ((τ1 ∨ τ2)∧
(¬τ1∨¬a∨b)∧ (¬τ1∨a∨b)∧ (¬τ2∨¬c∨d)∧ (¬τ2∨c∨d)).
Again, this formula αT is not ∃URC-C: the clause (b∨ d) is
an implicate of it but αT ∧ ¬b ∧ ¬d 6`u ⊥.

To prove Prop. 1 we need a more sophisticated encoding
that produces an ∃URC-C formula. Intuitively we need to
process the Tseitin encoding in a way that simulates “con-
structive disjunction”: unit propagation on the processed for-
mula should be enhanced so as to directly infer any literal
that would be obtained in each and every branch of a case
reasoning on the literals of the selected clause. Such encod-
ings are defined as follows.

Definition 9 (“Constructive Disjunction” Encoding)
Given a satisfiable CNF formula α and a selected clause
(d1 ∨ · · · ∨ dp) of α, a constructive disjunction encoding
of α w.r.t. the selected clause is a CNF formula δ with
Var(δ) ⊇ Var(α) such that, given any set of literals
l1 · · · lk built on Var(α)

1. α∧l1∧· · ·∧lk is satisfiable iff δ∧l1∧· · ·∧lk is satisfiable;
2. if, ∀i ∈ 1, · · · , p, α ∧ l1 ∧ · · · ∧ lk ∧ di `u ⊥

then δ ∧ l1 ∧ · · · ∧ lk `u ⊥

Prop. 1 relies on the following proposition, which states
that constructive encodings indeed exist, and can be com-
puted in a tractable way.

Proposition 2 Given any CNF α we can construct a con-
structive disjunction encoding of α w.r.t. any selected clause
in time polynomial in |α|.

The formal definition of the encoding is given in the proof
of Prop. 2. Here we simply give a flavour of what the encod-
ing looks like for a simple example:

Example 5 Consider the formula (x ∨ y), (¬x ∨ z), (¬y ∨
z). Assume we want a constructive disjunction w.r.t.
the clause (x ∨ y). The encoding introduces variables
x−1 , x

+
1 , y

−
1 , y

+
1 , z

−
1 , z

+
1 that, intuitively, simulate unit prop-

agation conditionally to the first disjunct, namely x. (We
have a positive and a negative version of each variable so
that the simulation never causes an inconsistency but, in-
stead, detects it by setting e.g. both x−1 and x+1 to true.)
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L CO VA CE IM EQ SE CT ME MC
∃URC-C

√
◦

√
◦ ◦ ◦ ◦

√ √

URC-C[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

URC-C
√ √ √ √ √ √

◦
√ √

Table 1: Queries.
√

means “satisfies” and ◦means “does not
satisfy unless P = NP.”

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
∃URC-C

√ √ √
◦ ◦

√ √
◦

URC-C[∨,∃]
√ √ √

◦ ◦
√ √

◦
URC-C

√
• ? ◦ ◦ • ? •

Table 2: Transformations.
√

means “satisfies,” • means
“does not satisfy,” ◦means “does not satisfy unless P=NP.”.

Similarly for the second disjunct y we introduce variables
x−2 , x

+
2 , y

−
2 , y

+
2 , z

−
2 , z

+
2 . We have 4 groups of clauses;

1. clauses that simulate propagation in the first context un-
der the assumption that x is true: (x+1 ), (¬x−1 ∨y

+
1 ), (x+1 ∨

¬y−1 )(¬x+1 ∨z
+
1 ), (x−1 ∨¬z

−
1 ), (¬y+1 ∨z

+
1 ), (y−1 ∨¬z

−
1 );

2. clauses that simulate propagation in the 2nd context un-
der the assumption that y is true: (y+2 ), (¬x−2 ∨y

+
2 ), (x+2 ∨

¬y−2 )(¬x+2 ∨z
+
2 ), (x−2 ∨¬z

−
2 ), (¬y+2 ∨z

+
2 ), (y−2 ∨¬z

−
2 );

3. clauses that “inject” unit literals from the original for-
mula into each simulation, e.g. (¬x∨x+1 ), (x∨x−1 ) (sim-
ilarly for y and z and for the second context);

4. clauses that detect when a literal is true under all cases of
the disjunction, e.g. (¬x+1 ∨¬x

+
2 ∨x), (¬x−1 ∨¬x

−
2 ∨¬x)

(similarly for y and z).

