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Abstract. If we model a family of software applications with a feature
model and an architecture model, we are describing the same subject
from different perspectives. Hence, we are running the risk of inconsisten-
cies. For instance, the feature model might allow feature configurations
that are not realizable by the architecture.
In this paper we tackle this problem by providing a formalization of de-
pendencies between features and components. Further, we demonstrate
that this formalization offers a better understanding of the modeled con-
cepts. Moreover, we propose automated techniques that derive additional
information and provide feedback to the user. Finally, we discuss how
some of these techniques can be implemented.

1 Introduction

Many companies providing software-intensive systems have to deal with the chal-
lenge to fulfill the expectation of each individual customer and, at the same time,
to perform the necessary engineering processes in an efficient manner.
One way to approach this challenge is by focusing on building a whole set of

similar systems in a systematic way. This phenomenon shaped a field known as
software product lines (SPL) [6]. A software product line is “a set of software-
intensive systems that share a common, managed set of features satisfying the
specific needs of a particular market segment [..] and that are developed from
a common set of core assets in a prescribed way” [21]. SPL approaches use
miscellaneous models to describe the various aspects of a product-line. This
includes feature models [13,8] or architecture models containing the components
that implement the features. We will now use very simple examples of such
models to illustrate the motivation for our research presented in this paper.
Imagine a product-line of mobile phones that has only two features which

distinguish the various products: the capability to play MP3 files, and a built-in
camera. Fig. 1 shows the corresponding models. In SPL engineering such models
are created by the domain engineer in order to describe the scope of the whole
product-line. Further, these models are given to the application engineer to be
used during the configuration and derivation of a concrete product.
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Fig. 1. Feature model and component model of a mobile phone product-line

The feature model in Fig. 1 does not capture any dependencies between
the features MP3 and Camera. Nevertheless, the feature MP3 is realized by
MP3Component, the feature Camera is realized by CameraComponent, and there
is a mutual exclusion between the two components. This means that the feature
model permits a combination of features that is not realizable with respect to the
component model. In other words, there is an implicit dependency (exclusion)
between the two features.
This poses a problem, as during the feature configuration the application

engineer often deals solely with the feature model since it is simply too time-
consuming to walk through subsequent implementation steps (to check each
possible feature configuration for its realizability). In this small example the
chain of dependencies is easy to spot. In real SPL projects with their complex
models and large number of dependencies these implicit dependencies pose a big
problem. Hence, it is desirable to enhance the feature model in Fig. 1 with the
mutual exclusion between the features MP3 and Camera.
In this article we are focusing on how to find such implicit (missing) depen-

dencies. The feature model enhanced with the missing dependencies will provide
a better guidance to the application engineering during the configuration process
as the additional dependencies disallow void configurations. We are offering a
means of finding these implicit dependencies by providing a semantics for the
involved models and analyses of this semantics.
The remainder of this text is structured as follows. First we provide a back-

ground on basic concepts (Sect. 2). We then give an overview of our approach
(Sect. 3) and explain it for the general case (Sect. 4). We discuss how the re-
lation “realized by” can be interpreted (Sect. 5) and specialize the general case
for propositional logic (Sect. 6). This includes the automatic calculation of the
defined properties, which has been implemented in a prototype (Sect. 6.1). We
conclude with an overview of related work (Sect. 7), a short summary, and an
outlook on potential topics for future work (Sect. 8).

2 Background

Kang et al. define a feature as “a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or system” [13]. In the literature
there are numerous suggestions for feature modeling languages, e.g., in [13,7].



