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Abstract

A mechanically formalized feature modeling meta-
model is presented. This theory is a generic higher-order
formalization of a mathematical model synthesizing several
feature modeling approaches found in the literature. This
meta-model support not only a better understanding of the
various approaches to feature modeling, but also supports
reasoning about and within feature model approaches, fea-
ture models, and on feature trees and their configurations.

1 Introduction

While recently performing a survey of the use of formal
methods in software product line (SPL) research [CNO2,
PBv05] we found that there were several different ap-
proaches to feature modeling. While most of these ap-
proaches stem from FODA [KCH™90], some have very
subtle differences (either intentionally or accidentally) and,
frequently, precise explanations of their semantics are un-
available [FFB02].

Because we wanted to deeply understand feature model-
ing, we decided to mechanically formalize a feature mod-
eling meta-model, a generic higher-order formalization of a
mathematical model synthesizing several feature modeling
approaches found in the literature. This meta-model has not
only helped us better understand the various approaches to
feature modeling, but also reason about and within feature
models.

Additionally, as part of the Mobius project, we are lead-
ing the development of the Mobius Program Verification
Environment (PVE), an Eclipse-based platform for design-
ing, testing, performing various kinds of static analyses, and
automatically and interactively formally verifying Java pro-
gram and bytecode. As we have already integrated PVS into
this environment, using an executable theory from within
Eclipse is a very natural. Using the underlying formal-

ism of feature meta-models described in this paper, we
have an opportunity to make the Mobius PVS a feature-
aware programming environment, and perhaps even inte-
grate feature-oriented programming and the main program-
ming paradigm of Mobius, that of proof-carrying code. To
bridge these two worlds we plan to assign features to Java
components in a manner similar to Batory’s AHEAD tool
suite on a feature-aware component model.

Thus this work contains several contributions. First,
we have mechanically formalized in a higher-order logic
(HOL) a “feature model meta-model” that integrates prop-
erties found in several feature modeling approaches from
the literature. To provide evidence that our meta-model
is sufficiently rich to reason about, and with, existing fea-
ture models, we have formalized specific existing feature
model frameworks in our meta-model. Complementing this
work, we have formulated and proven a number of interest-
ing meta-theoretical lemmas about different feature model-
ing approaches, which helps one understand how different
approaches relate to one other. To compare feature models,
we have identified, formulated and proven some interest-
ing feature model transformations. Additionally, because
we are reasoning with/in HOL, we can express complex
dependencies about and within a feature model, and can
reason about an unbounded number of configurations. Fi-
nally, because we have mechanically realized the theory in
the higher-order prover PVS, we have an executable model
that can be used in conjunction with standard software en-
gineering tools like integrated development environments.

Before describing our formalism, we first review in Sec-
tion 2 the relevant background material on feature model-
ing and, in particular, formalizing about, and within, feature
models.

The meta-model is then described in detail in Section 3
and, using that meta-model, we formalize specialization as
a model relation.

To provide evidence that our meta-model is flexible and
has utility, in Section 4, we realize a number of feature
model examples from the literature. In particular, Czar-
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necki et al.’s cardinality and cloning-based scheme(s) (with
attributes and model transformations) are formalized. Next,
concrete feature models and configurations are described
and checked within our theory.

In Section 6 we review the existing feature modeling ap-
proaches from which we derive, and against which we com-
pare, our formal meta-model.

Finally, we reflect on this work and propose some next
steps in Section 5. In particular, in the interest of full dis-
closure, we highlight this work’s limitations and strengths
in plain language.

2 Feature Modeling

We presume the reader is generally aware of the existing
work on feature models/modeling, particularly its origins in
FODA [KCH™90] and the general ideas of domain engi-
neering and application engineering. We only highlight the
specific work that informs this research, providing a foun-
dation for our meta-model.

The technical report introducing the feature oriented
domain analysis [KCHT90] represents the seminal work
in feature modeling used in product lines. Among other
things, the report has introduced the following basic con-
cepts.

Feature diagram: A tree of features, a graphical represen-
tation of a feature hierarchy. The parent-child relation
has the meaning that the child cannot be selected into
a configuration unless the parent is also included. Fea-
tures are categorized as being either mandatory, op-
tional, or alternative.

