
MiFuMaX – a Literate MaxSAT Solver

Mikoláš Janota

July 8, 2013

ii July 8, 2013

Contents

1 Common 1
1.1 Introduction . 1
1.2 Types . 1
1.3 Utils . 2

2 MiFuMax 5
2.1 Introduction . 5
2.2 Public Interface . 5
2.3 Solving . 8
2.4 Formula Representation . 11
2.5 SAT Solver Communication . 14

3 MiFuMaXWeighted 19
3.1 Introduction . 19
3.2 Public Interface . 19
3.3 Solving . 22

3.3.1 Helpers of solve . 25
3.4 SAT Call . 28
3.5 Internal State And Functions . 30

iii

iv July 8, 2013

Chapter 1

Common

1.1 Introduction

Throughout this documentation, terminology commonly used in SAT and MaxSAT
community will be used. In particular, we are going to be solving problems con-
taining Boolean variables (commonly denoted x,y, etc.). A literal is a variable
parts negation, e.g. x, ¬x. A clause is a disjunction of literals (possibly none).
A formula in conjunctive normal form (CNF) is a conjunction of clauses.

Since conjunction and disjunction are both associative and commutative, it
is common to treat a clause as a set of literals and a formula in CNF as set
of clauses. Note that the empty clause, i.e. the empty disjunction of literals,
is semantically equivalent to false. Analogously, the empty set of clauses is
semantically equivalent true.

1.2 Types

The objective was to rely on standard (STL) datatypes and since we will be
communicating to minisat, we reuse some of its datatypes as well. Note that
a CNF (ClauseVector) is represented as a vector of vectors. This was done
in order to avoid explicit memory allocations and thus simplify the code. In
general, however, this might be a bad idea because adding new clauses to the
vector might cause lot of copying. We made the assumption that CNFs that
we will be handling grow seldom and moreover the SAT calls are far more
computationally expensive.

1 〈MiFuMaXTypes.hh 1〉≡
#ifndef MIFUMAXTYPES_HH_18651

#define MIFUMAXTYPES_HH_18651

#include <vector>
#include <unordered_map>
#include "core/SolverTypes.h"

namespace Mifumax {

1

2 July 8, 2013

using std::unordered_map;

using std::vector;

using std::pair;

using Minisat::Var;

using Minisat::Lit;

typedef long WeightType;

typedef vector<vector<Lit> > ClauseVector;

typedef pair<WeightType,vector<Lit> > WeightedClause;

typedef vector<WeightedClause> WeightedClauseVector;

typedef unordered_map<Var,size_t> Var2Index;

}

#endif

Root chunk (not used in this document).

1.3 Utils

Here we define small utility functions that will be used in the program.

2a 〈Utils.hh 2a〉≡
#ifndef UTILS_HH_46471

#define UTILS_HH_46471

#include <sys/time.h>
#include <sys/resource.h>
#include <vector>
#include "MiFuMaXTypes.hh"

#include "core/Solver.h"

namespace Mifumax {

〈Auxiliary functions 3a〉
}

#endif

Root chunk (not used in this document).

2b 〈Utils.cc 2b〉≡
#include "Utils.hh"

using namespace Mifumax;

〈Auxiliary functions implementation 3b〉

Root chunk (not used in this document).

July 8, 2013 3

Allocate variables in a minisat solver so that it has at least a variable with the
ID max_id.

3a 〈Auxiliary functions 3a〉≡
inline void new_variables(Minisat::Solver& solver, Minisat::Var max_id) {

while (solver.nVars() ≤ max_id) solver.newVar();

}

This definition is continued in chunk 4.
This code is used in chunk 2a.

Add given clauses to a minisat solver.

3b 〈Auxiliary functions implementation 3b〉≡
bool Mifumax::add_all(Minisat::Solver& solver, const ClauseVector& cnf) {

bool okay = true;

Minisat::vec<Lit> literals; // temporary literal vector

for (size_t i=0; i<cnf.size(); ++i) {

const std::vector<Lit>& clause = cnf[i];

literals.clear();

literals.growTo(clause.size(), Minisat::lit_Undef);

for (size_t literal_index = 0; literal_index<clause.size(); ++literal_index)

literals[(int)literal_index]=clause[literal_index];

okay &= solver.addClause_(literals);

}

return okay;

}

This definition is continued in chunk 3c.
This code is used in chunk 2b.

Add weighted clauses to the given minisat solver. The weights are ignored.

3c 〈Auxiliary functions implementation 3b〉+≡
bool Mifumax::add_all(Minisat::Solver& solver, const WeightedClauseVector& wcnf) {

bool okay = true;

Minisat::vec<Lit> literals; // temporary literal vector

for (size_t i=0; i<wcnf.size(); ++i) {

const vector<Lit>& clause = wcnf[i].second;

literals.clear();

literals.growTo(clause.size(), Minisat::lit_Undef);

for (size_t literal_index = 0; literal_index<clause.size(); ++literal_index)

literals[(int)literal_index]=clause[literal_index];

okay &= solver.addClause_(literals);

}

return okay;

}

4 July 8, 2013

4a 〈Auxiliary functions 3a〉+≡
inline double read_cpu_time() {

struct rusage ru;

getrusage(RUSAGE_SELF, &ru);

return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000;

}

4b 〈Auxiliary functions 3a〉+≡
template<typename K, typename V>
bool contains(const unordered_map<K,V>& m, const K& key)

{return m.find(key)6=m.end();}

4c 〈Auxiliary functions 3a〉+≡
bool add_all(Minisat::Solver& solver, const ClauseVector& cnf);

bool add_all(Minisat::Solver& solver, const WeightedClauseVector& wcnf);

Chapter 2

MiFuMax

2.1 Introduction

MaxSAT problem instances are given as set of clauses and a solution is an
assignment that maximizes the number of satisfied clauses. MaxSAT has several
variations. A simple extension is the partial MaxSAT where clauses are split
into hard and soft. A solution is an assignment that satisfies all the hard clauses
and maximizes the number of satisfied soft clauses.