Defining the semantics of a modeling language in a mathematical form is
preferred, because it rules out ambiguity. For instance, for the feature model in
Fig. 1 we demand that a feature cannot be selected without its parent, and, that
the root is always selected. This is expressed by the following formulas.

root must be selected:
Phone

children require parent:
MP3 ⇒ Phone
Camera ⇒ Phone

Other primitives of feature modeling languages are mapped to their formal
representation in a similar fashion. For instance, the missing exclusion would be
expressed as ¬(MP3∧Camera).
Such mappings from models to formal descriptions are used as a founda-

tion for (automated) reasoning. This area has been addressed by a number of
researchers [16,2,19], including our own work on formalizing feature models in
higher-order logic [12].
Feature models are not the only way to describe the capabilities of a product

line. For instance, a domain architecture takes a more solution-oriented perspec-
tive and describes potential implementation structures. This includes variable
elements that can be configured and, hence, enables the derivation of different
product-specific architectures from the domain architecture. In this paper we will
focus on the components contained in such an architecture and abstract from
other details. We will use a component model to capture constraints for the whole
product line and component configurations to describe the components selected
for one particular product.
Analogously to the feature model, the component model is interpreted by

mapping it to a formal representation. For instance, the mutual exclusion in the
example component model in Fig. 1 is interpreted as

¬(MP3Component∧CameraComponent)

All these mappings depend on the interpretation of the particular feature
or component modeling language and the type of logic used as a formal rep-
resentation. It should be mentioned that the approach presented in this paper
is designed to be independent of particular meta-models and independent of a
specific forms of logic (e.g., propositional logic or first order logic).

3 Overview of Our Approach

We will now start to conceptualize our approach by defining four interrelated
models. We identified two major aspects that we want to concentrate on, features
and components. These can be modeled on two levels, resembling the distinction
between product line and products.
A feature model (see in Fig. 2) describes the capabilities of the product

line and defines the constraints for potential products. A feature configuration
describes the features selected for one particular product. It no longer contains
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Fig. 2. Two aspects (features, components) on two levels (model, configuration)

variability since all configuration decisions have been made. It can be checked
for conformity with the feature model.
Analogously a component model describes the elements used in the im-

plementation of the products. A component configuration describes which
components have been selected for a particular product.
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Fig. 3. Overview of our approach

We proceed by describing an overview of our approach (see Fig. 3): The
domain engineer starts by creating models of features and the related compo-
nents . By applying a semantic interpretation these models are transformed
into formal representations .
This formal representation is then used to derive additional information

which then is further analyzed . The resulting information is used to provide
feedback to the domain engineer.
In the end, this additional information should be used to enhance the feature

model to provide guidance to the application engineer during the configuration
process. More specifically, the contributions of our article are as follows: (1) We
provide a formalization that integrates features, components, and the dependen-
cies between them. This formalization is independent of particular feature or
architecture modeling languages. (2) We specialize the formalization for models
that are expressible in propositional logic. (3) This enables the implementation of
automatic reasoning techniques to derive additional constraints from the models.
(4) Consequently, we are able to cut down the configuration space and provide
the desired guidance to the software engineer.



4 Feature-Component Models: General Case

Feature models appear in a variety of forms. They can have attributes, cardi-
nalities and various types of constraints. For the following discussion, we will
abstract from these different representations and instead directly operate on the
actual semantics. Hence, we will treat a model as an oracle which, given a par-
ticular configuration, answers ‘yes’ or ‘no’ to indicate whether that configuration
conforms to the model or not.

4.1 Definitions of the Basic Concepts

When modeling a particular product line, we assume that we are given a set
of feature configurations, denoted as F, and a set of component configurations,
denoted as C.
In this text, we will represent constraints on configurations as sets. A given

configuration satisfies a given constraint if and only if this configuration is an
element of the set representing that constraint. Taking this approach, the fol-
lowing definitions establish the building blocks for the rest of this article. We
begin by defining entities that capture constraints on features and components.

Definition 1 (feature and component models).

1. a feature modelMf is a set of feature configurations:Mf ⊆ F
2. a feature configuration f ∈ F conforms to the feature model Mf if and only
if f ∈Mf

3. a component modelMc is a set of component configurations:Mc ⊆ C
4. a component configuration c ∈ C conforms to the component model Mc if
and only if c ∈Mc

Building on the preceding definition, we define concepts for capturing con-
straints on features and components together.

