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Abstract. This paper tackles the problem of deciding whether a given
clause belongs to some minimally unsatisfiable subset (MUS) of a for-
mula, where the formula is in conjunctive normal form (CNF) and un-
satisfiable. Deciding MUS-membership helps the understanding of why
a formula is unsatisfiable. If a clause does not belong to any MUS, then
removing it will certainly not contribute to restoring the formula’s con-
sistency. Unsatisfiable formulas and consistency restoration in particular
have a number of practical applications in areas such as software verifica-
tion or product configuration. The MUS-membership problem is known
to be in the second level of polynomial hierarchy, more precisely it is
ΣP

2 -complete. Hence, quantified Boolean formulas (QBFs) represent a
possible avenue for tackling the problem. This paper develops a num-
ber of novel QBF formulations of the MUS-membership problem and
evaluates their practicality using modern off-the-shelf solvers.

1 Introduction

Unsatisfiable formulas, representing refutation proofs or inconsistencies, appear
in various areas of automated reasoning. This article focuses on helping us to
understand why a certain formula is unsatisfiable. If a formula is represented
in conjunctive normal form (CNF), it is sufficient to consider only certain sub-
sets of clauses to see why it is unsatisfiable. In particular, a set of clauses is
called a minimally unsatisfiable subset (MUS) if it is unsatisfiable and any of its
proper subsets is satisfiable. The question addressed in this article is to deter-
mine whether a given clause belongs to some MUS of a formula. This is referred
to as the MUS-membership problem.

Deciding whether a clause belongs to some MUS is important when one
wants to restore consistency of a formula: removing a clause that is not part
of any MUS, will certainly not restore consistency. Restoring consistency is an
active area of research in the area of product configuration [20,22]. For example,
when configuring a product, some sets of its features result in an inconsistent
configuration. Approaches for resolving conflicting features often involves user
intervention, e.g. to decide which features to deselect. Clearly, it is useful for the
user to know if a feature is relevant for the inconsistency.

Earlier work on the MUS-membership problem consisted on complexity
characterizations [13,12] and an algorithm based on heuristically-guided MUS
enumeration [7]. In contrast, this article proposes four alternative solutions for
solving MUS-membership problem with Quantified Boolean Formulas (QBF).



Two of these solutions follow directly from the problem’s definition, and either
involve a QBF3,∃ formula or a QBF2,∃ formula that grows quadratically with
the size of the original formula. The paper also exploits the relationship be-
tween MUSes and Maximally Satisfiable Subsets (MSSes), and derives a QBF2,∃
model for the MUS-membership problem that grows linearly with the size of
the original formula. Furthermore, this relationship is also used for relating the
MUS-membership with the problem of inference in propositional circumscrip-
tion, which can be represented as a QBF2,∃ with a specific structure. In turn, this
enables the use of specialized algorithms for propositional circumscription [8].
Experimental results obtained on representative classes of problem instances
demonstrate that the recent abstraction refinement algorithm [8] consistently
outperforms all other approaches.

The paper is organized as follows. Section 2 introduces the notation and
definitions used throughout the paper. Section 3 develops different models for
solving the MUS-membership problem. Section 4 analyzes results obtained
on representative classes of problem instances. Finally, Section 5 concludes the
paper.

2 Preliminaries

Throughout this paper, φ and ψ denote Boolean formulas, defined on a set
of variables X = {x1, . . . , xn}. Where necessary, additional sets of variables are
considered, e.g. R, X ′. A Boolean formula φ in Conjunctive Normal Form (CNF)
is a conjunction of disjunctions of literals and a literal is a variable or its negation.
A disjunction of literals is called a clause and it is preferably represented by ω.
Unless specified otherwise, φ is assumed to be of the form {ω1, . . . , ωn}. Where
appropriate, a CNF formula is interpreted as a set of sets of literals.

A truth assignment µX is a mapping from a set of variables X to {0, 1}, µX :
X → {0, 1}. A truth assignment is represented by the set MX of true variables
in µX , MX = {xi ∈ X |µX(xi) = 1}. In what follows, truth assignments will be
represented by the set of true variables, since the definition of µX is implicit,
given X and MX . Moreover, MX |= φ is used to denote that truth assignment
µX is a model of φ, i.e. that µX satisfies all clauses in φ. Truth assignments will
also be defined for other sets of variables, as needed, e.g. MS , MSa

, MSb
. When

a formula is defined over distinct sets of variables, e.g. X and S, MS ,MX |= φ
denotes that the truth assignment to the variables in S and the variables in X
satisfies φ. Finally, a truth assignment represented by MX implicitly denotes
that MX ⊆ X. Similarly, MR implicitly denotes that MR ⊆ R. To simplify the
notation, the set containment relation will be omitted in all formulas.