Even though the definition of MaxSAT may seem at first somewhat cryptic,
it becomes far more intuitive once we observe that certain optimization problems
can be encoded as MaxSAT. Consider for instance that we want to satisfy the
formula (x∨ y)∧ (y∨ z) and at the same time minimize the number of variables
set to true. Then we construct the following partial MaxSAT problem: let hard
clauses be {x∨ y, y ∨ z} and soft clauses {x̄, ȳ, z̄}. The solution to this problem
is x = false, z = false, y = true, unsatisfying one soft clause (ȳ). Note that this
partial MaxSAT instance has only one solution but in general it may have many.

The algorithm we will use is based on an article by Fu&Malik [FM06]. An
interesting property of the algorithm is that it starts from an over-constraint,
i.e. unsatisfiable, problem and gradually relaxes it until it becomes satisfiable,
which is when we have obtained a solution.

2.2 Public Interface

The algorithm is encapsulated in a class MiFuMaX relying on the types and
utilities declared in common. Minisat [ES03] is used as the underlying SAT
solver.

5 〈MiFuMaX.hh 5〉≡
#ifndef MIFUMAX_HH_3876

#define MIFUMAX_HH_3876

#include "MiFuMaXTypes.hh"

#include "Utils.hh"

5

6 July 8, 2013

#include "core/Solver.h"

using Minisat::Solver;

using Minisat::vec;

using Minisat::lbool;

namespace Mifumax {

class MiFuMaX {

public: 〈Public members 6c〉;
private: 〈Private members 9a〉;
}; }

#endif

Root chunk (not used in this document).

6a 〈MiFuMaX.cc 6a〉≡
〈Implementation includes 6b〉
〈Implementation 8〉

Root chunk (not used in this document).

6b 〈Implementation includes 6b〉≡
#include "MiFuMaX.hh"

using namespace Mifumax;

This definition is continued in chunks 13a, 20b, 27a, and 33a.
This code is used in chunks 6a and 20a.

The class provides two constructors. The classical MaxSAT constructor accepts
the CNF for which we want to compute the solution.

6c 〈Public members 6c〉≡
MiFuMaX(Var max_id, const ClauseVector &cnf);

This definition is continued in chunks 6, 7, 20, and 21.
This code is used in chunks 5 and 19.

The partial MaxSAT constructor accepts two CNFs, which split the problem
into hard and soft clauses.

6d 〈Public members 6c〉+≡
MiFuMaX(Var max_id,

const ClauseVector& hard_cnf,

const ClauseVector& soft_cnf);

To run the solver, one calls solve, which upon success returns whether or not
the given problem has a solution, i.e. the hard clauses are satisfiable.

6e 〈Public members 6c〉+≡
bool solve();

July 8, 2013 7

If a solution was found, i.e. solve() returned true, the number of unsatisfied
soft clauses in the solution can be obtained by the function get_optimum and
the solution assignment by get_solution.

7a 〈Public members 6c〉+≡
size_t get_optimum () const {return optimum;}

void get_solution(vec<lbool>& output_model) const;

For advanced applications of the solver, some internal data structures are ex-
posed. These methods should not really be used unless a good understanding
of the implementation is had.

7b 〈Public members 6c〉+≡
const Var2Index& get_control2index() const { return control2index; }

const ClauseVector& get_hard_clauses() const {return hard_clauses;}

const ClauseVector& get_soft_clauses() const {return soft_clauses;}

const vector<bool>& get_removed_soft_clauses() const {return removed_soft_clauses;}

const vec<lbool>& get_model_internal() const {return model;}

const Var get_max_id() const {return max_id;}

inline const bool is_relaxation_variable(Var v) const {

return (original_max_id<v) ∧ (v≤max_id);
}

8 July 8, 2013

2.3 Solving

First, let us look at the solve method, which is really the heart of the solver.
Suppose that we are given hard clauses φH and soft clauses φS . Now if φH ∧φS
are satisfiable by some assignment µ, we are done because µ is a solution where
all the soft clauses are satisfied. If, however, this conjunct is unsatisfiable, at
least one of the soft clauses must be unsatisfied in any solution. Moreover, if
there is also some subset C ⊆ φS for which φH ∧ C is unsatisfiable, at least one
of the clauses from C must be unsatisfied in any solution. We will refer to such
set of clauses C as a core1. Subsequently, the algorithm relaxes the clauses in C,
i.e. it enables to unsatisfy one of the clauses (how that is done, is shown later).
This process is repeated until the formula becomes satisfiable, at which point
we have a solution.

8 〈Implementation 8〉≡
bool MiFuMaX::solve() {

〈Initialization solve 9b〉
while (true) {

〈Initialize solve loop 9c〉
const bool formula_sat = 〈Check if formula SAT 9d〉;
if (formula_sat) {

return true;

} else {

〈Relax formula 10a〉;
}

}

}

This definition is continued in chunks 12, 13, 15–17, 22, 25–30, and 32.
This code is used in chunks 6a and 20a.

1Technically speaking, here we are deviating from the standard terminology because a
(unsatisfiable) core is typically defined as an unsatisfiable set of clauses. In our case that
would be some unsatisfiable subset of φH ∧ φS . However, here we are not interested in the
clauses of φH responsible for unsatisfiability.