To see what the encoding brings, observe, for instance,
that the literal z is deduced from this formula by unit propa-
gation.

Queries and Transformations
As to queries and transformations, we have obtained the fol-
lowing results.

Proposition 3 The results given in Table 1 and in Table 2
hold.

From Proposition 3, it turns out that URC-C[∨,∃] and
∃URC-C are equally tractable. URC-C is more tractable than
∃URC-C w.r.t. queries (since it offers the same queries as
∃URC-C plus VA, IM, EQ and SE). Conversely, ∃URC-C
is more tractable than URC-C w.r.t. transformations since
beyond ∨C, it offers the very significant FO transformation
(indeed, forgetting is a key transformation in a number of
AI problems, with (among others) applications to diagno-
sis, planning, reasoning about change, reasoning under in-
consistency.) We ignore whether URC-C satisfies ∨BC or
SFO (since it satisfies CD, if it satisfies ∨BC, then it sat-
isfies SFO). Anyway, both transformations are offered by
∃URC-C.

Let us now report some results concerning the succinct-
ness of URC-C, URC-C[∨,∃] and ∃URC-C.

Proposition 4 The following succinctness results hold:

1. ∃URC-C ≤s URC-C[∨,∃] <s URC-C <s PI.
2. URC-C 6≤∗s CNF and CNF ≤s URC-C.
3. ∃URC-C 6≤∗s CNF and CNF 6≤s ∃URC-C.
4. URC-C 6≤s DNF, URC-C 6≤s SDNNF,

and URC-C 6≤s d-DNNF,
5. DNF 6≤s URC-C, SDNNF 6≤s URC-C,

and FBDD 6≤s URC-C.
6. ∃URC-C ≤s DNNF.
7. ∃URC-C <s DNF.
8. ∃URC-C <s SDNNF.
9. ∃URC-C <∗s d-DNNF.

Point 1. shows that ∃URC-C is at least as succinct
as URC-C[∨,∃], which is strictly more succinct than
URC-C. Especially, since URC-C[∨,∃] is just as tractable
as ∃URC-C, ∃URC-C appears definitely as a language which
is at least as interesting as URC-C[∨,∃] from the knowledge
compilation point of view. As a consequence, we refrained
from comparing it with other languages from the succinct-
ness standpoint and focus instead on URC-C and ∃URC-C.

Points 2. and 3. give succinctness results concerning
URC-C, ∃URC-C compared to CNF, which is in some sense
the most standard propositional language and the basic lan-
guage on which URC-C and ∃URC-C have been built. While
URC-C is strictly less succinct than CNF (unless PH col-
lapses), moving from URC-C to the strictly more succinct
∃URC-C language leads to language which is incomparable
with CNF as to succinctness.

The remaining points report succinctness results between
URC-C, ∃URC-C and the influential DNNF language and
some of its subsets. We considered the three subsets DNF,
SDNNF, and d-DNNF of DNNF because existing compilers
to DNNF actually target one of those three languages; fur-
thermore, they include other interesting subsets of DNNF (es-
pecially, FBDD and its well-known subset OBDD< are sub-
sets of d-DNNF).