A QBF is a Boolean formula where each variable is either universally or
existentially quantified. We write QBFk,∃ to denote the class of formulas of the
form Q1X1 . . .QkXk. φ where Qi = ∃ if i is odd and Qi = ∀ if i is even. In the
context of QBF we write φ(X) to denote a formula that is built on the variables
from X. An important result from the complexity theory is that the validity of
a formula in QBFk,∃ is ΣP

k -complete [18].
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2.1 Minimal Unsatisfiability and Maximal Satisfiability

This section introduces the concepts of minimally unsatisfiable and maximally
satisfiable sets of clauses as well as related decision problems.

Definition 1 (MUS). A set of clauses ψ ⊆ φ is a Minimally Unsatisfiable
Subset (MUS) iff ψ is unsatisfiable and any set ψ′ ( ψ is satisfiable.

Definition 2 (MSS). A set of clauses ψ ⊆ φ is a Maximally Satisfiable Subset
(MSS) iff ψ is satisfiable and any set ψ′ ⊆ φ such that ψ ( ψ′ is unsatisfiable.

Definition 3 (MCS). A set of clauses ψ ⊆ φ is a Minimally Correction Subset
(MCS) if φ \ ψ is satisfiable and for any subset ψ′ ( ψ, φ \ ψ′ is unsatisfiable.

Deciding whether a CNF formula is an MUS is DP -complete [21]. Algorithms
for computing MUSes have been the subject of comprehensive research over the
years [6,2,16]. Moreover, this article considers the following decision problems.

Name: MUS-membership

Given: A CNF formula φ and a clause ω ∈ φ.

Question: Is there an MUS ψ of φ such that ω ∈ ψ?

Name: MUS-overlap

Given: CNF formulas φ and γ ⊆ φ.

Question: Is there an MUS ψ of φ such that γ ∩ ψ 6= ∅?

Name: MSS-membership

Given: A CNF formula φ and a clause ω ∈ φ.

Question: Is there an MSS ψ of φ such that ω /∈ ψ?

We make several observations regarding the definitions. MUS-overlap can
be expressed as a disjunction of k instances of MUS-membership, where k
is the number of clauses in the formula γ. Hence, we mainly focus on MUS-
membership. We require ω ∈ φ, which is done convenience, and the decision
problems for ω /∈ φ are trivial. In MUS-membership we are looking for an
MUS containing ω whereas in MSS-membership, we are looking for an MSS
that does not contain ω. Later on we show that the problems are convertible to
one another.

To obtain the complexity classification of MUS-membership, we realize that
an MUS is a special case of irredundancy: an MUS is a subset-minimal repre-
sentation that is equivalent to the original formula. The question whether a
clause belongs to some minimal irredundant representation is known to be ΣP

2 -
complete [13]. Hence, MUS-membership is in ΣP

2 . In fact, it has been shown
that MUS-membership itself is ΣP

2 -hard (and therefore complete) [12].
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2.2 Propositional Circumscription

Circumscription was introduced by McCarthy as a form of nonmonotonic reason-
ing [17]. While the original definition of circumscription is for first-order logic,
for the purpose of this article we consider its propositional version.

Definition 4 (Circumscription). Let P , Z be sets of variables and φ a for-
mula on the variables P ∪ Z. Circumscription of φ is defined as follows:

CIRC(φ;P ;Z) = φ(P,Z) ∧ (∀P ′, Z ′)((φ(P ′, Z ′) ∧ (P ′ → P ))→ (P → P ′)) (1)

where P ′ → P stands for
∧

x∈P (x′ → x).

We should note that circumscription often considers another set of variables
Q, which comprises variables that remain fixed. However, this set is not needed
for the purpose of this article. Circumscription is closely related to model mini-
mization introduced by the following two definitions.

Definition 5 (Model Orderings). Let M and N be models of φ and let P be
a set of variables. We write M �P N iff M ∩P ⊆ N ∩P and we write M ≺P N
iff M �P N and M 6= N .