Each alternative feature is part of a group of alterna-
tive features under a certain parent, meaning that ex-
actly one of these children has to be selected whenever
this parent is selected. An optional feature may or not
may be included into the configuration when its par-
ent is selected. A mandatory feature has to be selected
whenever its parent is selected.

Composition rules: This mechanism enables the expres-
sion of mutual dependency (requires) and mutual ex-
clusion (mutex-with) relations between two arbitrary
features. Using these relations one expresses relation-
ships between features across the tree structure.

Czarnecki et al. provides an extension of FODA, extend-
ing it with groups of or sub-features' [CE00].

This work has further evolved in the cardinality-based
notation [CHEO4b, CHEO4a], based on a case study that
we use later [CBUEOQ2]. In this approach, constraints on

I At least one of the features from an or sub-group has to be selected
whenever their parent is selected.

features are expressed using admissible cardinalities, as in,
for example, Entity-Relation (ER) or UML modeling.

Each feature is either a member of a feature group, what
is called a group feature, or it not, and is known as a soli-
tary feature. Each feature group has a cardinality specifying
how many features out of that group can be selected when
the parent of that group is selected. A set of admissible
cardinalities is expressed as list of intervals of natural num-
bers. Each solitary feature has cardinality associated with
it specifying how many copies of that particular feature can
be selected whenever its parent is selected. Selecting multi-
ple copies of the same feature into a configuration is called
feature cloning.

For example, a solitary feature with the cardinality [1..1]
corresponds to the mandatory classification; a group with
the cardinality [1..1] corresponds to an alternative group.

A feature model can be broken up into multiple trees (a
forest), where a root of a tree can be referenced from the
inside of another tree as a sub-feature. Redundancies are
thus avoided, as a single tree can be referenced multiple
times. The use of a forest also provides a modularization
mechanism for large feature models.

Also, attributes (also called properties) of features are
used to represent variabilities with a large domain, such as
numeric values or strings.

In another article describe a number of specializations
steps, i.e., operations on the diagram that lead to a more
specialized diagram [CHE(Q4b]. Examples of specialization
steps include eliminating admissible cardinalities of a cer-
tain feature, or assigning a value to an attribute.

3 Formalization

For the purpose of formalization we must decide how
to model the individual concepts of all of the feature mod-
eling approaches summarized in Section 2. In the models
that we have examined in the literature, a feature is simply
an entity with possibly some properties, such as “name”.
This led us to formalizing a feature as a record with a set
of attributes, where each attribute models a property of that
particular feature.

Utilizing this definition, we define a feature configura-
tion as the set of features that are selected and the values of
their attributes. Subsequently, a feature model is defined as
a function that determines the set of valid configurations. In
other words, we regard a feature model as an “oracle” that
responds either valid or invalid for given a configuration.

What follows defines a feature meta-model and a feature
model. We first formalize a type system of features, as the
PVS theorem prover provides a typed higher-order logic.

Definition 3.1. First we introduce the following types that
characterize the entities of our meta-model M. Let F be



the (uninterpreted) type of features, I the type of attribute
identifiers, AT the type of attribute types, and AV the type
of attribute values.

An value typing function assigns a type to every attribute
value: typing: AV — AT

Let T be a set of feature types, where each type is a pair
composed of a set of identifiers, representing the attributes,
and a function assigning types to these identifiers (an at-
tribute typing function). We express this as the following
dependent type:

T = (ids : P(2)) x (att : ids — AT)

In the following, for a type t € T we will use the notation
t.ids and t.att to access the identifiers in t and the attribute
typing function of t, respectively.

A feature typing function assigns types to all features:
type: F =T

A value assignment is a function assigning values to the
attributes of all the features in the domain. The type of a
value assignment function aa is a subtype of the function
type

F — (D — AV)where D C T

such that, for any feature f, dom(aa(f)) = type(f).ids
and, for all id € dom(f), typing(aa(f ( id)) =
type(f)(id)

In plain language, this means that the value assignment
adheres to the typing prescribed by the functions typing
and type. We will refer to this type, a type of all value
assignments, as A.