The results show that, as to succinctness, URC-C is in-
comparable with each of DNF, SDNNF, and FBDD. For sure,
URC-C is not at least as succinct as d-DNNF (hence not at
least as succinct as DNNF), but whether d-DNNF≤s URC-C
remains an open issue. Again, considering ∃URC-C dramat-
ically changes the succinctness picture since ∃URC-C is at
least as succinct as DNNF, and is strictly more succinct than
each of DNF, SDNNF, and d-DNNF.1

Conclusion
This article shows that ∃URC-C is a very interesting tar-
get language for knowledge compilation. Indeed, while
it offers the same tractable queries and transformations
as URC-C[∨,∃], ∃URC-C is at least as succinct as
URC-C[∨,∃]. More importantly, it offers the same queries
and transformations and is at least as succinct as the influ-
ential DNNF language from (Darwiche 2001). Furthermore,
∃URC-C is strictly more succinct than DNF, SDNNF, and

1Unless PH collapses for d-DNNF.
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d-DNNF which are the three most succinct subsets of DNNF
for which compilers have been developed.

The main issue for further research will concern the de-
sign and the evaluation of compilation algorithms targeting
∃URC-C. Note that we can already take advantage of the
algorithms pointed out in (del Val 1994) in order to com-
pile some CNF formulae into equivalent URC-C formulae.
One can also take advantage of some recent algorithms (Bor-
deaux and Marques-Silva 2012) targeting UPC-C, the subset
of CNF consisting of formulae α which are unit-propagation
complete, i.e., for every implicate δ = l1 ∨ ... ∨ lk of α
which is not valid, we have α ∧ l1 ∧ ... ∧ lk−1 `u ⊥ or
α ∧ l1 ∧ ... ∧ lk−1 `u lk. Indeed, UPC-C is a proper subset
of URC-C.

Interestingly, any existing CNF2URC-C compilation algo-
rithm gives rise immediately to a DAG2∃URC-C compilation
algorithm. Indeed, given a DAG formula α1, the approach
first consists in turning it in polynomial time into an equiv-
alent CNF[∃] formula α2 = ∃X.α3 using Tseitin encoding.
Then α3 can be turned into an equivalent URC-C formula α4

using the CNF2URC-C compilation algorithm. By construc-
tion, the formula ∃X.α4 is a URC-C[∃] formula equivalent
to α1, hence an ∃URC-C formula. Note that the approach
also works if α1 is a DAG[∃] formula.

Appendix

Proof:[Lemma 1] If for every implicate δ = l1 ∨ . . . ∨ lk of
α, we have α ∧ l1 ∧ . . . ∧ lk `u ⊥, then this holds for the
prime implicates of α. Conversely, let δ be an implicate of α.
By primality, there exists a prime implicate γ = l1 ∨ . . .∨ lk
of α such that γ |= δ. By assumption, α ∧ l1 ∧ . . . ∧ lk `u
⊥. Since `u is monotonic w.r.t. ⊆ (i.e., if a unit refutation
of a CNF formula β exists, then for every CNF formula γ,
a unit refutation of the CNF β ∧ γ exists), adding to α ∧
l1∧ . . .∧ lk the conjunction of the complementary literals of
those occurring in δ but not in γ does not affect the existence
of a unit refutation. This concludes the proof.

Proof:[Lemma 2] Let δ = l1 ∨ . . . ∨ lk be an implicate
of α. If α contains each of its prime implicates, then there
is a clause γ of α s.t. γ |= δ. Obviously enough, we have
γ ∧ l1 ∧ . . .∧ lk `u ⊥, hence α∧ l1 ∧ . . .∧ lk `u ⊥ as well.

Proof:[Lemmas 3 and 4] Analogous to the proofs of Lem-
mas 1 and 2.

Proof:[Proposition 1] We prove the direction that is non-
trivial, i.e., ∃URC-C ≤p ∃URC-C[∨]. We are given a dis-
junction α of ∃URC-C formulae. We put this disjunction of
existentially quantified formulae into prenex form, obtaining
a formula β of the form ∃y1 · · · yt. α1 ∨ · · · ∨ αp.