July 8, 2013 9

Throughout the run of the solve method, the variable optimum tracks the
number of times the formula was relaxed; this number represents a lower bound
of the number of unsatisfied clauses in any solution. Consequently, when solve

successfully terminates (it returns true), optimum is the number of unsatisfied
clauses in the found solution.

The variable model stores the found solution (if found). Since both optimum

and model should be accessible for the user of our class, they are declared as
fields of the class.

9a 〈Private members 9a〉≡
size_t optimum;

vec<lbool> model;

This definition is continued in chunks 11, 14, 17c, 29–31, and 33c.
This code is used in chunks 5 and 19.

The solve function reuses variables core, relaxation_variables, and model,
which are cleared at the beginning of a each iteration of the loop.

9b 〈Initialization solve 9b〉≡
vector<size_t> core;

vector<Var> relaxation_variables;

optimum = 0;

This code is used in chunk 8.

9c 〈Initialize solve loop 9c〉≡
core.clear();

relaxation_variables.clear();

model.clear();

This definition is continued in chunk 23b.
This code is used in chunks 8 and 22.

To check whether the current formula is satisfiable, we issue a SAT call. If the
given formula is satisfiable, model will contain the satisfying assignment, and
otherwise core will represent the core as a set of indices of the clauses in the
core.

9d 〈Check if formula SAT 9d〉≡
sat_call(core, model)

This definition is continued in chunk 23c.
This code is used in chunks 8 and 22.

10 July 8, 2013

Before we can actually relax the formula, we need to make one check. And that
is that the current core is nonempty. Because if it is empty, it means that the
set of hard clauses is itself unsatisfiable and therefore the problem does not have
a solution. (Note that this can only happen in the case of partial MaxSAT.)

10a 〈Relax formula 10a〉≡
if (core.empty()) return false;

This definition is continued in chunks 10b, 23d, and 24a.
This code is used in chunks 8 and 22.

Recall that now we want to say that one of the clauses from core can be
unsatisfied. For that we introduce a fresh variable rC for each clause C in
the core and replace the clause C with the clause rC ∨ C; the variables rC are
called relaxation variables. Now any assignment that sets rC to true does not
need to satisfy C because the new, relaxed clause rC ∨C is satisfied due to rC .

Adding relaxation variables as described above, would on its own not be
correct. The reason is that we know that at least one clause from the core must
be unsatisfied. But without any further restrictions, any number of clauses from
the core could be unsatisfied by setting their corresponding relaxation variable
to true. and thus potentially obtaining a satisfying assignment but with a
suboptimal number of unsatisfied clauses. In order to cope with that, we add
a constraint into hard clauses that at most one of the relaxation variables from
the core can be true2

10b 〈Relax formula 10a〉+≡
for (auto iter=core.begin(); iter 6= core.end(); ++iter) {

const size_t clause_index = *iter;

relaxation_variables.push_back(relax_clause(clause_index));

}

add_at_most_1(relaxation_variables);

2Note that a original clause C can be relaxed multiple times since cores can intersect.

July 8, 2013 11

2.4 Formula Representation

The algorithm is presented above, leaves open how to communicate with the
SAT solver and how to obtain cores. To calculate cores, we use the assumption-
based method. For a clause C we generate a fresh variable sC , called the control
variable. Instead of C, we give to the SAT solver the clause ¬sC ∨ C and pass
the literal sC in the assumptions when calling the SAT solver. If, the SAT solver
needed C to conclude that the given formula is unsatisfiable, sC will appear in
the final conflict clause. And this is how we calculate our core.

We keep to separate clause vectors for hard and soft clauses. Since we are
not interested whether a hard clause participated in unsatisfility, hard clauses
are stored unaltered. Soft clauses, however, are stored already containing their
corresponding control variable.

While the number of soft clauses does not grow throughout the lifetime
of the object, they get modified by relaxation. Hard clauses are not modified
during the lifetime of the object but new hard clauses are being added to express
cardinality constraints on relaxation variables.

11a 〈Private members 9a〉+≡
ClauseVector hard_clauses;

ClauseVector soft_clauses;

The variable controls maintains the control variables for soft clauses and it
holds that controls[i] is the control variables for the clause soft_clauses[i]
for 0<=i<soft_clauses.size(). Is Will also be useful to know which control
variable corresponds to which clause. This is stored in the map control2index

for which it holds that for a control variable v, control2index[v] is the index
of the corresponding clause in the vector soft_clauses.

11b 〈Private members 9a〉+≡
vector<Var> controls;

Var2Index control2index;

Since we will be generating fresh variables, we remember the highest variable ID
appearing in the given problem and the highest ID of a including fresh variables.

11c 〈Private members 9a〉+≡
Var original_max_id;

Var max_id;

12 July 8, 2013

The data structures above are initialized in the constructor. We make a copy
of the hard and soft clauses; generate control variables, and adorn soft clauses
with control variables.

12a 〈Implementation 8〉+≡
MiFuMaX::MiFuMaX(Var _max_id,

const ClauseVector &_hard_clauses, const ClauseVector &_soft_clauses)

: hard_clauses(_hard_clauses)

, soft_clauses(_soft_clauses)

, original_max_id(_max_id)

{ initialize(); }

12b 〈Implementation 8〉+≡
MiFuMaX::MiFuMaX(Var _max_id, const ClauseVector& _soft_clauses)

: soft_clauses(_soft_clauses)

, original_max_id(_max_id)

{ initialize(); }

The initialization procedure common to both constructors populates the re-
quired data structures according to their invariants.