Definition 2 (feature-component model).

1. a feature-component configuration 〈f , c〉 is a pair consisting of a feature
configuration and a component configuration: 〈f , c〉 ∈ F× C

2. a feature-component modelMfc is a set of feature-component configurations:
Mfc ⊆ F× C

3. a feature-component configuration 〈f , c〉 ∈ F × C conforms to the feature-
component modelMfc if and only if 〈f , c〉 ∈ Mfc

The following two examples illustrate the concepts introduced by Defs. 1 and 2.

Example 1. Let us consider a case with two features, f1 and f2, and two com-
ponents, c1 and c2. We will represent a configuration as a set of the features or
components that are selected — a feature or component not in the set is unse-
lected. Hence, feature configurations will correspond to the subsets of {f1, f2};
similarly, the component configurations will correspond to the subsets of {c1, c2}.



To express this in a mathematical notation, we utilize the concept of a powerset,
denoted P(·), as follows: F ≡ P({f1, f2}) and C ≡ P({c1, c2}). The feature model
Mf requires that at least one feature is selected and component modelMc states
that whenever c1 is selected, c2 must be selected, expressed as follows.

Mf ≡ F r {∅} = {{f1}, {f2}, {f1, f2}}
Mc ≡ {c ∈ C | c1 ∈ c ⇒ c2 ∈ c} = {∅, {c2}, {c1, c2}}

We introduce an auxiliary relation R to impose additional constraints on the
combinations of feature and component configurations:

f R c ⇔ ((f1 ∈ f ⇒ c1 ∈ c) ∧ (f2 ∈ f ⇒ c2 ∈ c))

(Note that the relation R states that f1 requires c1 and f2 requires c2.)
To obtain the overall feature-component model Mfc we combine all these

constraints together:Mfc ≡ (Mf ×Mc) ∩R.
In plain language, a feature-component configuration conforms toMfc if and

only if its feature part conforms to Mf , its component part conforms to Mc,
and the whole pair belongs to the relation R.
For this feature-component model, 〈∅, {c1}〉 and 〈{f2}, {c1}〉 are examples

of non-conforming configurations, whereas 〈{f1}, {c1, c2}〉 is a conforming con-
figuration.

Example 2. Let the set of feature configurations F where each configuration is a
pair consisting of the set of selected features and a natural number representing
an attribute of the feature f1: F ≡ P({f1, f2})×N. Let the feature model disallow
selecting the feature f2 when f1 is selected with the value less than 100:

Mf ≡ {〈sel, attr1〉 ∈ F | (f1 ∈ sel∧ attr1 < 100) ⇒ f2 /∈ sel}

Let C ≡ P({c1, c2}) and Mc ≡ C, i.e., Mc is imposing no restrictions on the
component configurations. To express how features relate to components, we
define the following three relations:

(〈sel, attr1〉R1 c) ⇔ (f1 ∈ sel∧ attr1 < 500 ⇒ c1 ∈ c)
(〈sel, attr1〉R2 c) ⇔ (f1 ∈ sel∧ attr1 ≮ 500 ⇒ c1 ∈ c ∧ c2 ∈ c)
(〈sel, attr1〉R3 c) ⇔ (f2 ∈ sel ⇒ c2 ∈ c)

The relation R1 expresses that if the feature f1 is selected and the value of
its attribute is less than 500, then the component c1 is required. The relation
R2, however, requires the component c2 must be selected on top of c1 once the
attribute’s value is not less than 500. The relation R3 records that the feature f2

requires the component c2. Let relation R be the intersection of these relations
R ≡ R1 ∩R2 ∩R3, then all the constraints combined areMfc ≡ (Mf×Mc)∩R.

4.2 From Overall Constraints to Feature Models

In the introduction we have promised that we will investigate how overall con-
straints, constraints on a composite feature-component model, are projected back
onto the features. The following definition formalizes the meaning of this pro-
jection.