We rewrite β into a conjunctive normal form by a
Tseitin encoding as in Example 4: we introduce p vari-
ables τ1, . . . , τp, such that each τi will “trigger” formula αi
when set to true. To this effect, for each αi (i ∈ 1, . . . , p)
we define βi =

∧
c∈Ci(¬τi ∨ c) where Ci denotes the

set of clauses of αi. We obtain a formula φ defined as:
∃y1 · · · yt. ∃τ1 · · · τp. ((τ1 ∨ · · · ∨ τp) ∧

∧p
i∈1 βi).

We now build a constructive disjunction encoding of
this formula w.r.t. the disjunction (τ1 ∨ · · · ∨ τp), follow-
ing Def. 9. This transformation introduces new existentially
quantified variables, which we here call z1, · · · , zq . We ob-
tain a CNF[∃] formula ψ the prefix of which is the form
∃y1 · · · yt. ∃τ1 · · · τp. ∃z1 · · · zq .

We now show that ψ is ∃URC-C. Consider any implicate
I = (l1 ∨ · · · ∨ lk) of ψ built over Var(ψ) = Var(α).
Equivalently it is an implicate of α, therefore it is an impli-
cate of each formula ∃y1 · · · yt. αi, for i ∈ 1, . . . , p. Let Li
denote the clause containing only the literals from I that are
in Var(αi). We have αi |= Li. Hence, αi ∧ ¬Li `u ⊥ and
αi ∧ ¬I ` ⊥, for each i ∈ 1, . . . , p. By property (2) of the
Def. 9 of “constructive disjunction encoding” it follows that
ψ ∧ l1 ∧ · · · ∧ lk `u ⊥.

Proof:[Proposition 2] We first introduce the following gad-
get, used in previous literature and in particular in (Bessiere
et al. 2009): we associate to each variable x of the initial
CNF α two “indicator” variables x− and x+, together with
clauses (¬x ∨ x+), (x ∨ x−). Then each initial clause c of
length k of formula α is translated into k clauses that rep-
resent the k possible ways the clause can trigger. More pre-
cisely, let c be of the form (l1∨· · ·∨ lk), then for each literal
i ∈ 1, . . . , k we add the clause ∨

j∈1,...,k, j 6=i

¬neg(lj)

 ∨ pos(li)

where for each variable x, pos(x) = x+, pos(¬x) = x−,
neg(x) = x−, and neg(¬x) = x+. It can be shown that the
constructed gadget γ is such that, given any satisfiable set of
literals l1 · · · lk built on Var(α), we have

1. γ ∧ l1 ∧ · · · ∧ lk is always satisfiable;
2. γ∧ l1∧· · ·∧ lk−1 `u pos(lk) iff α∧ l1∧· · ·∧ lk−1 `u lk.

To build a constructive disjunction encoding, we dupli-
cate p gadgets γ1 · · · γp. By “duplication” we mean that in
each new copy we use fresh indicator variables x−, x+, for
all x. The role of each γi is, intuitively, to simulate unit
propagation under each and every hypothesis d1 · · · dp of
the selected disjunction. For any literal l built on Var(α),
and i ∈ 1, . . . , p, let posi(l) and negi(l) denote the pos-
itive and negative indicator variables for l, as above, but
taken from the ith gadget, γi. We add a unit clause posi(di),
for i ∈ 1, . . . , p, to indicate that in each γi we reason un-
der the extra assumption di. Now for each literal l built on
Var(α) we enhance unit propagation by adding a clause δl
that triggers exactly when literal l is true under all assump-
tions d1 · · · dp:  ∨

i∈1,...,p
¬posi(l)

 ∨ l
Formula δ is defined as

(∧
i∈1,...,p γi ∧ posi(di)

)
∧(∧

x∈Var(α) δx ∧ δ¬x
)

and has the defining properties of a
constructive disjunction encoding (Def. 9).