12c 〈Implementation 8〉+≡
void MiFuMaX::initialize() {

max_id = original_max_id;

controls.resize(soft_clauses.size());

for (size_t index = 0; index < soft_clauses.size(); ++index) {

const Var control = ++max_id;

soft_clauses[index].push_back(~mkLit(control));

controls[index]=control;

control2index[control] = index;

}

}

Now when the data structures are in place, it is easy to relax a clause by simply
adding a new relaxation variable to it.

12d 〈Implementation 8〉+≡
Var MiFuMaX::relax_clause(size_t clause_index) {

assert(clause_index < soft_clauses.size());

const Var relaxation_variable = ++max_id;

vector<Lit>& clause = soft_clauses[clause_index];

clause.push_back(mkLit(relaxation_variable));

return relaxation_variable;

}

July 8, 2013 13

To encode the at-most-1 constraint, we use an external encoder that produces
a CNF representation of the constraint. Here we need to be a little bit careful
because the encoder also needs to generate some fresh variables. Here we rely
on on the encoder to provide the new maximal ID by its function get_max_id.

13a 〈Implementation includes 6b〉+≡
#include "SeqCounter.hh"

#include "BitWise.hh"

13b 〈Implementation 8〉+≡
void MiFuMaX::add_at_most_1(const vector<Var>& relaxation_variables) {

//[[SeqCounter enc(hard_clauses, relaxation_variables, 1, max_id);]]

//[[BitWise enc(hard_clauses, relaxation_variables, max_id);]]

SeqCounter enc(hard_clauses, relaxation_variables, 1, max_id);

enc.encode();

assert(max_id≤enc.get_max_id());
max_id=enc.get_max_id();

}

If a user of our class asks for a solution (provided one was found) we just need
to supply him with the values of original variables.

13c 〈Implementation 8〉+≡
void MiFuMaX::get_solution(vec<lbool> &output_model) const {

output_model.growTo(original_max_id+1, l_Undef);

const Var maxv = std::min(model.size()-1,original_max_id);

for (Var v=1; v≤maxv; ++v) output_model[v]=model[v];

}

14 July 8, 2013

2.5 SAT Solver Communication

Now let us look at how a SAT solver is invoked. The actual SAT solver used
is minisat. Any other solver could be used as long as it supports solving with
assumptions and provides the final conflict clause.

Recall that during solving, the purpose of the SAT solver is to determine
whether the current formula is satisfiable or not. If it is satisfiable, it should
provide a model; if it is unsatisfiable, it should provide a core of soft clauses
(clauses responsible for unsatisfiability).

Here we make a small optimization not described in the original paper by
Fu and Malik. Consider a core with a single clause, i.e. let there be a soft clause
C such that for the hard clauses φH , the conjunct φH ∧C is unsatisfiable. This
means that C does not appear in any solution of the given problem. In other
words, C can be simply removed from the set of soft clauses. At the same time,
since φH ∧ C is unsatisfiable, φH ⇒ ¬C, which means that the negations of all
literals of C can be added to φH withoutmodifying the set of models of φH

In order to effectively remove a soft clause C, we add to the hard clauses
the negation of its control variable ¬sC and mark it as removed. It is very
important thatremove clauses are marked because their control variables must
not be set to true by assumptions. Removed clauses are stored in a bitvector
removed_soft_clauses whose size is equal to the size of the soft_clauses

vector.

14 〈Private members 9a〉+≡
vector<bool> removed_soft_clauses;

July 8, 2013 15

15 〈Implementation 8〉+≡
void MiFuMaX::remove_soft_clause(size_t clause_index, Solver& sat_solver) {

assert (clause_index < soft_clauses.size());

const vector<Lit>& c = soft_clauses[clause_index];

const Var cv=controls[clause_index];

removed_soft_clauses[clause_index]=true; //marked as removed

size_t osz=hard_clauses.size();

hard_clauses.resize(osz+c.size()); // we add c.size hard cls

hard_clauses[osz++].push_back(~mkLit(cv)); // satisfy control forever

sat_solver.addClause(~mkLit(cv));

bool found=false;// sanity check purpose

for (size_t i=0; i<c.size(); ++i) {

const Lit l = c[i];

if (var(l)==cv) {// found control variable

found = true;

assert(sign(l));

continue;

}

sat_solver.addClause(~l);

hard_clauses[osz++].push_back(~l);

}

assert(found);// sanity check

}

16 July 8, 2013

The function sat_call builds a new SAT solver constructs assumptions for it
and calls it. Depending on the result of the SAT call, a model or a core is built.
If it so happens that a core has the size 1, the process is repeated but without
constructing a new SAT solver because the only the set hard clauses is modified
in the SAT solver was modified by removed_soft_clause.

16a 〈Implementation 8〉+≡
bool MiFuMaX::sat_call(vector<size_t> &core, vec<lbool> &model) {

Solver solver;

model.clear();

core.clear();

if (removed_soft_clauses.empty()) {

removed_soft_clauses.resize(soft_clauses.size(),false); }

populate_solver(solver);

vec<Lit> assumptions;

again:

〈Build assumptions 17a〉
const bool return_value = solver.solve(assumptions);

analyze_sat_answer(solver, return_value, core);

if (!return_value) {

++optimum; // update optimum

std::cout�"c LB: "�optimum�" CS: "�core.size()�std::endl;

}

if (core.size()==1) {

remove_soft_clause(core[0],solver);

core.clear();

assumptions.clear();

goto again;

}

return return_value;

}

In order to populate the solver, we just copy of our data structures into the
solver. Recall that soft_clauses are not the original soft clauses but clauses
that contain control variables and potentially relaxation variables.