Definition 6 (Minimal Models). A model M of φ is P -minimal iff there is
no model N of φ such that N ≺P M . We write MM(φ, P ) to denote the set of
all P -minimal models of φ. For formulas φ and ψ we write φ |=circ

P ψ iff ψ holds
in all P -minimal models of φ.

In short, the ordering � is a bit-wise ordering on the variables from P and
minimal models are the minimal elements of this ordering. The relation between
circumscription and minimal models is well-known [19,15,1,3]. The following
well-known result is used throughout the paper [1].

Proposition 1. Let φ and ψ be formulas using only variables from P ∪ Z. It
holds that CIRC(φ;P ;Z) |= ψ iff φ |=circ

P ψ.

Proposition 1 tells us that inference from the set of minimal models is equiv-
alent to inference from circumscription. Another observation we make is that
the entailment in propositional circumscription is immediately expressible as a
2-level QBF.

Observation 1 For formulas φ and ψ, CIRC(φ;P ;Z) 2 ψ iff

∃P,Z.¬ψ(P,Z) ∧ φ(P,Z) ∧ (∀P ′, Z ′)((φ(P ′, Z ′) ∧ (P ′ → P ))→ (P → P ′)) (2)

Note that the QBF above expresses that P,Z should satisfy (1) and violate ψ,
and thus serve as a counterexample to the entailment. Naturally, the entailment
can be expressed positively by negating the QBF.

Hence, propositional circumscription can be seen as reasoning over minimal
models or as a special case of a QBF; in the remainder of the paper we treat
these properties of propositional circumscription interchangeably.
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MUS-membership

MSS-membership

Circ-InferQBF2,∃, O(n)

QBF3,∃, O(n) QBF2,∃, O(n2)

Proposition 3

Proposition 2 Proposition 2

Proposition 8Proposition 4

Fig. 1. Translating between problems

Name: Circ-Infer

Given: CNF formulas φ and ψ and sets of variables P and Q.

Question: Does ψ hold in all 〈P,Q〉-minimal models of φ, i.e. φ |=circ
〈P,Q〉 ψ?

2.3 Related Work

The MUS-membership problem has been studied mostly from a theoretical
perspective [13,12]. Motivated by practical applications, recent work addressed
the development of algorithms for this problem [7]. These algorithms are based
on explicit and implicit enumeration of MUSes. A simple algorithm for solving
the MUS-membership problem is to run an MUS enumerator (e.g. [14]) and
check whether any MUS contains the target clause ω ∈ φ. This algorithm was
improved in [7] where heuristics are proposed for reducing the sets of clauses to
consider. The tool cmMUS [10] represents recent work on the MUS membership
problem. cmMUS builds upon the work described in the present paper, namely the
connection between MUS membership and propositional circumscription, which
is detailed in Section 3.3.

3 Deciding MUS-membership

Figure 1 depicts the relations between the problems investigated in the remainder
of this section. The motivation for these translations is to derive QBF formulas
for the MUS-membership problem. We show that a direct translation of MUS-
membership leads to QBF3,∃ despite the problem being in ΣP

2 . Alternatively,
we propose a QBF2,∃ model, that is quadratic in the size of the original prob-
lem. Alternative QBF formulations are developed by exploiting the relationship
between MUSes and MSSes. As a result, we derive a QBF2,∃ that is linear in
the size of the original problem, and also relate MSS-membership with Circ-
Infer. The QBF models can be solved with standard QBF algorithms, whereas
for the Circ-Infer, a dedicated algorithm can be used [8].
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3.1 MUS-membership with QBF

This section investigates the translation of MUS-membership to QBF. Since
MUS-membership has been shown to be ΣP

2 -complete [13], the problem must
be expressible as a QBF2,∃ formula. We begin by a straightforward translation
from the problem statement following the following schema:

exists ψ ⊆ φ s.t. ω ∈ ψ and ψ is unsatisfiable and forall ψ′ ( ψ is satisfiable

To be able to quantify over subsets of φ, we introduce its relaxed form.

Definition 7 (relaxation φ∗). Let φ be a set of clauses then its relaxation φ∗

is defined as follows:
φ∗ = {ω ∨ rω | ω ∈ φ} (3)

where rω are variables not appearing in φ. We refer to rω as the relaxation
variable of the clause ω and if rω has the value 1, we say that the clause ω is
relaxed.