Proof:[Proposition 3] We start with the queries:
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• CO: Since URC-C is a subset of URC-C[∨,∃], and
URC-C[∨,∃] is polynomially translatable into ∃URC-C,
it is enough to prove the result for ∃URC-C. Let α =
∃X.β be an ∃URC-C formula. α is inconsistent iff ⊥ is
an implicate of it. If ⊥ is an implicate of α, then since
α ∈ URC− C, we have β `u ⊥, which can be decided
in time linear in the size of β. If ⊥ is not an implicate of
α, then ⊥ is not an implicate of β, hence we cannot have
β `u ⊥ in this case.

• VA:
– ∃URC-C: DNNF is polynomially translatable into
∃URC-C using Tseitin’s extension rule (Jung et al.
2008). The fact that DNNF does not satisfy VA unless
P = NP (Darwiche and Marquis 2002) completes the
proof.

– URC-C[∨,∃]: Direct since DNF is a subset of it (since
every term is an URC-C formula) and DNF does not sat-
isfy VA unless P = NP (Darwiche and Marquis 2002).

– URC-C: Direct since URC-C ⊆ CNF and CNF satisfies
VA (Darwiche and Marquis 2002).

• CE: Comes directly from the fact that each of URC-C,
URC-C[∨,∃], and ∃URC-C satisfies CO and CD.

• ME: Direct from item 2 of Proposition 4 from (Fargier
and Marquis 2008) given the fact that each language under
consideration satisfies CO and CD, and consists of proper
formulae.

• IM:
– ∃URC-C, URC-C[∨,∃]: Direct since neither of these

two languages satisfies VA unless P = NP.
– URC-C: Direct since URC-C ⊆ CNF and CNF satisfies

IM (Darwiche and Marquis 2002).
• EQ, SE:

– ∃URC-C, URC-C[∨,∃]: Because HORN-C[∃] satisfies
neither EQ, nor SE unless P = NP (Marquis 2011), and
HORN-C[∃] is a subset of URC-C[∃] (since HORN-C is
a subset of URC-C), and URC-C[∃] is a subset of both
URC-C[∨,∃] and ∃URC-C.

– URC-C: Direct since URC-C satisfies CE.
• CT: Direct from the fact that the set of positive Krom for-

mulae (e.g., CNF formulae where each clause contains at
most two literals, and those literals are positive ones) does
not satisfy CT (Roth 1996), given that this set is included
in MONO-C, hence it is a subset of each of the languages
under consideration.
• MC: Direct from item 3 of Proposition 4 from (Fargier

and Marquis 2008) showing that when a subsetL of QDAG
satisfies CO and CD, then it satisfies MC as well, plus
the fact that each of URC-C, URC-C[∨,∃], and ∃URC-C
satisfies CO and CD.

As to the transformations:

• CD: From item 1 of Proposition 4 from (Fargier and Mar-
quis 2008), we know that when a subset L of QDAG sat-
isfies CD, then L[∨,∃] satisfies CD as well. Hence it
is enough to show that URC-C satisfies CD, and that
∃URC-C satisfies CD.

We show that whenever α is a URC-C formula and γ is
a consistent term, then α | γ is itself a URC-C formula.
Consider any prime implicate l1 ∨ · · · ∨ lk of α | γ. We
have (α | γ)∧ l1∧· · ·∧ lk |= ⊥. This implies α∧γ∧ l1∧
· · · ∧ lk |= ⊥. Note that Var(l1 ∨ · · · ∨ lk) ⊆ Var(α) \
Var(γ), therefore the term γ ∧ l1 ∧ · · · ∧ lk is consistent
and since α is URC-C we have α∧γ ∧ l1∧ · · · ∧ lk `u ⊥.
By the properties of unit propagation it follows that (α |
γ) ∧ l1 ∧ · · · ∧ lk `u ⊥.
(The proof relies on the properties: given any CNF α and
term γ we have: α | γ `u ⊥ iff α∧ γ `u ⊥. We also have
α | γ |= ⊥ iff α ∧ γ |= ⊥.)
The proof for ∃URC-C is similar: if we are given an
∃URC-C formula α and a consistent term γ, then any of
the prime implicates of α | γ is shown unit refutable, fol-
lowing exactly the same reasoning.