16b 〈Implementation 8〉+≡
void MiFuMaX::populate_solver(Solver& solver) {

new_variables(solver, max_id);

add_all(solver, soft_clauses);

add_all(solver, hard_clauses);

}

July 8, 2013 17

We also need to tell the SAT solver that all control variables must be set to true
except for removed soft clauses.

17a 〈Build assumptions 17a〉≡
for (size_t index = 0; index < soft_clauses.size(); ++index) {

if (!removed_soft_clauses[index])

assumptions.push(mkLit(controls[index]));

}

This definition is continued in chunk 28b.
This code is used in chunks 16a and 28a.

If the SAT solver returned satisfiable, we copy the model from the solver into
the global variable model. If, the problem is unsatisfiable, we construct a core
based on the conflict clause in the solver.

17b 〈Implementation 8〉+≡
void MiFuMaX::analyze_sat_answer(Solver& solver,

bool is_sat,

vector<size_t>& core) {

if (is_sat) {

solver.model.copyTo(model);

} else {

const vec<Lit> &conflict_clause=solver.conflict;

for (int index = 0; index< conflict_clause.size(); ++index) {

const Var conflict_variable = var(conflict_clause[index]);

assert(sign(conflict_clause[index])); // control forced to false

assert(contains(control2index, conflict_variable));

const size_t clause_index = control2index[conflict_variable];

assert(clause_index<soft_clauses.size());
assert(!removed_soft_clauses[clause_index]);

core.push_back(clause_index);

}

}

}

17c 〈Private members 9a〉+≡
void initialize();

Var relax_clause(size_t clause_index);

void add_at_most_1(const vector<Var>& relaxation_variables);

void populate_solver(Solver& solver);

bool sat_call(vector<size_t> &core, vec<lbool> &model);

void remove_soft_clause(size_t clause_index, Solver& sat_solver);

void analyze_sat_answer(Solver& solver, bool is_sat, vector<size_t>& core);

18 July 8, 2013

Chapter 3

MiFuMaXWeighted

3.1 Introduction

The problem of weighted MaxSAT is very much similar to the (partial) MaxSAT
and we will use a similar algorithm to solve it. As the name suggests, the differ-
ence between unweighted MaxSAT and weighted MaxSAT is that soft clauses
are labeled with weights. We will write (w,C) to denote a clause C with a
weight w. To solve the problem means to find a satisfiable subset of the given
clauses such that the total weight of the clauses not in the solution is minimal.
In the partial version of weighted MaxSAT some clauses are marked as hard,
which means they must appear in any solution.

For illustration consider a partial weighted MaxSAT with a single hard clause
x ∨ y and two soft clause (2,¬x) and (10,¬y), with their respective weights 2
and 10. The solution is x = False, y = True (and it is the only solution in
this case). Note that any instance of weighted MaxSAT can be converted to an
instance of unweighted MaxSAT by setting all the weights of soft clauses to 1.

We will solve the weighted partial MaxSAT problem by an algorithm devel-
oped by Manquinho et al. [MSP09]. This algorithm is a natural extension of the
algorithm proposed by Fu and Malik [FM06] so the reader is adviced to study
that algorithm first.

3.2 Public Interface

The algorithm is encapsulated in a class MiFuMaXWeighted relying on the types
and utilities declared in common. Minisat [ES03] is used as the underlying SAT
solver. Similar constructs as in MiFuMaX are used.

19 〈MiFuMaXWeighted.hh 19〉≡
#ifndef MIFUMAXWEIGHTED_W_24714

#define MIFUMAXWEIGHTED_W_24714

〈Header includes 33b〉;
namespace Mifumax {

19

20 July 8, 2013

class MiFuMaXWeighted {

public: 〈Public members 6c〉
private: 〈Private members 9a〉
};

}

#endif

Root chunk (not used in this document).

20a 〈MiFuMaXWeighted.cc 20a〉≡
〈Implementation includes 6b〉
〈Implementation 8〉

Root chunk (not used in this document).

20b 〈Implementation includes 6b〉+≡
#include "MiFuMaXWeighted.hh"

using namespace Mifumax;

The class provides a constructor accepting a vector of hard clauses and a vector
of weighted soft clauses.

20c 〈Public members 6c〉+≡
MiFuMaXWeighted(Var max_id,

const ClauseVector& hard_cnf,

const WeightedClauseVector& soft_cnf);

To run the solver, one calls solve, which upon success returns whether or not
the given problem has a solution, i.e. if the hard clauses are satisfiable.

20d 〈Public members 6c〉+≡
bool solve();

If a solution was found, i.e. solve() returned true, the total weight of the unsat-
isfied soft clauses by the solution can be obtained by the function get_optimum

and the solution assignment by get_solution.

20e 〈Public members 6c〉+≡
WeightType get_optimum () const {return optimum;}

void get_solution(vec<lbool>& output_model) const;

July 8, 2013 21

For advanced applications of the solver, some internal data structures are ex-
posed. These methods should be used only if a good understanding of the
implementation is had.

21 〈Public members 6c〉+≡
const Var2Index & get_control2index() const { return control2index; }

const ClauseVector & get_hard_clauses() const { return hard_clauses; }

const WeightedClauseVector & get_soft_clauses() const { return soft_clauses; }

const vector<bool>& get_removed_soft_clauses() const {return removed_soft_clauses;}

const vec<lbool>& get_model_internal() const { return model; }

const Var get_max_id() const { return max_id; }

const Var get_control(size_t soft_clause_index) const {

assert(soft_clause_index<soft_clauses.size());
return controls[soft_clause_index];

}

22 July 8, 2013

3.3 Solving

As noted before, one could solve a weighted MaxSAT by translating it to an
unweighted MaxSAT making as many copies of each clause as its weight is. Let
us pretend for a while that we do that. Now we find some unweighted core C.
Let wm be the smallest weight appearing in the weighted counterpart of the
core. This means that in the unweighted version there is at least wm copies of
each of the clauses in C, or in another words, there is at least wm disjoint copies
of the core C. Hence, what we could do is relax each of the cores separately right
after we have found the core C without waiting for the other copies of the core
to be computed. This gives us one important optimization. However, we make
another important observation and that is that each copy of some clause C ∈ C
is satisfied (respectively unsatisfied) by the same set of assignments. Hence, if
a solution to the given problem removes some clause C, it should also remove
all its copies. This means, that the same relaxation variable can be used for all
the wm copies of each clause C ∈ C.