In the following text we use R to denote the set of relaxation variables (and
X for the set of original variables as before). The intuition behind relaxation
variables is that once a clause is relaxed, it is equivalent to not having the clause
in the formula. For succinctness, we introduce a dual term of selected clauses,
which are clauses that are not relaxed.

Definition 8. Let φ∗ be a relaxation of φ and MR be a subset of the pertaining
relaxation variables. The set of selected clauses S(φ∗,MR) is defined as follows:

S(φ∗,MR) = {ω | rω /∈MR} (4)

Example 1. Let φ = {x,¬x, y}, then φ∗ = {x ∨ r1,¬x ∨ r2, y ∨ r3}. Let MR =
{r1, r2} then S(φ∗,MR) = {y}. Observe that for any MX s.t. y ∈MX the inter-
pretation MR ∪MX is a model of φ∗: when the clauses x and ¬x are relaxed,
they do not need to be satisfied. However, if a clause is not relaxed (the corre-
sponding relaxation variable is 0), the clause must be satisfied. Hence for a given
MR, satisfying φ∗ is equivalent to satisfying S(φ∗,MR).

The following observation establishes a relation between the set of selected
clauses and the relaxed formula.

Observation 2 An assignment MR ∪MX is a model of φ∗ iff MX is a model
of S(φ∗,MR).

In the following QBF the relaxed formula appears in two versions: a non-
primed version (φ∗(R,X)), and, a primed version—where all the variables are
replaced with their primed copy (φ∗(R′, X ′)).

Observe that relaxing a clause results into removing it from the set of se-
lected clauses, and therefore for any relaxations MR and M ′R, the requirement
S(φ∗,MR) ⊆ S(φ∗,M ′R) is equivalent to M ′R ⊆MR. In the following QBFs, the
requirement M ′R ⊆MR is captured by the formula R < R′ defined as follows:

R < R′ ≡
∧
z∈R

z → z′ ∧
∨
z∈R
¬z ∧ z′ (5)
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Now let us express the MUS-membership as a QBF formula:

∃R. ¬rω ∧ (∀X.¬φ∗(R,X)) ∧ (∀R′.(R < R′)→ ∃X ′.φ∗(R′, X ′)) (6)

The formula expresses that we are searching for a relaxation R for which the
clause ω is not relaxed (¬rω). The set of selected clauses induced by the re-
laxation R is unsatisfiable (∀X.¬φ∗(R,X)). If R is relaxed anymore, then the
induced set of selected clauses is satisfiable (∀R′.(R < R′)→ ∃X ′.φ∗(R′, X ′)).

Formula (6) can be reformulated if we realize that a set of clauses is an MUS
iff removing any clause yields a satisfiable set of clauses:

∃R. ¬rω ∧ (∀X.¬φ∗(R,X)) ∧
∧

rωi
∈R

(¬rωi → ∃Xωi .φ∗[rωi/1](R,Xωi)) (7)

Where φ∗[rωi
/1] is the substitution of 1 for rωi

in φ∗ and Xωi is a fresh copy of
the variables X for each rωi

∈ R.
Since the variables X appear only in the first half of the formula, it can be

rewritten into 2QBF as follows:

∃R∃Xω1 . . . ∃Xωn∀X. ¬rω ∧¬φ∗(R,X)∧
∧

rωi
∈R

(¬rωi → φ∗[rωi/1](R,Xωi)) (8)

Altogether, a solution MR to either of the formulas (6), (7), or (8) repre-
sents an MUS containing the clause ω, which enables us to state the following
proposition.

Proposition 2. The clause ω belongs to some MUS of the formula φ iff (6),
(7), or (8) is valid.

3.2 QBF for MUS-membership using MSS-membership

We observe that the equations developed above are problematic from a practical
perspective. Equation (6) uses 3 levels of quantifiers despite the problem being
in ΣP

2 [12]. Equation (8) has only 2 levels of quantifiers but uses a quadratic
number of variables.