• FO:

– ∃URC-C: If α = ∃X.β is an ∃URC-C formula then for
every implicate δ of α, we have α∧¬δ `u ⊥. Whatever
Y (a finite subset of PS), since the implicates of ∃Y.α
are also implicates of α, we have as expected that for
every implicate δ of ∃Y.α, α ∧ ¬δ `u ⊥ holds.

– URC-C[∨,∃]: Obvious since this language is an exis-
tential closure.

– URC-C: Direct since URC-C[∃] <s URC-C.

• SFO: Obvious since each of ∃URC-C and URC-C[∨,∃]
satisfies FO.

• ∧C: Direct since neither of these languages satisfies
∧BC unless P = NP.

• ∧BC: Comes from the fact that every CNF formula α can
be turned in polynomial time into a conjunction β ∧ γ
of two URC-C formulae (hence β and γ are ∃URC-C,
and URC-C[∨,∃] formulae as well) such that β ∧ γ is
consistent iff α is consistent, and the fact that each of
these languages satisfies CO, while CNF satisfies it only
if P = NP. Indeed, let α be a CNF formula over n vari-
ables x1, . . . , xn. Let β be the MONO-C formula obtained
by replacing every positive literal xi in α by the nega-
tive literal ¬not − xi (where each not − xi is a fresh
variable), conjoined with n additional negative clauses
¬xi ∨ ¬not − xi (i ∈ 1, . . . , n). Let γ be the MONO-C
formula

∧n
i=1 xi ∨ not − xi. β and γ are MONO-C for-

mulae, hence URC-C formulae. Finally, by construction,
α is consistent iff β ∧ γ is consistent. This concludes the
proof.

• ∨C:

– ∃URC-C: Comes from the fact that ∃URC-C[∨] and
∃URC-C are polynomially equivalent.

– URC-C[∨,∃]: By construction, as a disjunctive closure
based on ∨.

– URC-C: Every term is a URC-C formula. If ∨C were
satisfied by URC-C, then DNF would be polynomially
translatable into URC-C hence it would be polynomi-
ally translatable into its superset CNF. But CNF 6≤s DNF
(Darwiche and Marquis 2002), contradiction.
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• ∨BC: Obvious since each of the languages satisfies ∨C.
• ¬C:

– ∃URC-C, URC-C[∨,∃]: Every term is an URC-C
formula, hence an ∃URC-C formula. As a conse-
quence, DNF is a subset of each of URC-C[∨,∃] and
of ∃URC-C[∨] which is polynomially equivalent to
∃URC-C. Assume that one of ∃URC-C, URC-C[∨,∃],
say L, satisfies ¬C. Then for every DNF formula α
we could compute in polynomial time an L formula β
equivalent to ¬α. Since L satisfies CO, we could check
in polynomial time whether β is consistent or not. But
β is inconsistent iff α is valid, and as a consequence,
we would have P = NP.

– URC-C: Towards a contradiction: consider the follow-
ing CNF formula α =

∧n−1
i=0 (x2i ∨ x2i+1); this is

a MONO-C formula hence a URC-C formula. Sup-
pose that URC-C satisfies ¬C. Then a URC-C formula
equivalent to ¬α could be computed in time polyno-
mial in the size of α. This is impossible since the for-
mula ¬α (equivalent to the DNF formula

∨n−1
i=0 (¬x2i ∧

¬x2i+1)) has no CNF representation of size polynomial
in n (Darwiche and Marquis 2002).