Definition 3 (induced feature model). For a feature-component modelMfc,
the induced feature model IMfc ⊆ F is a set of feature configurations for which
there exists a component configuration such that together they conform to the
feature-component model:

IMfc ≡ {f ∈ F | (∃c ∈ C) 〈f , c〉 ∈ Mfc}

Intuitively, for any feature configuration conforming to the induced feature
model, we are guaranteed that there is an implementation of this feature config-
uration (with respect to the pertaining feature-component model). On the other
hand, if the induced feature model is not equal to the feature model given by the
user, it means that the feature model permits a feature configuration without
implementation and thus should be improved. This is illustrated by the following
example.

Example 3. Let F ≡ P({f1, f2}), C ≡ P({c1, c2}), and the feature-component
modelMfc defined as follows.

Mf ≡ F Mc ≡ C r {c1, c2}
f R c ⇔ ((f1 ∈ f ⇒ c1 ∈ c) ∧ (f2 ∈ f ⇒ c2 ∈ c))
Mfc ≡ (Mf ×Mc) ∩R

We see that f1 and f2 require c1 and c2, respectively, and that c1 and c2 are
mutually excluded. Therefore, there is no implementation for the feature config-
uration {f1, f2}, even though it is permitted by the feature modelMf . In other
words, the induced feature model forMfc is (F r {f1, f2}).

4.3 Configurations with Preference

In this section we consider that the software engineer prefers some configurations
over other configurations. To motivate further discussion let us look at some of
the configurations for Example 1. The configuration 〈{f1}, {c1, c2}〉 conforms to
Mfc, but we are not getting the best out of the included components as the fea-
ture f2 could be added with no further consequences (no additional component
is required). However, it is not possible to remove any of the components while
keeping the feature f1. Dually, the configuration 〈{f2}, {c1, c2}〉 uses more com-
ponents than necessary, i.e., c1 can be removed while keeping the same features.
So we can say that we prefer configurations with more features and with less
components.
To record this formally, we assume that we are given two partial orderings,

one on feature configurations, denoted as vf , and one on component configura-
tions, denoted as vc. Intuitively, vf corresponds to the increase of capabilities
expressed by the features; whereas vc corresponds to the weight, or price, or-
dering on component configurations and we will prefer cheaper solutions to the
expensive ones. To reflect the discussion above, for Example 1 we define the
orderings as vf≡⊆ and vc≡⊆. For Example 2, we can, for instance, define the
orderings in the same fashion by ignoring the feature attribute as follows.



(
〈sel, attr1〉 vf

〈
sel′, attr1′

〉)
⇔

(
sel ⊆ sel′

)
(c vc c′) ⇔ (c ⊆ c′)

The following definition utilizes these orderings to characterize feature-
component configurations.

Definition 4 (strong conformity). For a feature-component model Mfc. A
configuration 〈f , c〉 strongly conforms to Mfc if and only if 〈f , c〉 ∈ Mfc and
the following holds.

(∀ 〈f ′, c′〉 ∈ Mfc)((f vf f ′ ∧ c′ vc c) ⇒ (f = f ′ ∧ c = c′))

Intuitively, we cannot add features to a strong conforming configuration with-
out adding components, or, remove components without reducing the features.
In Example 1, the configuration 〈{f2}, {c2}〉 strongly conforms toMfc. Whereas,
the configuration 〈{f1}, {c1, c2}〉 does not strongly conform toMfc because we
can add the feature f2 (the required component c2 is already in place). Nev-
ertheless, the cost of the configuration cannot be improved while keeping the
feature f1 as this feature requires both components.