These observations enable an algorithm that does not require explicitly cre-
ating all the different copies of clauses. Whenever a core C is found, we compute
the minimum weight wm appearing in it. Subsequently, each clause (w,C) ∈ C
is split into the clauses (wm, C) and (w−wm, C). The clause with the weight wm

correspond to the wm copies discussed above. The clause with weight w − wm

correspond to the surplus copies of that clause (if w−wm = 0, the clause is ig-
nored). In accordance with the discussion above, the clause (wm, C) is relaxed.
The relaxation variables are constrained by the at-most-one constraint just as
in the unweighted case.

22 〈Implementation 8〉+≡
bool MiFuMaXWeighted::solve() {

〈Initialize solve 23a〉
while (true) {

〈Initialize solve loop 9c〉
const bool formula_sat = 〈Check if formula SAT 9d〉;
if (formula_sat) {

〈Print sat call statistics 24c〉
return_value = true;

break;

} else {

〈Relax formula 10a〉;
〈Print core statistics 24b〉;

}

}

return return_value;

}

July 8, 2013 23

The solve function reuses the local variable core, and the object variable model,
which are cleared at the beginning of each iteration of the loop. The variable
optimum represents the lower bound for the value of the solution, i.e. the total
weight of the unsatisfied clauses in a solution.

23a 〈Initialize solve 23a〉≡
vector<size_t> core;

bool return_value = false;

optimum = 0;

This code is used in chunk 22.

23b 〈Initialize solve loop 9c〉+≡
core.clear();

model.clear();

To check whether the current formula is satisfiable, we issue a SAT call. If the
given formula is satisfiable, model will contain the satisfying assignment, and
otherwise core will represent the core as a set of indices of the clauses in the
core.

23c 〈Check if formula SAT 9d〉+≡
sat_call(core, model)

Before we relax the core, for the case of partial MaxSAT, we need to check if
the core is not empty. If it is empty, it means that the hard clauses themselves
are unsatisfiable.

23d 〈Relax formula 10a〉+≡
if (core.empty()) {

return_value = false;

break;

}

24 July 8, 2013

Following the main idea of the algorithm, we compute the minimum weight wm

of the core, split clauses in the core into two and relax those clauses correspond-
ing to the wm. The relaxation variables must be constrained by an at-most-one
constraint for the same reason as in the unweighted case. Since we know that
at least one of the clauses just relaxed has to be removed from the solution, we
update our lower bound of the optimum by wm (in the unweighted counterpart
of the problem this would mean removing WM copies of that clause).

24a 〈Relax formula 10a〉+≡
vector<Var> relaxation_variables;

const WeightType m = core_min(core);

optimum+=m;

for (auto iter=core.begin(); iter 6= core.end(); ++iter) {

const size_t clause_index = *iter;

const Var relaxation_variable = split_clause(clause_index, m);

relaxation_variables.push_back(relaxation_variable);

}

add_at_most_1(relaxation_variables);

24b 〈Print core statistics 24b〉≡
std::cerr�"c Min unsat cost LB: "�optimum

�", ts: "�read_cpu_time()

�", CS: "�core.size()�std::endl;

This code is used in chunks 22 and 28a.

24c 〈Print sat call statistics 24c〉≡
std::cerr�"c SAT found"

�", ts: "�read_cpu_time()�std::endl;

This code is used in chunk 22.

July 8, 2013 25

3.3.1 Helpers of solve

The following function splits a clause (w,C) into the clauses (w − m, C) and
(m, r ∨ C) where m is the minimum weight appearing it in the core just found
and r is a fresh relaxation variable. When w = m, the clause with weight w − m

is ignored. The function returns the new relaxation variable.

25 〈Implementation 8〉+≡
Var MiFuMaXWeighted::split_clause(size_t clause_index,

const WeightType& m) {

assert(clause_index < soft_clauses.size());

const WeightType w = soft_clauses[clause_index].first;

const Var relaxation_variable = ++max_id;

if (w 6=m) {

〈Generate new soft clause 26a〉;
}

auto& wclause = soft_clauses[clause_index];

wclause.first=m;

wclause.second.push_back(mkLit(relaxation_variable));

return relaxation_variable;

}

26 July 8, 2013

Produce a new soft clause, which is a copy of the old one, (w, C), but with the
weight (w−m, C). Besides resizing soft_clauses, the data structures controls,
control2index, removed_soft_clauses need to be updated as well. Once a
copy is made, the old control variable needs to be replaced with the new one.

26a 〈Generate new soft clause 26a〉≡
assert(w>m);
const size_t new_clause_index=soft_clauses.size();

const Var old_control = controls[clause_index];

const Var new_control = ++max_id;

controls.push_back(new_control);

assert(controls.size()==(new_clause_index+1));

control2index[new_control]=new_clause_index;

soft_clauses.resize(new_clause_index+1);

removed_soft_clauses.resize(new_clause_index+1,false);

soft_clauses[new_clause_index].first=w-m;

soft_clauses[new_clause_index].second=soft_clauses[clause_index].second;

auto& new_cl=soft_clauses[new_clause_index].second;

bool found=false;// sanity check

for (size_t i=0; i<new_cl.size(); ++i) {

if (var(new_cl[i])==old_control) {

new_cl[i]=~mkLit(new_control);

found=true;

break;

}

}

assert(found); // sanity check

This code is used in chunk 25.