The following describes how to construct a QBF with 2 quantifiers using a
linear number of variables by first translating the problem to MSS-membership.
In order to get to show the relation between MUS-membership and MSS-
membership, we invoke the following lemma [11]:

Lemma 1 (Lemma 4.3 in [11]). Let MU(φ) denote the set of all MUSes of φ
and let MS(φ) denote the set of all MSSes of φ. Then the following equality
holds: ⋃

MU(φ) = φ \
⋂

MS(φ) (9)

An immediate consequence of Lemma 1 is that a clause ω is included in some
MUS of φ if and only if ω is not included in some MSS of φ. This consequence
is stated in the following proposition.
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Proposition 3. A clause ω belongs to some MUS of φ iff there exists an MSS ψ
of φ such that ω /∈ ψ.

Example 2. Let φ = {¬x, x, z}. The formula φ has only one MUS {¬x, x} while
it has two MSSes {x, z} and {¬x, z}. Observe that the clause z is in both MSSes
and not in the MUS; for both of the clauses x, ¬x there is an MSS without the
clause and both are in the MUS.

The relation between MUSes and MSSes established by Proposition 3 mo-
tivates the following quantified Boolean formula for MUS-membership (again
we use the notation R′ < R introduced earlier).

∃R∃X∀R′∀X ′. (rω ∧ φ∗(R,X) ∧ (R′ < R→ ¬φ∗(R′, X ′))) (10)

The formula expresses that we are looking for a relaxation in which ω is re-
laxed (rω). The relaxation is satisfiable (φ∗(R,X)) and any relaxation relaxing
less clauses yields an unsatisfiable set of clauses (R′ < R→ ¬φ∗(R′, X ′)). Alto-
gether, a solution MR to the equation (10) corresponds to an MSS that does not
contain the clause ω.

Proposition 4. The answer to MUS-membership is “yes” iff (10) is valid.

Observe that the quantified formula has two levels of quantifiers and linear
number of variables.

Equation (10) provides a solution for testing whether a clause ω is included in
an MUS of φ. However, it does not provide a witness, i.e. an MUS containing ω.
Nevertheless, a witness can be computed by exploiting the properties of MSSes
and MUSes.

Lemma 2. Let ψ be an MSS of φ such that ω /∈ ψ, than any MUS of ψ ∪ {ω}
contains ω.

Proof (sketch). Since ψ is an MSS, adding any clause from φ to ψ will make
the result unsatisfiable. Therefore, adding ω to ψ, ψ′ = ψ ∪ {ω}, results in an
unsatisfiable formula. Let ψ′′ ⊆ ψ′ be an MUS of ψ′, then ω ∈ ψ′′ as otherwise
ψ′′ ⊆ ψ would lead to a contradiction because ψ is satisfiable.

Lemma 2 enables the use of standard MUS extraction algorithms to extract
an MUS witness given an MSS not containing ω.

Proposition 5. Let φ be a CNF formula and ω ∈ φ. For a clause ω, if the
answer to the MUS-membership problem is “yes”, then a witness for the MUS-
membership problem is any MUS of an MSS not containing ω.

Proof. Immediate consequence of Proposition 4 and Lemma 2.
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3.3 MUS-membership with Circ-Infer

Proposition 3 lets us translate MUS-membership to MSS-membership. In this
section we show how to translate MSS-membership to Circ-Infer.

Recall that Circ-Infer is the problem of deciding whether a formula ψ holds
in all P -minimal models of a formula φ, for some set of variables P (Proposi-
tion 1). We begin by showing a relation between minimal models and MSSes.

As in the previous section, we operate on the relaxed formula φ∗ where
setting the relaxation variable rω to 1 effectively eliminates the clause (relaxes
the clause). Dually, setting the variable rω to 0 results into adding the clause ω
into the set of selected clauses (Definition 8). Consequently, MSSes correspond
to minimal models of the relaxed formula, which is captured by the following
proposition.

Proposition 6. For an interpretation MR, the set of selected clauses S(φ∗,MR)
is an MSS of φ iff there exists MX such that MR ∪MX is an R-minimal model
of φ∗.

Proof (sketch). If the set S(φ∗,MR) is an MSS, then it must be satisfiable and
therefore it must have some model MX . Due to Observation 2, MR ∪MX is a
model of φ∗. The model MR ∪MX must be R-minimal because otherwise we
would obtain a relaxation corresponding to a strict superset of S(φ∗,MR) ren-
dering it not maximal. If MR∪MX is an R-minimal model of φ∗ then S(φ∗,MR)
is satisfied by MX due to Observation 2. The set S(φ∗,MR) must be an MSS
otherwise MR ∪MX would not be R-minimal.