Proof:[Proposition 4]

1. We first have the inclusions PI ⊆ URC-C ⊆
URC-C[∃] ⊆ URC-C[∨,∃]. Since URC-C[∨,∃] ∼p
(URC-C[∃])[∨], and since URC-C[∃] is a subset of
∃URC-C, we get that URC-C[∨,∃] is polynomially trans-
latable into ∃URC-C[∨], which is polynomially equiv-
alent to ∃URC-C. Hence URC-C[∨,∃] is polynomially
translatable into ∃URC-C. Altogether, this shows that
∃URC-C≤s URC-C[∨,∃] ≤s URC-C ≤s PI.
Proposition 6 from (Bordeaux and Marques-Silva 2012)
shows that PI 6≤s UPC-C. Since UPC-C ⊆ URC-C, we
get that PI 6≤s URC-C.
Now, every term is a URC-C formula. As a conse-
quence, DNF is a subset of URC-C[∨,∃], so that we
have URC-C[∨,∃] ≤s DNF. Since URC-C is a subset of
CNF, we have CNF ≤s URC-C. Hence, if URC-C ≤s
URC-C[∨,∃] were the case, then by transitivity of ≤s we
would have that CNF ≤s DNF, which is known to be false
(Darwiche and Marquis 2002).

2. Since URC-C ⊆ CNF, we have CNF ≤s URC-C. The fact
that URC-C 6≤∗s CNF comes from the fact that URC-C
satisfies CE while the problem is coNP-complete for
CNF(this is a standard result in knowledge compilation.)

3. From URC-C 6≤∗s CNF and ∃URC-C <s URC-C, we get
that ∃URC-C 6≤∗s CNF. Now, we have that ∃URC-C ≤s
DNF. If CNF≤s ∃URC-C were the case, then by transitiv-
ity of ≤s, we would have CNF ≤s DNF, which is known
to be false (Darwiche and Marquis 2002).

4. First, URC-C 6≤s DNF since CNF ≤s URC-C and CNF
6≤s DNF (Darwiche and Marquis 2002). Then URC-C 6≤s
SDNNFsince CNF ≤s URC-C, SDNNF ≤s OBDD< and
OBDD< 6≤s CNF (Darwiche and Marquis 2002). Finally,
URC-C 6≤s d-DNNF since CNF ≤s URC-C, d-DNNF ≤s

OBDD<, and CNF 6≤s OBDD< (Darwiche and Marquis
2002).

5. DNF 6≤s URC-C, SDNNF 6≤s URC-C, and FBDD 6≤s
URC-C. First, DNF 6≤s URC-C because URC-C ≤s PI,
but DNF 6≤s PI (Darwiche and Marquis 2002). Then
SDNNF 6≤s URC-C because the circular bit shift functions
do not have polynomial-sized SDNNF representations (Pi-
patsrisawat and Darwiche 2010), but have polynomial-
sized KROM-C representations (hence polynomial-sized
PI representations, which are URC-C formulae.) Finally,
FBDD 6≤s URC-C because URC-C ≤s PI, but FBDD 6≤s
PI (Darwiche and Marquis 2002).

6. (Jung et al. 2008) shows that DNNF is polynomially trans-
latable into ∃URC-C.

7. Since DNF is a subset of URC-C[∨,∃] and since
URC-C[∨,∃] is polynomially translatable into ∃URC-C,
we get that ∃URC-C ≤s DNF. That DNF 6≤s ∃URC-C
comes from the fact that ∃URC-C <s URC-C, and DNF
6≤s URC-C.

8. ∃URC-C ≤s SDNNF comes from the fact that SDNNF
is a subset of DNNF and that ∃URC-C ≤s DNNF; That
SDNNF 6≤s ∃URC-C comes from the fact that ∃URC-C
<s URC-C, and SDNNF 6≤s URC-C.

9. ∃URC-C ≤s d-DNNF comes from the fact that d-DNNF
is a subset of DNNF and that ∃URC-C ≤s DNNF; That
d-DNNF 6≤∗s ∃URC-C comes from the fact that d-DNNF
6≤∗s DNF (Darwiche and Marquis 2002) and that ∃URC-C
≤s DNF (which comes also directly from the inclusion
DNF ⊆ URC-C[∨,∃] and that URC-C[∨,∃] is polynomi-
ally translatable into ∃URC-C).
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