5 Semantics of “realized by”

As we have seen in the preceding examples, it is natural to express feature-
component models in the form (Mf ×Mc) ∩ R. The user specifies the feature
modelMf in a feature modeling language andMc in an architecture modeling
language that supports variability. Both types of languages have been widely
studied from various angles and tool support exists. Little work, however, has
been done to study the glue between the two representations, the relation R in
our formalism.
We would like to enable the domain engineer to express herself at a higher

level of abstraction — using concepts as “The feature f is realized by the com-
ponent c.” First, we need to define a language concept for expressing such facts
and second, provide semantics for it in a mathematical form.
It might seem, at first glance, that it is sufficient to have a single mapping

from each feature to the component that realizes that feature. In practice, how-
ever, we need to cope with more complex scenarios. For instance, when a feature
can be implemented by different components, or, when a feature requires mul-
tiple components. Dually, a combination of features as a whole might impose
different requirements in contrast to the combination of the requirements im-
posed by each of them. Hence, we introduce a language construct that maps sets
of feature configurations to sets of component configurations.

Definition 5. Let Sf ⊆ F and Sc ⊆ C, then realized-by(Sf ,Sc) is
a realized-by expression. If a realized-by expression is in the form
realized-by({f ∈ F | fr ∈ f} ,Sc) then we say that the feature fr is realized
by Sc.



Example 4. Let F ≡ P({f1, f2}) and C ≡ P({c1, c2, c3})

realized-by({f ∈ F | f2 ∈ f} , {c ∈ C | c1 ∈ c ∨ c2 ∈ c})
realized-by({f ∈ F | {f1, f2} ⊆ f} , {c ∈ C | {c1, c2} ⊆ c})

Intuitively, each realized-by expression imposes a restriction on the feature-
component configurations. The first one in Example 4 specifies that either of
c1 or c2 is an implementation of f2; the second expression specifies that the
combination c1 and c2 is an implementation of the combination f1 and f2.

Before we proceed with the semantics of the realized-by expressions, we will put
them in the context of feature and component models.

Definition 6. A product line model is a triple 〈Mf ,Mc, Q〉, where Mf is a
feature model, Mc is a component model, and Q is a set of realized-by expres-
sions.

To formally analyze this model, we have to define our interpretation of it
(see in Fig. 2). For this, we present three alternatives:

1. Interpretation with ⇒
2. Interpretation with ⇔
3. Interpretation with ⇒ and strong-conformity (see Def. 4)

Definition 7. Semantics of product line models is a function that maps a soft-
ware product line model to a feature-component model. We will use the notation
J·K for a function of the type 〈Mf ,Mc, Q〉 → P(F× C).

1. Interpretation with ⇒. Let the relation R ⊆ F× C be defined as follows

f R c ⇔
∧

realized-by(Sf ,Sc)∈Q

f ∈ Sf ⇒ c ∈ Sc

Then J〈Mf ,Mc, Q〉K1 ≡ (Mf ×Mc) ∩ R. In other words, the inclusion of
features implies the inclusion of related components — but not necessarily
the other way around.

2. Interpretation with ⇔. Let the relation R ⊆ F× C be defined as follows

f R c ⇔
∧

realized-by(Sf ,Sc)∈Q

f ∈ Sf ⇔ c ∈ Sc

Then J〈Mf ,Mc, Q〉K2 ≡ (Mf ×Mc) ∩ R. In other words, the inclusion of
features implies the inclusion of related components — and vice versa.

3. Interpretation with ⇒ and strong conformity. Given the orderings vf and
vc. LetMfc = J〈Mf ,Mc, Q〉K1 then

J〈Mf ,Mc, Q〉K3 ≡
{〈f , c〉 ∈ F× C | 〈f , c〉 strongly conforms toMfc w.r.t. vf and vc }



In other words, we use the first interpretation and in addition require strong-
conformity. Hence, we reduce the feature-component models to those config-
urations that cannot be improved in their capability or cost.

The following examples will illustrate the different semantics on two product
line models, PLMa and PLMb, with F ≡ P({f1, f2}), C ≡ P({c1, c2}), and the
orderings vf≡⊆ and vc≡⊆.
Example 5. Let PLMa ≡ 〈Mf ,Mc, Q〉 be a product line model where:

Mf ≡ F Mc ≡ {c ∈ C | c1 ∈ c ⇒ c2 ∈ c}
Q ≡ { realized-by({f ∈ F | f1 ∈ f} , {c ∈ C | c1 ∈ c}),

realized-by({f ∈ F | f2 ∈ f} , {c ∈ C | c2 ∈ c}) }
According to Def. 7, the semantics J·K1 and J·K2 of PLMa correspond to the

following feature-component models.