Example 3. Let φ = {x,¬x, y ∨ z,¬y ∨ ¬z}, then φ∗ = {x ∨ r1,¬x ∨ r2, y ∨ z ∨
r3,¬y∨¬z∨ r4} for the relaxation variables R = {r1, r2, r3}. In order to achieve
consistency, one of the clauses x and ¬x must be relaxed. Hence, the formula φ∗

has the following four R-minimal models: two models have the clause ¬x relaxed
{r2, x, y}, {r2, x, z} and two models have the clause x relaxed {r1, y}, {r1, z}.
These models correspond to the MSSes {x, y∨z,¬y∨¬z} and {¬x, y∨z,¬y∨¬z}.
Observe that the clauses y∨z and ¬y∨¬z are in both MSSes, which means that
the corresponding variables r2 and r3 have the value 0 in all R-minimal models
(they never need to be relaxed).

Proposition 6 establishes a relation between the MSSes of a formula and
minimal models of the corresponding relaxed formula. Consequently, in order to
solve MUS-membership for a clause ω, we need to look for a minimal model
with the clause relaxed.

Proposition 7. A clause ω belongs to some MUS of φ iff there exists a model
M ∈ MM(φ,R) such that M |= rω, equivalently:

φ∗ 2circ
R ¬rω (11)

Proof (sketch). A clause ω belongs to some MUS of φ iff there exists an MSS
ψ ⊆ φ s.t. ω /∈ ψ (Proposition 3). There exists an MSS ψ of φ s.t. ω /∈ ψ iff there
exists an R-minimal model M of φ∗ s.t. M |= rω (Proposition 6). To relate to
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the circumscription inference notation we observe that there exists an R-minimal
model M s.t. M |= rω iff φ∗ |=circ

R ¬rω does not hold.

Proposition 7 is easily generalized for MUS-overlap by observing that we
only need to find a minimal model where at least one of the clauses in question
is relaxed.

Proposition 8. A set of clauses ω1, . . . , ωn overlaps with some MUS of φ iff
there exists M ∈ MM(φ,R) such that M |= rω1

∨ · · · ∨ rωn
, equivalently:

φ∗ 2circ
R (¬rω1 ∧ · · · ∧ ¬rωn) (12)

Observe that in Propositions 6 and 8 Circ-Infer appears in a negative
sense. This again agrees with the known complexity classification, as MUS-
membership is ΣP

2 -complete [12] and circumscription is ΠP
2 -complete [3]. More-

over, although the relationship with QBF is simple (see Section 2.2), we opt to
solve Circ-Infer with a dedicated algorithm [8].

3.4 Algorithms for MUS-membership

The previous two sections develop a number of properties of the MUS-membership
problem. This section summarizes the concrete algorithms that these properties
enable us to consider. The algorithms are classified into three classes: enumera-
tion, QBF, and circumscription inference. These classes are discussed in turn.

The simplest approach for deciding MUS-membership is to enumerate MUSes
(e.g. [14]). Practical algorithms for MUS-membership follow this approach [7],
but are coupled with heuristics for reducing the number of MUSes to enumer-
ate. An alternative solution, also based on enumeration, consists of enumerating
MSSes, using Proposition 3. Given that MUS enumeration algorithms start by
enumerating MSSes [14], an algorithm based on enumerating MSSes is guaran-
teed to outperform näıve solutions based on MUS enumeration. It should be
noted that existing algorithms (e.g. [14]) are based on MCS enumeration. How-
ever, since an MCS is the complement of an MSS, a clause is in an MUS iff it is
included in some MCS.

A second class of algorithms consists of using the mapping to QBF and
solving the resulting problem instances with a QBF solver. This paper develops 3
alternative approaches for encoding MUS-membership into QBF (see Figure 1).
The first approach uses 3 levels of quantifiers and produces a formula linear in
the size; second approach uses 2 levels of quantifiers but produces a formula of
quadratic size; the third approach uses the relation between MUSes and MSSes
and provides a 2-level formulation of linear size.

Finally, a third class of algorithms exploits the relationship between MSSes
and Circ-Infer. As noted in preliminaries, Circ-Infer is a special case of a
2-level QBF formula. Hence, a general QBF solver could be used. However, this
formulation also enables the use of specialized algorithms for Circ-Infer [8].
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4 Experimental Results

Following the discussion in Section 3.4, the following concrete tools were used
for the evaluation.