The features selected in a configuration are modeled by
a selection function which is of the type select, defined as
a function from features to booleans: select = F — B

Finally, a restriction functions is at the heart of every fea-
ture model. Given a configuration (the values of attributes
and given a set of selected features), the restriction function
indicates whether this configuration is admissible or not.
This is expressed as the following type

restr = select x A — B

Now that we have defined all the necessary types, we
define the meta-model itself.

Definition 3.2. Given Definition 3.1, a feature meta-model
M is a set of restriction functions and a feature model is a
particular selected restriction function M € M.

Example 3.3. This example illustrates how the func-
tions defined above can be used. We wish to model the
record f1 = [ name String ] and the assign-
ment £1.name = ‘‘Hi’’.

The following formula states that the value “Hi” is of the

type string.

typing(“Hi”) = string

Then it is possible to express that the type of feature fy is
a record that contains a single attribute identified by the
identifier name, whose type is string.

type(fi) = ({name}, \id : {name}estring)
The following formula states that the value assignment
function aa has assigned the value “ ‘Hi’ ' to the attribute
name of the feature fi.

aa(f1)(name) = “Hi”

Example 3.4. Many feature modeling approaches, such as
the original FODA model, do not enable expressing any re-
strictions on attributes. This limitation is formalized by the
following formula:

Vs : select; ay, as : Aerestr(s,ar) = restr(s,as)

Czarnecki et al. introduced the notion of staged con-
figuration, an approach to configuration where the model is
gradually specialized until a model enabling a single config-
uration is left [CHE04b] . Using the above formalization, it
is straight-forward to formally define specialization.

Definition 3.5. Let my and mqo be feature models defined
on the same set of attributes and feature domain. Let restry
and restrs be their restriction functions respectively. Then
mao is a specialization of my if and only if all the admissi-
ble configurations by restry are also admissible by restry.
This is realized as the following predicate on restriction
functions.

specialization?(restra, restry : restr) =

Vs : select;a : Aerestra(s,a) = restri(s,a)

This definition is more liberal than that presented by
Czarnecki et al. as a specialization that does not reduce
the set of possible configuration is still considered a spe-
cialization here.

4 Applying the Theory

In the previous section we have formally defined the con-
cept of the feature model. This section brings feature dia-
grams into this context. More specifically, we address the
translation of a feature diagram, (a labeled graph on fea-
tures), to a feature model, which is a restriction function on
configurations (see Definitions 3.1 and 3.2).

This translation is accomplished in two steps. First we
formalize a specific type of feature diagram as a mathemat-
ical construct. Second, we define a function that takes this
construct and returns a restriction function corresponding to
the semantics of that diagram.



Furthermore, we illustrate on several lemmas and exam-
ples how we can reason and work with this formalization.

Please note that we do not provide the full account of the
proofs here due to space limitations. Rather sketches of the
proofs written in the proof assistant PVS are provided. As
in the previous section, we utilize a standard mathematical
notation to describe the PVS formalization. We encourage
the reader to download our PVS theories and proofs from
our research group’s homepage for more details.

4.1 Feature Diagram Formalization

In this section we formalize the feature model presented
by Czarnecki et al. using our meta-model M, as mechani-
cally realized in the PVS theorem prover [CHEO4b].

From the meta-modeling point of view, this model rep-
resents an interesting challenge because we must model the
ability to clone a feature. We have chosen to model this no-
tion by introducing the concept of clone groups. A clone
group contains all the possible clones of the feature that we
wish to be cloneable. In other words, such a group repre-
sents a pool of clones for that particular feature.

The only restriction that we impose on a clone group is
that all of its members must be of the same type. Hence,
for each solitary feature in the original model, we introduce
a clone group whose members (the clones) are of the type
of that feature. Since the grouped features in the original
model are aggregated into a group, it is only natural to make
them members of groups in our model as well. We refer to
these kind of groups simply as feature groups.

Admissible cardinalities must also be formalized. They
are realized by labeling each group with the set of its ad-
missible cardinalities. In the original work cardinalities are
represented as lists of intervals of natural numbers; in the
model presented here, however, we enable any subset of
natural numbers. While there is a difference between these
two representations, it is not crucial for this work.