〈f , c〉 ∈ JPLMaK1 ⇔
f1 ∈ f ⇒ c1 ∈ c ∧
f2 ∈ f ⇒ c2 ∈ c ∧
c1 ∈ c ⇒ c2 ∈ c

〈f , c〉 ∈ JPLMaK2 ⇔
f1 ∈ f ⇔ c1 ∈ c ∧
f2 ∈ f ⇔ c2 ∈ c ∧
c1 ∈ c ⇒ c2 ∈ c

To obtain the semantics JPLMaK3 we compute the strongly conforming configu-
rations of JPLMaK1, which are the following.

JPLMaK3 ≡ {〈∅, ∅〉 , 〈{f2}, {c2}〉 , 〈{f1, f2}, {c1, c2}〉}

Interestingly, the feature component models JPLMaK2 and JPLMaK3 are equal.
Intuitively, the reason for this is that once c2 is included in a configuration, there
is nothing that prevents f2 from being included.
If we look at the resulting models from the perspective of induced feature

models (see Def. 3), we see that the induced feature model for JPLMaK1 is im-
posing no restrictions on the features. Here the user might feel that there is some
information lost, since originally there was a dependency between the realizing
components but now there is no dependency between the features themselves.
For JPLMaK2 and JPLMaK3 the induced feature model is

{f ∈ F | f1 ∈ f ⇒ f2 ∈ f}, due to the bi-implication between the inclusion
of a feature and the inclusion of the implementing component.
Hence, for PLMa the semantics J·K2 and J·K3 return the same result and

they project dependencies between components to dependencies between fea-
tures. Whereas the semantics J·K1 does not project dependencies between the
components onto the features.
The next example, PLMb, strengthens the constraints of PLMa by adding an
exclusions between the two features.

Example 6. Let PLMb ≡ 〈Mf ,Mc, Q〉 be a product line model such that:
Mf ≡ {f ∈ P({f1, f2}) | ¬(f1 ∈ f ∧ f2 ∈ f)}
Mc ≡ {c ∈ P({c1, c2}) | c1 ∈ c ⇒ c2 ∈ c}
Q ≡ {realized-by({f ∈ F | f1 ∈ f} , {c ∈ C | c1 ∈ c}),

realized-by({f ∈ F | f2 ∈ f} , {c ∈ C | c2 ∈ c})}



The three semantics yield the following feature-component models (enumerated
as conforming feature-component configurations).

JPLMbK1 ≡ {〈∅, ∅〉 , 〈{f1}, {c1, c2}〉 , 〈{f2}, {c2}〉 , 〈{f2}, {c1, c2}〉}
JPLMbK3 ≡ {〈∅, ∅〉 , 〈{f1}, {c1, c2}〉 , 〈{f2}, {c2}〉}
JPLMbK2 ≡ {〈∅, ∅〉 , 〈{f2}, {c2}〉}

Now, let us compare these sets. The feature-component model given by J·K1 is
formed by exactly the combinations where the implementation provides sufficient
functionality for the selected features. The semantics J·K3 additionally ‘filters out’
the configuration 〈{f2}, {c1, c2}〉 as c1 is not needed for f2.
The semantics J·K2, however, yields a somewhat surprising feature-component

model. Due to the bi-implication between features and realizing components, f1

is not selectable since if we are to select f1, we need to select c1 which requires c2

but f2 cannot be selected due to the restriction imposed by the feature model. A
feature that does not appear in any product (is not selectable), is called a dead
feature and it is most likely an undesired property of the feature-component
model.
Hence, for PLMb, each of the semantics yields a different feature-component

model. Note, however, that JPLMbK1 and JPLMbK3 have the same induced fea-
ture model. The semantics J·K2 appears to be inappropriate for PLMb as the
feature f2 is dead under this semantics.
To conclude this section, a summary of the observations follows.