MUSer is a tool for extracting MUSes [16]. The tool was used to obtain a
witness MUS in approaches based on MSSes (see Proposition 5).

AReQS is a recently developed solver, implemented by the authors, for 2QBF
formulas based on counterexample guided refinement (CEGAR). The solver was
used for all QBF formulas with 2 levels of quantifiers since previous research
showed that it consistently outperforms the available solvers on these types of
formulas [9].

cmMUS is a tool that solves MSS-membership using propositional circum-
scription (implemented by the authors) [10]. Just as AReQS, it uses counterex-
ample guided abstraction refinement approach but tailored for propositional cir-
cumscription [8].

look4MUS is a tool dedicated to MUS-membership based on MUS enumer-
ation, guided by heuristics based on a measure of inconsistency [7].

QuBE 7.1 is a QBF solver3 which solved the most instances in the 2CNF track
of QBF Evaluation 20104 and overall ranks high in all categories. QuBE has a
powerful built-in preprocessor, which significantly improves its performance [5]
(all of the preprocessing techniques were switched on for the purpose of the
evaluation). The solver was used to evaluate 3-level formulas (see (6)). The
downside of QuBE 7.1 is that it does not provide a model. Hence, even though a
solution to (6) is immediately an MUS containing the desired clause, it cannot
be retrieved from the answer of QuBE 7.1.

sSolve is a QBF solver which returns a solution for valid formulas, unlike
QuBE 7.1 [4]. The solver was used to evaluate 3-level formulas (see (6)).

MSS enum. The tool CAMUS [14] was used to enumerate MSSes of the given
formula. If the enumeration is looking for an MSS that overlaps with a set of
clauses γ, then it immediately stops once it finds an MSS ψ that does not contain
at least one of the clauses from γ, i.e. γ r ψ 6= ∅.

4.1 Benchmarks

A variety of unsatisfiable formulas was selected from SAT competitions bench-
marks5 and from well-known applications of SAT (namely ATPG and product
configuration). The selected formulas are relatively easy for modern SAT solvers
because MUS-membership is significantly harder than satisfiability. Even so,
instances with tens of thousands of clauses were used (e.g. dining philosophers).

For each of these formulas, the MUS-overlap was computed using the vari-
ous approaches. The 1st, 3rd, 5th, and 7th clauses in the formula’s DIMACS rep-
resentation were chosen as the set γ for which the overlap was to be determined—
this evaluation methodology was also used in [7].

3 Available at www.star.dist.unige.it/~qube/.
4 http://www.qbflib.org/
5 http://www.satcompetition.org/
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cmMUS look4MUS MSS enum. 2lev. lin.

Nemesis (bf) (223) 223 223 31 29
Daimler-Chrysler (84) 46 13 49 36
dining phil. (22) 17 17 4 8
dimacs (87) 87 82 51 51
ezfact (41) 20 11 11 10

total (457) 393 346 146 134

2lev. qv. 3lev. lin. (QuBE) 3lev. lin. (sSolve)

Nemesis (bf) (223) 9 13 0
Daimler-Chrysler (84) 0 4 0
dining phil. (22) 2 1 0
dimacs (87) 18 25 4
ezfact (41) 0 0 0

total (457) 29 43 4

Table 1. Number of solved instances by the different approaches

4.2 Results

All experimental results were obtained on an Intel Xeon 5160 3GHz with 4GB
of memory. The experiments were obtained with a memory limit of 2GB and
time limit of 1,000 seconds. The results of the measurements are presented by
Table 1 and Figure 2. Table 1 presents the number of solved instances by each of
the approaches for each set of benchmarks. Figure 2 presents the computation
times with cactus plots—the horizontal axis represents the number of instances
that were solved within the time represented by the vertical axis.

The QBFs derived in Section 3.1 and Section 3.2 are denoted as: 2-level
linear—2-level linear formula using MSS; 2-level quadratic—2-level quadratic
formula directly yielding a witnessing MUS; 3-level linear—3-level linear formula
directly yielding a witnessing MUS. The results for the approaches that first find
an MSS include the runtime of MUSer, which was used to obtain the witnessing
MUS (see Section 3.2).

Out of the presented approaches, the circumscription-based approach (cmMUS)
turned out to be the most robust one: it has solved the most instances (393) and
except for one class of benchmarks it exhibits the shortest overall running times.
The set of benchmarks where cmMUS came second are the Daimler-Chrysler, for
which the simple MSS enumeration solved 3 more instances.