Definition 4.1. Given the types defined in Definition 3.1,
and given an additional type G, the type of groups, a feature
tree is a tuple

TREE = (R, L1, L, groups, members)

where R : F is the root concept of the feature tree, G is a set
of groups, where each group is labeled by L1 according to
its type, and by L¢ determining its admissible cardinalities,

L1 : G — feature | clone

Lco:G— P(N)

The structure of the diagram is defined by the functions
groups and members. For each feature f, groups deter-

mines which groups f owns and the function members de-
termines the features that belong to a given group.

groups : F — P(G)
members : G — P(F)

These two functions have to satisfy the following conditions:
(1) the root concept does not belong to any group, (2) no
feature belongs to more than one group, (3) each group is
used for partitioning at most one feature and, finally, (4)
members of each clone group must have the same type.

Vg : GeR ¢ members(g) (1
V91,92 1 Geg1 # g2 =

members(g1) N members(go) = () @

Vi, fa: Fefi # fa = 3)
members( f;) N members(fa) = 0

Vg : GeLy(g) = clone = @

Vf1, f2 € members(g)etype(fi) = type(f2)

Now that we have defined what a feature diagram is, we
can define the standard parent-child relationship between
features.

Definition 4.2. Given a feature tree T =
(R, L1, Lo, groups, members),  two  features are in
the parent-child relation if the parent feature owns a group
of which the child is a member. This relation is captured by
the following equation:

child(p,c: F) =
(3g : Geg € groups(p) A ¢ € members(g))

This parent-child relation, and the structure imposed by
the definitions of groups and members, enforces a tree
structure only on the features that are reachable from the
root, and we have formally proven this fact in our PVS
theory. (In practice, the tree will not even contain infinite
paths.) By not forcing all features to be part of a single tree
we can track and reason about features that are not used
since, due to the selection mechanism, features not reach-
able from the root cannot be selected. An addition bonus is
that one is not forced to change the feature domain when-
ever the model is modified.

Definition 4.3. Given a feature tree T =
(R, LT, Lo, groups, members), the restriction func-
tion of type select : select,a : A is a conjunct of the
following conditions:

o the root of T must be selected: select(R)
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e whenever a feature f is selected, there must be a path
of selected features from the root to f:

Vf: Feselect(f) =
(3f1,.--, fne
(fl :R)/\(fn:f)
A (Vi€ [1...(n— 1)]echild(f;, fi + 1))
A (Vi € [1...n]eselect(f;)))

e for each group, if its owner is selected, its cardinalities
must be satisfied:

Vp: F;g: Geselect(p) A g € groups(p) =
[{f : Fefcmembers(g) A select(f)}| € Lo(g)
(5)

We will denote the function taking a feature and return-
ing its restriction function as restriction:

restriction : TREE — (select x A — B)
4.2 Meta-model Properties

Next we present an example of a lemma that relates
the concept of a mandatory feature to the cardinality no-
tation [CEOO]. By realizing feature relations of “classical”
feature models like FODA in our formalism we can “sanity
check” our model against the many earlier formalizations
of the same constructs. Providing such “native” lemmas
and formalisms also provides a natural target for a direct
translation of classical feature diagrams into our theory.

The Mandatory Lemma. [f a group g has exactly the ad-
missible cardinality 1, and contains exactly one member m,
then in any valid configuration that selects the owner of that
group, m is selected as well. I.e., m is a mandatory feature.

Vft: TREE,g:G;m : Fe
(ft.Lc(g) = {1} A ft.members(g) = {m}) =
(Vs : select,a : Ae
(restriction(ft)(s,a)
A (3p : Fes(p) A g € ft.groups(p))) =

s(m))

Proof sketch. This lemma follows from Definition 4.3’s
equation 5, imposed by the restriction function. Since the
admissible cardinality of the group g, Lc(g), is exactly 1,
and m is the only member of g, m has to be selected when-
ever the owner of g is selected. We have formalized and
proven an analogous lemma for the alternative feature in
our theory. O

Our meta-model of feature modeling approaches is de-
signed such that it is easily refined and extended. For ex-
ample, we might require that all the selected members of
a clone group are unique via their attribute values. Any
other constraints are then simply expressed as additional
conjuncts.