1. translate via implication, the relation between features and components is
somewhat “loose”: the features require their implementations but there is
no dependency in the other direction,

2. translate via bi-implication, the resulting model requires for the features to
be “on” whenever they are implemented; this dependency might bee too
strong in some cases,

3. translate via implication and strong-conformity, in that case a feature is
required to be “switched on” whenever it is possible to switch it on.

6 Feature-Component Models with Propositional Logic

In this section we specialize the concepts introduced so far for propositional logic.
We focus on features and components that can just be selected or deselected (in
contrast to having attributes) and hence, can be expressed as boolean variables.
Before we proceed, let us recall some basic concepts from propositional logic.

Let F be a boolean formula on the set of variables V , m ⊆ V , and let F ′ be
obtained from F by replacing every variable v ∈ m by true and every variable
v′ /∈ m by false, then m is a model of F if and only if F ′ evaluates to true. For
the evaluation we assume the standard semantics of boolean connectives, such
as true∧ false evaluates to false.
For the following we assume F to be a finite set of features and C a finite

set of components such that F ∩ C = ∅. The domain of feature configurations



then becomes F ≡ P(F) and the domain of component configurations becomes
C ≡ P(C). We will say that a feature or component is selected by a configuration
if and only if it is in that configuration. We will use the subset relation to define
the orderings on configurations, i.e., vf≡⊆ and vc≡⊆.
Feature and component models will be represented as boolean formulas on

the variables F and C, respectively; the feature-component models will be repre-
sented as formulas on the variables F ∪C (recall that F and C are disjoint). The
conforming configurations will correspond to models of the formulas. The corre-
spondence between the general form and the boolean representation is illustrated
by the following example.

Example 7. For the model in Example 1 we have F ≡ {f1, f2}, C ≡ {c1, c2}. The
propositional formulas corresponding toMf ,Mc, R, andMfc, respectively, are:

Mf ≡ f1 ∨ f2

Mc ≡ c1 ⇒ c2

R ≡ (f1 ⇒ c1) ∧ (f2 ⇒ c2)
Mfc ≡ Mf ∧Mc ∧R

For which {f2, c2} is an example of a model of the formula Mfc, corresponding
to the feature-component configuration 〈{f2}, {c2}〉.

6.1 On Implementing Propositional Feature-Component Models

When using models whose semantics is expressible in propositional logic, we have
the advantage, over first-order logic for example, that the problems we are dealing
with are typically decidable. We should note, however, that the complexity of
many interesting problems remains a significant obstacle, e.g., consistency of a
feature model is NP-complete [19].
We have implemented the ideas presented in this paper for the propositional

logic case where the underlying data structure of the computations are binary
decision diagrams (BDDs) [18]. The implementation is in an experimental stage
and techniques that would make the approaches applicable in practice are under
investigation. For the lack of space we cannot give the full account of the details
but the reader is most welcome to contact the authors to obtain the source code.
Here we briefly describe the main concepts used in the implementation.

Propositional induced feature models. Once the feature-component model is
represented as a boolean expression, it is straight-forward to compute the in-
duced feature model (see Def. 3) by applying the existential quantification [18,
Sect 10.2.3]. Schematically, an existential quantifier from the formula ((∃v)φ) is
eliminated by computing the formula φ[v 7→ true] ∨ φ[v 7→ false].

Propositional logic and strong conformity. Strong conforming configurations in
the propositional case map directly to maximal models of a formula [14] by
inverting the variables corresponding to components.

Realized-by expressions and their semantics. The realized-by expressions trans-
late directly. For instance, realized-by({f ∈ F | f1 ∈ f} , {c ∈ C | c1 ∈ c})} trans-
lates as realized-by(f1, c1), which in semantics J·K1 is translated to f1 ⇒ c1.