The following function traverses the core and finds the minimum weight.

26b 〈Implementation 8〉+≡
WeightType MiFuMaXWeighted::core_min(vector<size_t>& core) {

assert(core.size());

WeightType min_weight = soft_clauses[core[0]].first;

for (size_t i=1; i<core.size(); ++i) {

const size_t clause_index = core[i];

assert(clause_index<soft_clauses.size());
const WeightType cw = soft_clauses[clause_index].first;

if (cw<min_weight) min_weight=cw;

}

return min_weight;

}

July 8, 2013 27

The following function encodes the at-most-1 constraint into CNF, for which
an external encoder is used. Here we need to be a little bit careful because the
encoder also needs to generate some fresh variables. Here we rely on on the
encoder to provide the new maximal ID by its function get_max_id.

27a 〈Implementation includes 6b〉+≡
#include "SeqCounter.hh"

27b 〈Implementation 8〉+≡
void MiFuMaXWeighted::add_at_most_1(const vector<Var>& relaxation_variables) {

SeqCounter enc(hard_clauses, relaxation_variables, 1, max_id);

enc.encode();

assert(max_id≤enc.get_max_id());
max_id=enc.get_max_id();

}

28 July 8, 2013

3.4 SAT Call

Here we will see how to call the SAT solver. Note that the SAT solver does not
know anything about the weights associated with the clauses. As in MiFuMaX

we will use the optimization that if a core with a single soft cause is found, that
soft clause can be ignored from then on. In such case, the value of optimum
also needs to be updated.

28a 〈Implementation 8〉+≡
bool MiFuMaXWeighted::sat_call(vector<size_t> &core,

vec<lbool> &model) {

Solver solver;

model.clear();

core.clear();

if (removed_soft_clauses.empty()) { // initialize

removed_soft_clauses.resize(soft_clauses.size(),false); }

populate_solver(solver);

vec<Lit> assumptions;

again:

〈Build assumptions 17a〉
const bool return_value = solver.solve(assumptions);

analyze_sat_answer(solver, return_value, core);

if (core.size()==1) {

const size_t clause_index = core[0];

optimum+=soft_clauses[clause_index].first;

remove_soft_clause(clause_index,solver);

〈Print core statistics 24b〉;
core.clear();

assumptions.clear();

goto again;

}

return return_value;

}

Through assumptions, we tell the SAT solver that all control variables must be
set to true except for removed soft clauses (due to core with a single clause).

28b 〈Build assumptions 17a〉+≡
for (size_t index = 0; index < soft_clauses.size(); ++index) {

if (!removed_soft_clauses[index])

assumptions.push(mkLit(controls[index]));

}

July 8, 2013 29

When building a new solver, we simply allocate variables in the solver and copy
both hard and soft clauses into it (recall that the relaxation variables are already
part of the soft clauses).

29a 〈Implementation 8〉+≡
void MiFuMaXWeighted::populate_solver(Solver& solver) {

new_variables(solver, max_id);

add_all(solver, soft_clauses);

add_all(solver, hard_clauses);

}

If the SAT solver returned satisfiable, we just need to copy the model from the
solver into the variable model. If, the problem is unsatisfiable, we construct a
core based off the conflict clause in the solver.

29b 〈Implementation 8〉+≡
void MiFuMaXWeighted::analyze_sat_answer(Solver& solver,

bool is_sat,

vector<size_t>& core) {

if (is_sat) {

solver.model.copyTo(model);

} else {

const vec<Lit>& conflict_clause=solver.conflict;

for (int index = 0; index< conflict_clause.size(); ++index) {

const Var conflict_variable = var(conflict_clause[index]);

assert(contains(control2index, conflict_variable));

core.push_back(control2index[conflict_variable]);

}

}

}

In order to remove a soft clause (w,C), we add to the hard clauses the
negation of its control variable ¬sC and mark it as removed. It is very im-
portant that removed clauses are marked because their control variables must
not be set to true by assumptions. Removed clauses are stored in a bitvector
removed_soft_clauses whose size is equal to the size of the soft_clauses

vector. Just as in MiFuMaX, ¬C is added to hard clauses.

29c 〈Private members 9a〉+≡
vector<bool> removed_soft_clauses;

30 July 8, 2013

30a 〈Implementation 8〉+≡
void MiFuMaXWeighted::remove_soft_clause(size_t clause_index,

Solver& sat_solver) {

assert (clause_index < soft_clauses.size());

const vector<Lit>& c = soft_clauses[clause_index].second;

const Var cv=controls[clause_index];

removed_soft_clauses[clause_index]=true; //marked as removed

size_t osz=hard_clauses.size();

hard_clauses.resize(osz+c.size()); // we add c.size hard cls

hard_clauses[osz++].push_back(~mkLit(cv)); // satisfy control forever

sat_solver.addClause(~mkLit(cv));

bool found=false;// sanity check purpose

for (size_t i=0; i<c.size(); ++i) {

const Lit l = c[i];

if (var(l)==cv) {// found control variable

found = true;

assert(sign(l));

continue;

}

sat_solver.addClause(~l);

hard_clauses[osz++].push_back(~l);

}

assert(found);// sanity check

}

3.5 Internal State And Functions

The rest of the code is very similar to the one in MiFuMaX main difference is
that weights of clauses also need to be bookkept.