4.3 Model Transformation

Our formalization enables us to reason about the oper-
ations on feature models, as illustrated by the following
lemma. (Recall that a specialization of a feature model was
defined in Section 3.)

The Cardinality Specialization Lemma. Whenever a new
feature tree fty is obtained from an existing feature tree
ft1 by removing some admissible cardinalities of a certain
group g, the feature tree fts is a specialization of the origi-
nal tree fty. This fact is formalized in the following formula
relating two feature trees that differ from one another only
in their cardinality function:

Vfti, fta : TREE, g: G, Lo : G — P(N)e
fto = (ft1.R, ft1.L7, Lo, ft1.groups, ft;. members)
Le(g) € ftiLe(gn
(VI:Ge(l #£ g) = fta.Lo(l) = ft1.Lc(1))) =

specialization?(restriction(fta), restriction(fty))

Proof sketch. We must show that any configuration admis-
sible by fts is also admissible for ft;. Since the two trees
differ only in the set of admissible cardinalities for the group
g, only requirement 5 is different in the resulting restriction
functions. Let us introduce the following shorthand,

Sy = |{f : F e fcmembers(g) A select(f)}]

then the proof hinges on the following implication,
Sg S ftg.[,c(g) = Sg S ftl.[:c(g)

which follows immediately from the precondition that re-
quires ft2.Lc(g) € ft1.Lo(g)- O

Additionally, in this context we are able to formalize
the individual steps of transformations as functions from a
more general restriction function to the specialized restric-
tion function. As an example, the following definition intro-
duces the function assign-value, which takes a restriction
function r and returns its specialization that requires that a
given attribute atr has a given value v. In the following, the
type of val requires that the attribute value corresponds to
the type of the attribute.

assign-value(r : restr, f : F,atr : type(f).ids;
val : {v: AV e typing(v) = type(f).att(atr)}) =
As @ select, aa : Aer(s,aa) A (aa(f)(atr) = val)



Properties of such transformations can be investigated as
illustrated by the following formula:

Vr :restr; f : Fatr : type(f).ids;
val : {v: AV e typing(v) = type(f).att(atr)} o

specialized?(assign-value(r, f, atr,val),r)

This expressivity provides us with a means of deriving
more complicated feature models from simpler ones by spe-
cialization composition. By starting from a feature tree,
then translating it to a restriction function through the use
of the function restriction, and then applying specializa-
tions on that function, we obtain the desired model. This is
schematically illustrated by:

fm = spec,, (. . . (spec, (restriction(ft))) .. .)

We are particularly intrigued by the simplicity and rich-
ness of this specialization-based (function type subtyping)
approach to model refinement.

4.4 Feature Models with Cloning

In Czarnecki et al.’s paper on staged configuration a con-
crete feature tree of an operating system security profile is
used as an example [CBUEO2]. Due to space issues, we il-
lustrate here only the topmost nodes of the tree as realized
in our formal model.

securityProfile

passwordPolicy

permissionSet(String)

Figure 1. The topmost nodes of the feature
tree example from Czarnecki et al. [CHEO04b].

A graphical representation of this example feature tree is
depicted in Figure 1.

This feature tree is graphically depicted using our for-
malism in Figure 2. In this diagram style we continue to use
ovals to represent features and introduce the use of rectan-
gles to represent groups. A normal feature group is a plain
rectangle, (the passwordPolicyGroup with a cardinality of
1), and cloned feature groups as a stack of rectangles (see
Figure 3). Note that we are not introducing a new feature
modeling graphical notation, we are only depicting our for-
mal model graphically for the benefit of the reader.

securityProfile

card: {1} [&
passwordPolicy permissionSet
Group Group

( passwordPolicy ’ (  permissionSet(String) )

Figure 2. Our representation of the feature
tree from Figure 1.

ard: N

On this example we can illustrate the advantage of using
a full HOL description. This model has an unbounded num-
ber of configurations as the number of possible assignments
is infinite and the permissionSet feature can be cloned ad
libitum. Thus, to investigate properties, one cannot directly
employ a model checker, for example. One such property is
illustrated by the following lemma.