6.2 Deriving Propositional Models

In practice, often, more complex constraints than propositional ones are needed.
Here we wish to note that for certain types of constraints on attributes it is
possible to generate an equivalent propositional constraint. We illustrate this
idea on an example.

Example 8. Let size : C → N be a function assigning a size to each component.
Let l, h ∈ N and the component modelMc ⊆ P(C) be given in the form:

c ∈Mc ⇔
(
l ≤

∑
c∈c size(c) ≤ h

)
Such a constraint can be translated into a propositional formula that disables
the combinations of components whose total size is outside the given bound-
aries. Once this formula is computed, it can be “anded” to the formula obtained
from the propositional feature-component model. Mathematically speaking, if
a feature-component model is expressed by the formula Mfc and an additional
constraint is expressed by the formula C, then we put M ′

fc ≡ Mfc ∧C to impose
the restriction C on Mfc.

7 Related Work

Kumbang [1] provides tool support for integrated feature and component mod-
eling. The semantics of the modeling languages is defined in terms of the weight
constraint language, which is supported by the smodels reasoning engine [20].
The reasoning is used during the configuration process, i.e., when certain se-
lections are made, the engine is executed to infer the consequences of these
selections. The reasoning of smodels is based on stable models semantics which
guarantees that selections are not enforced without justification, which is similar
to the component-minimality requirement in the semantics J·K3 (see Sect. 5).
Thaker et al. [22] in the context of AHEAD Tool Suite [3] utilize a SAT solver

to ensure that a feature model does not permit compositions that yield invalid
Java programs (programs that do not type-check).
Van der Storm [23] maps features to components, which are organized in a

dependency tree. Further, he maps this model to propositional logic semantics
enabling reasoning on it.
Czarnecki and Pietroszek [9] investigated UML models with variability, so-

called model templates, and utilized OCL to specify and the consistency require-
ments. These are utilized to check consistency of the models.
The works [22,23,9], described above, rely on propositional logic; Kumbang

framework [1] enables more expressive constraints than propositional. We believe
that all these works can be mapped to our formalism.
Automated reasoning was applied on feature models by a number of re-

searchers. For example, Mannion applied Prolog to detect inconsistencies [16],
Batory applied logic truth maintenance systems to facilitate the configuration
process [2]. Benavides et al. investigated the use of constraint solving to auto-
mated analysis of feature models [5]. See [4] for a more complete overview.



McCarthy’s circumscription [17] is a form of non-monotonic reasoning in
principal similar to the semantics J·K3 defined in Sect. 5. When using circum-
scription we are reasoning only with respect to minimal interpretation of a for-
mula, similarly as in our approach we reason only about configurations that are
strong conforming.
In Sect. 6.2 we have suggested how the techniques that reason on models

expressible in propositional logic can be used to reason about other models that
are not expressed as such. In a similar fashion, Eén and Sörensen preprocess
so-called pseudo-boolean constraints inputted to a SAT solver [11].

8 Summary and Future Work

We have provided a unified mathematical approach to formalizing models for
features and their implementations. We have shown how this formalization can
be utilized to improve our understanding of the modeling primitives and provide
automated feedback to the software engineer who uses such models.

We see the following challenges for future work.
Feedback to the user. If the induced feature model contains new derived de-

pendencies not present in the original model, how should this “delta” be pre-
sented to the user? For this, we are investigating research by Czarnecki and
Wąsowski [10] on turning boolean formulas to feature models.
Relating to languages used in practice.We have provided a formal foundations

for expressing dependencies for integrated feature and component modeling. How
can modeling languages used in practice be described using our formalism?
Other models. This work focuses on feature and component models. Could

this approach be extended for an arbitrary number of models?
Implementation and Evaluation We will further improve our prototype imple-

mentation to evaluate the efficiency issues arising for larger numbers of features
and to find out which of the semantics defined in Sect. 5 are useful in practice.
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