The dedicated algorithm look4MUS came second in terms of the number of
solved instances (346). However, it turned out not to be robust, e.g. a small
number of instances were solved for Daimler-Chrysler and ezfact.

The use of general QBF solvers yielded significantly poorer results. As ex-
pected, out of these, the 2-level linear formulation (solved by AReQS +MUSer)
had the best performance with 134 solved instances. Even though both AReQS

and cmMUS use CEGAR to solve the problem, cmMUS uses a refinement specific

12



 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90

C
P

U
 ti

m
e

instances

DIMACS

cmMUS
look4MUS

MSS enum.
2lev. qv.
2lev lin.

3lev. lin. (QuBe)
3lev. lin. (sSolve)

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200  250

C
P

U
 ti

m
e

instances

Nemesis (bf)

cmMUS
look4MUS

MSS enum.
2lev. qv.
2lev lin.
3lev. lin.

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18

C
P

U
 ti

m
e

instances

dining philosophers

cmMUS
look4MUS

MSS enum.
2lev. qv.
2lev lin.
3lev. lin.

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20  25  30  35  40  45  50

C
P

U
 ti

m
e

instances

Daimler Chrysler

cmMUS
look4MUS

MSS enum.
2lev lin.
3lev. lin.

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18  20

C
P

U
 ti

m
e

instances

ez fact

cmMUS
look4MUS

MSS enum.
2lev lin.

Fig. 2. Cactus plots for the measurements (number of instances x solved in less than
y seconds)
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to circumscription (cf. [8,9]) and that turned out to be important for the per-
formance. The 3-level linear approach using QuBE 7.1 solved significantly more
than both sSolve with 3-level approach and AReQS with quadratic 2-level for-
mulation. However, we recall that QuBE 7.1 does not provide a model. In most
cases when the quadratic formulation approach did not succeed it was because
of exceeding the memory limit.

We should note that the runtime of MUSer affected very little the overall
runtimes of the approaches based on MSSes. Mostly, the runtime of MUSer was
below 1 second. Only two instances where the desired MUS was not found in
time appeared (in dining philosophers and ezfact).

5 Conclusions

This article addresses the problem of deciding whether a given clause belongs to
some minimal unsatisfiable subset (MUS) of some CNF formula. This is a well-
known ΣP

2 -complete problem [13,12], for which recent work proposed heuristic-
guided algorithms based on enumeration of MUSes [7]. In contrast, this paper
develops new solutions for the MUS-membership problem based on QBF. Some
of the QBFs follow from the problem’s definition, whereas the others exploit the
relationship between MUSes and MSSes [11]. The proposed solutions include
one QBF3,∃ and two QBF2,∃ formulations. One additional solution consists of
mapping MUS-membership to Circ-Infer, the propositional circumscription
inference problem, itself expressible as a QBF2,∃. Given well-known mappings
of propositional circumscription to other formalisms, this yields additional algo-
rithms to solve the MUS-membership problem. Experimental results obtained
on a wide range of well-known benchmarks, demonstrate that the most effective
approach consists of using a recent counterexample guided abstraction refine-
ment algorithm for the propositional circumscription inference problem [8].

The promising experimental results suggest considering the use of dedicated
algorithms for propositional circumscription inference in other settings, namely
other ΣP

2 -complete and ΠP
2 -complete decision problems.

Acknowledgement. This work is partially supported by SFI PI grant BEA-
CON (09/IN.1/I2618), EC FP7 project MANCOOSI (214898), FCT grants AT-
TEST (CMU-PT/ELE/0009/2009), and INESC-ID multiannual funding from
the PIDDAC program funds.

References

1. Cadoli, M., Lenzerini, M.: The complexity of closed world reasoning and circum-
scription. In: AAAI Conference on Artificial Intelligence. pp. 550–555 (1990)

2. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal
unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–
150 (2009)

3. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world
reasoning are ΠP

2 -complete. Theor. Comput. Sci. 114(2), 231–245 (1993)

14



4. Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate
quantified Boolean formulae. In: AAAI/IAAI. pp. 285–290 (2000)

5. Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-
reasoning. In: 2nd International Workshop on Quantification in Constraint Pro-
gramming (QiCP) (2008)
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