Lemma 4.4. The passwordPolicy feature will be included
in every valid configuration of the the security profile tree.
This fact is stated as a formula quantified over all feature
configurations. Please recall that the function restriction
returns a restriction function for a given feature tree. Let
security-tree be the tree depicted in Figure 1.

Vs : select; aa : Ae

restriction(security-tree)(s, aa) = s(passwordPolicy)

Proof sketch. This lemma immediately follows from the
fact that the root (the securityProfile feature) has to be se-
lected in every valid configuration, and from the mandatory
lemma (see Section 4.2). O

To show that a this model is consistent, we must pro-
vide a configuration and prove that it is valid. In the PVS
theory we defined a configuration by selecting the fea-
tures securityProfile, passwordPolicy, permissionSet,,
and permissionSet,, where the clones permissionSet,,
permissionSet; were assigned arbitrary names. Subse-
quently we have proven that this configuration is valid.

4.5 Feature Models with Attributes

As our formalized feature meta-model supports at-
tributes, an example including the use of attributes is war-
ranted. This example, focusing on a satellite software



case study, is a slightly modified version of an exam-
ple from Czarnecki et al.’s paper on generative program-
ming [CBUEO2].

Satellite

card: {1} card: {0, 1} card: N
PacketRouterApp StorageControlApp UserDefinedApp
Group Group Group

CS(orageContro\App) CUserDefinedApp )
C PacketRouterApp ) CCircuilSwitchedApp )

Figure 3. A fragment of the satellite feature
model from Czarnecki et al. [CBUEO02].

In this example, a fragment of which is summarized in
Figure 3, the interface to a satellite system consists of a sin-
gle mandatory packet router application, an optional stor-
age control application, and a number of applications. Be-
cause the hardware resources of a satellite are fixed and pre-
cious, we must ensure that any given configuration will fit
within those resource bounds. For example, we must ensure
that all selected applications will fit in the main memory of
the satellite. Such a constraint is easily expressed with at-
tributes.

Satellite UserDefinedApp

APID: Int
MaxStorageFieldSize: Int

MaxUserMainMemory: Int

Figure 4. Exploded representation of the fea-
tures Satellite and UserDefinedApp from Fig-
ure 3.

The feature UserDefinedApp has an attribute
MaxStorageFieldSize of type integer. ~ We interpret
this attribute to mean the maximum amount of main
memory that the given feature can demand of the satel-
lite’s software system. Additionally, the feature Satellite
contains the related field MaxUserMainMemory, which
indicates a satellite’s (fixed, finite) main memory size avail-
able for user-defined applications. Both of these attributes
are summarized in the “exploded” feature representations
in Figure 4.

To formally capture the aforementioned memory con-
straint, we specify the following restriction function. Let

satellite-tree be the tree depicted in Figure 3.

As : select;aa : Ae
restriction(satellite-tree) A
dn : N, sel : P(F)e

sel = {f : Fes(f)
A f € members(UserDefined AppGroup) }
Alsel| <n

A (Z aa(c)(MaxStorageFieldSize)

cesel

< aa(Satellite) (MaxUserMainMemory)>

This constraint defines a new restriction function via spe-
cialization. The new restriction function specializes the
existing restriction function obtained from the diagram by
adding the desired constraint as an additional conjunct. The
constraint states that the set of the selected clones is finite,
and that the sum over the MaxStorageFieldSize attribute of
the selected clones is less than the MaxUserMainMemory
attribute of the Satellite feature. We have verified valid
and invalid configurations against this specialized restric-
tion function in PVS.

This example illustrates the need for two kinds
of groups—clone groups and feature groups. To be
able to state this example constraint, we need all the
members of the UserDefinedApp to have the attribute
MaxStorageFieldSize. In other words, we need for all the
members of the UserDefined App group to have the same
type. On the other hand, the PacketRouterApp group,
which is a group of alternative features, contains features
that are potentially of different type.