The variable original_max_id is initialized at the beginning of the lifetime
of an object and does not change afterwards and corresponds to the maximal
variable found in the input formula. In contrast, max_id is increased throughout
the lifetime of the object whenever a new variable is needed.

30b 〈Private members 9a〉+≡
Var original_max_id;

Var max_id;

July 8, 2013 31

Clauses are split into hard and soft. A hard clause is given to the SAT solver as
it is. For each soft clause c we remember a control variable vc. Each soft clause
c then is maintained in the form ¬vc ∨ c. When the SAT solver is called, vc is
forced to true by assumptions. Like this, whenever the considered formula is
shown unsatisfiable, the last conflict clause obtained from the SAT solver will
contain those control variables that participated in the conflict, which lets us
reconstruct the core.

The variable soft_clauses maintains soft clauses in the form they will be
given to the SAT solver, i.e. they already contain the control variable. Hard
clauses are maintained in the variable hard_clauses. New soft clauses are
generated from old soft clauses by splitting during relaxation. Hard clauses are
not modified during the lifetime of the object but new hard clauses are being
added to express cardinality constraints on relaxation variables.

31a 〈Private members 9a〉+≡
ClauseVector hard_clauses;

WeightedClauseVector soft_clauses;

The variable controls maintains the control variables for soft clauses and it
holds that controls[i] is the control variables for the clause soft_clauses[i]
for 0<=i<soft_clauses.size(). In order to reconstruct an unsatisfiable core
from the conflict clause given by the SAT solver, we also need a map from
control variables to the corresponding clauses. It holds that for control variable
v, control2index[v] is the index of the corresponding clause in the vector
soft_clauses.

31b 〈Private members 9a〉+≡
vector<Var> controls;

Var2Index control2index;

When solve is successful and the instance satisfiable, stores the optimum and
the model.

31c 〈Private members 9a〉+≡
WeightType optimum;

vec<lbool> model;

32 July 8, 2013

Makes a copy of the hard and soft clauses. Soft clauses will be adorned with
control variables later on in the constructor.

32a 〈Implementation 8〉+≡
MiFuMaXWeighted::MiFuMaXWeighted(Var _max_id,

const ClauseVector &_hard_clauses,

const WeightedClauseVector &_soft_clauses)

: original_max_id(_max_id)

, hard_clauses(_hard_clauses)

, soft_clauses(_soft_clauses)

{initialize();}

Implementation of initialization procedure used in the constructor.

32b 〈Implementation 8〉+≡
void MiFuMaXWeighted::initialize() {

max_id = original_max_id; // set max ID to the max ID of the input formula

〈Generate control variables 32c〉;
}

32c 〈Generate control variables 32c〉≡
controls.resize(soft_clauses.size());

for (size_t index = 0; index < soft_clauses.size(); ++index) {

const Var control = ++max_id;

soft_clauses[index].second.push_back(~mkLit(control));

controls[index]=control;

control2index[control] = index;

}

This code is used in chunk 32b.

32d 〈Implementation 8〉+≡
void MiFuMaXWeighted::get_solution(vec<lbool> &output_model) const {

assert(model.size()≥original_max_id+1);
output_model.growTo(original_max_id+1, l_Undef);

for (Var v=1; v≤original_max_id; ++v) output_model[v]=model[v];

}

July 8, 2013 33

33a 〈Implementation includes 6b〉+≡
#include "MiFuMaXWeighted.hh"

#include "SeqCounter.hh"

#include "BitWise.hh"

#include "Utils.hh"

#include "core/Solver.h"

#include <sys/time.h>
#include <sys/resource.h>
using Minisat::Solver;

using namespace Mifumax;

33b 〈Header includes 33b〉≡
#include <vector>
#include <unordered_map>
#include "core/SolverTypes.h"

#include "core/Solver.h"

#include "MiFuMaXTypes.hh"

#include "Utils.hh"

using std::unordered_map;

using std::vector;

using std::pair;

using Minisat::Var;

using Minisat::Lit;

using Minisat::vec;

using Minisat::lbool;

using Minisat::mkLit;

using Minisat::var;

This code is used in chunk 19.

33c 〈Private members 9a〉+≡
bool sat_call(vector<size_t> &core, vec<lbool> &model);

void initialize();

Var split_clause(size_t clause_index, const WeightType& m);

WeightType core_min(vector<size_t>& core);

void add_at_most_1(const vector<Var>& relaxation_variables);

void populate_solver(Minisat::Solver& solver);

void analyze_sat_answer(Minisat::Solver& solver, bool is_sat,

vector<size_t>& core);

void remove_soft_clause(size_t clause_index,

Minisat::Solver& sat_solver);

34 July 8, 2013

Bibliography

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In En-
rico Giunchiglia and Armando Tacchella, editors, SAT, pages 502–518,
2003.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT
problem. In Armin Biere and Carla P. Gomes, editors, SAT, volume
4121 of Lecture Notes in Computer Science, pages 252–265. Springer,
2006.

[MSP09] Vasco M. Manquinho, João P. Marques Silva, and Jordi Planes. Algo-
rithms for weighted boolean optimization. In Oliver Kullmann, editor,
SAT, volume 5584 of Lecture Notes in Computer Science, pages 495–
508. Springer, 2009.

35

	Common
	Introduction
	Types
	Utils

	MiFuMax
	Introduction
	Public Interface
	Solving
	Formula Representation
	SAT Solver Communication

	MiFuMaXWeighted
	Introduction
	Public Interface
	Solving
	Helpers of solve

	SAT Call
	Internal State And Functions