The example also suggests how constraints of this kind
could be expressed more succinctly. In particular, the intro-
duction of auxiliary functions and constraints for frequently
used constructs would be beneficial. It is natural to require
that a configuration contains a finite set of features, thus,
this constraint should be part of the panoply of the prede-
fined specializations. Another example of a frequently used
construct is a function that returns the set of selected fea-
tures in a given group or a set.

5 Conclusion

Using a HOL formalization of a feature modeling meta-
model, many new avenues of investigation are now avail-
able. And, while having a mechanical formalization ensures
certain meta-theoretical properties about the research (e.g.,
soundness of the theory, correctness of model refinements
and transformations, etc.), there are tradeoffs in demanding
this level of rigor. We will first discuss related work that has



both influenced this meta-model and that we can model in
our theory. Then we discuss the pros and cons of our ap-
proach. Finally, we reflect on some potential next research
steps.

6 Related Work

Propositional formulas were introduced into the SPL do-
main by Mannion [Man02]. The principal idea is that vari-
ability and commonality, defined by a feature diagram, are
translated into a propositional formula where the atoms rep-
resent features and the formula is valid if and only if a given
configuration is admissible.

This idea has been extensively addressed by Batory as
well [BatO5]. In this work a connection is defined between
feature diagrams, grammars, and propositional formulas.
Czarnecki et al. also introduced the use of context-free
grammars as a semantics for their feature model [CHEO4b,
CHEO4a].

Neither of these approaches, propositional formulas or
grammars, work well with all models. A semantics given
as a propositional formula is not well suited for a meta-
model that enables cloning of features, especially in the
work of Czarnecki et al. where a feature can be cloned ad
libitum. Whereas the grammar-based approaches elegantly
model feature cloning, and the structure of the translated
diagram is well reflected by the grammar, the full use of
cross-cutting dependencies, such as excludes and requires,
is difficult to capture. Most importantly, however, it is not
clear how dependencies between attributes should be mod-
eled.

Czarnecki and Kim describe the use of OCL in the con-
text of a feature model to express constraints that are not
expressible by the diagram, the so called additional con-
straints [CK05]. Their formalism allows at most one at-
tribute per feature and the type of an attribute is either a
primitive type or a reference to another feature. In this con-
text, the feature diagram is translated to UML. In the UML
diagram, entities correspond to features and a multiplicity at
the aggregate end of every composition is 1, while the mul-
tiplicity at the other end is the same as the corresponding
cardinality in the feature diagram.

Kim and Czarnecki also addressed the issue of evolution
of a feature model in the context of specialization [KCO5].
L.e., when a feature model is configured via specialization,
and later that feature model evolves, the changes made by
the evolution are reflected by the specialized models. The
article describes how to cope with a set of evolution changes
and specializations. The authors applied the QVT relation
language to express the relations between specializations of
the original and evolved models.

Benavides et al. apply the techniques of constraint pro-
gramming to feature models [BTRCO0S5]. The authors extend

the feature meta-model with the capability of out-fitting fea-
tures with attributes and define constraints between these
attributes, where the form of constraints is inspired by the
work of Streitferdt et al. [SRPO3]. The authors provide a
translation of the feature model constraints to a constraint
programming problem. This translation enables the use a
constraint solver for analyzing a given configuration.

This work demonstrates the benefits of translating the
constraints between features into a format understood by a
reasoning engine. Moreover, the use of constraint program-
ming in the SPL domain appears to be quite promising. The
article, however, does not provide the full account of the
constraint language used.

Schobbens et al. introduce a generic formalisation of
feature models based on the FODA notation[SHTO06]. Their
meta-model is parameterized by two concepts: a graph type,
which can be either a DAG or a tree; and node types, which
are sets of boolean functions (e.g., a set of and; for every
arity s € N* forms a node type). Cross-graph constraints
are either expressed as graphical constraints or by using a
textual constraints language. In the context of this parame-
terization, the concept of a feature diagram is defined. Sub-
sequently, the authors define the concepts of a model and
a valid model of a feature diagram. A model of a feature
diagram is a subset of its nodes, representing the selected
features, and a valid model is such a model that satisfies all
the constraints imposed by the diagram. Additionally, the
authors examine the expressiveness of their meta-models.

A formalisation of a feature modeling approach using the
Z language has also been defined by Sun et al. [SZLWO5].
The authors formalize the ODM notation which is a vari-
ant of the original FODA notation. The formalisation is
realized as a set of relations, each of which defines a dif-
ferent type of the parent-feature relationships (e.g., alter-
native, mandatory, etc.). A number of theorems about the
meta-model are proven to verify certain desired properties
of the definitions. For example, one of these theorems states
that if a feature is selected, and its children are alternative,
then exactly one of its children is selected. Furthermore, the
authors realize the formalization in the Alloy tool in a sub-
set of the Z language to automatically reason about feature
models.

6.1 Limitations and Strengths

Using a HOL theorem prover is often a double-edged
sword. We can express dependencies of arbitrary complex-
ity, as illustrated by the satellite example in Section 4.5.
Thus, it is not necessary to introduce new constructs or no-
tations, since the PVS system provides tool support, lan-
guage, and its semantics. Reasoning at the meta-model
level, i.e., statements of the form “for all models ...”, is very
difficult or impossible to accomplish in a tool with weaker



expressivity (e.g., a tool without higher-order features).

On the other hand, the proofs regarding concrete feature
models are unnecessarily tedious. We believe that one of the
reasons for this is that the defined feature model imposes too
few implicit restrictions. For example, it is possible in our
meta-model to have configurations with an infinite number
of selected features, or a tree can contain infinite paths. Ad-
ditionally, as discussed below, we are not using any domain-
specific strategies in PVS, thus we are only currently using
the “raw” PVS language and proof system with few auxil-
iary constructs. It is not clear how much these restrictions
and constructs will make the reasoning easier.

A scenario we are considering, discussed in more detail
in the sequel, is the use a feature modeling tool to describe
the desired diagram, automatically produce the PVS repre-
sentation of the diagram along with the rudimentary proofs,
and utilize PVS for dependencies not expressible by a fea-
ture diagram. For example, if a feature is selected, a proof
has to be given that there is a path to the root of selected
features, and constructing such a proof is easily automated.

6.2 Future Work

To support within the Mobius PVE the main metaphor
that feature-oriented programmers are used to, we hope to
either adopt an existing feature diagramming component,
or if necessary, develop our own using GEF. A natural next
step is generating GEF, and compiling GEF to PVS theories,
a standard syntax for feature graphs. If one does not yet ex-
ist, we believe that Graphviz’s dot file format is a good can-
didate given its simplicity, its focus on annotated directed
graphs, and its quality tool support.

Once we have a given feature model and proposed se-
lection in PVS, we can check its consistency and satisfiabil-
ity, as we have shown in this paper. Of course, given that
PVS is an interactive theorem prover, such a check, espe-
cially when arbitrary constraints on features and attributes
are specified, is sometimes a laborious process. In the past
we have used several solutions to automate these kinds of
standard operations.

First, we can write domain-specific PVS strategies. For
a theory as simple as the one presented here, this should be
straightforward enough. And, while writing flexible strate-
gies that are robust in the face of theory evolution is a fine
art, we have sufficient experience in PVS to accomplish
such. Another solution for automation is relying upon a
model checker or an SMT solver, both of which are inte-
grated with PVS 4 and the Mobius PVE. By mapping our
theory to a model within PVS (in the case of using the
model checker), or by relying upon only first-order terms
(in the latter case of using an SMT solver), then PVS solves
problems like the feature model configuration check auto-
matically and efficiently.

Finally, there are many open questions about feature
models that we would like to investigate now that we have
a HOL formalization. For example, might feature (meta-
)models be more naturally formalized using records and
structural subtyping? What other kinds of interesting refine-
ments are there? Should we formalize and rigorously com-
pare other proposed feature models? Does a feature model
with some notion of multiple-inheritance make sense?

The full PVS formalization of our theory of feature meta-
models, all the discussed examples (and others for which we
had no room to discuss), and all proofs is available via our
research group’s homepage.
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