
Assertion-based Loop Invariant Generation

Mikoláš Janota?

School of Computer Science and Informatics
University College Dublin
Belfield, Dublin 4, Ireland
mikolas.janota@ucd.ie

Abstract. Many automated techniques for invariant generation are
based on the idea that the invariant should show that something “bad”
will not happen in the analyzed program. In this article we present an
algorithm for loop invariant generation in programs with assertions us-
ing a weakest precondition calculus. We have realized the algorithm in
the extended static checker ESC/Java2. Challenges stemming from our
initial experience with the implementation are also discussed.

1 Introduction

Automated invariant generation techniques face two major challenges. The first
challenge is the invariant itself, i.e., which formulas should be suggested as in-
variants. The second challenge is time complexity. Programs in practice require
nontrivial, e.g., quantified, invariants; to be able to reason about such invariants,
techniques commonly rely on an automated theorem prover. Since invocations of
a theorem prover are time expensive, it is necessary to carefully limit the number
of calls to the prover. In this article we introduce a light-weight technique that
derives loop invariants from assertions, which express desired properties of the
program. We have implemented the algorithm in the extended static checker ES-
C/Java2 [11]. The implementation operates on the intermediate representation
of the program, where program annotations are translated into assertions and
assumptions. Thus, the implementation takes into account both the program
code and its specification.

The rest of the paper is structured as follows. Section 2 introduces the prob-
lem and its context. Section 3 describes the basic version of the loop invariant
generation algorithm and Sections 4 illustrates the algorithm on an example.
Section 5 describes an extension of the algorithm. Section 6 discusses the im-
plementation and Section 7 lists related work. Finally, Section 8 concludes and
proposes future work.

? This work was funded by Science Foundation Ireland under grant number
03/CE2/I303-1, “LERO: the Irish Software Engineering Research Centre.” This
work was partially supported by the Information Society Technologies programme of
the European Commission, Future and Emerging Technologies under the IST-2005-
015905 MOBIUS project.

2 Janota

2 Background

The Java Modeling Language (JML) is a first–order logic annotation language
for Java programs [12]. JML is embedded into Java programs as a special form of
comments. The sign ’@’ indicates that a particular comment is a JML annotation.
Figure 1 illustrates the use of JML.

//@ requires a != null;

//@ requires (\forall int x; (0 <= x & x < a.length) ==> a[x] != null);

void setToZero(int [][] a) {
/*@ loop_invariant

@ (\forall int x; (0 <= x & x < a.length) ==> a[x] != null);

@ loop_invariant a != null;

@ loop_invariant i >= 0; */

for (int i = 0; i < a.length ; i++) {
/*@ loop_invariant j >= 0;

@ loop_invariant a != null;

@ loop_invariant

@ (\forall int x; (0 <= x & x < a.length) ==> a[x] != null); */

for (int j = 0; j < a[i]. length ; j++)
a[i][j] = 0;

}
}

Fig. 1. JML-annotated Java method.

The goal of ESC/Java2 is to determine whether JML-annotated Java code
conforms to its annotations. For the given annotated program, ESC/Java2 gen-
erates a logic formula, called verification condition (VC), using a weakest pre-
condition or a strongest postcondition calculus. Subsequently, it sends the VC
to an automated theorem prover. If the theorem prover does not prove the VC
valid, ESC/Java2 provides warnings describing how the program violates the
JML-specification or how the program might cause run-time exceptions (e.g., by
null-pointer dereferencing).

ESC/Java2 performs the translation from a JML-annotated program to the
VC in several stages. For the space limitations we do not provide details for
the whole translation process here and the interested reader is referred to the
relevant documentation [7]. For the understanding of the article, however, it suf-
fices to present one of the intermediate representations called guarded command
language [13].

In the rest of the paper we will assume that we have the following. A set
of program variables V ar and a language of side-effect free expressions E . We
intentionally leave the grammar of expressions unspecified as the presented al-
gorithm does not depend on their structure. A first-order logic language that
contains at least the boolean expressions in E , propositional connectives, and

Assertion-based Loop Invariant Generation 3

the constants true, false. A theory T , known as background predicate, axioma-
tizing the semantics of expressions and we will write T |= f to denote that the
formula f is valid in the theory T . Additionally, we assume that an automated
theorem prover is available. The prover accepts queries of the form T |= f and
responds whether the query was proven valid or not.

The following defines the grammar of the guarded command language:

cmd := x← expr | assume f | assert f | skip |
cmd 8 cmd | cmd; cmd | {I}while expr do cmd

where x ∈ V ar, expr ∈ E , and I, f are logic formulas where the only free
variables are in V ar.

Informally, if the execution reaches assume f then f can be assumed and, if
f does not hold, the execution blocks. If assert f is reached and f does not hold,
an error occurs, in this case we say that the program went wrong. The command
C1 8 C2 is a nondeterministic choice between C1 and C2; C1;C2 is a sequence
of commands, {I}while c do B is a loop with the invariant I, condition c and
body B representing a program that repeats B while c holds. The command
x← expr assigns the value of the expression expr to the variable x.

In ESC/Java2, the guarded command language is used to represent Java
code and its pertaining JML annotations1. For example, a call to a method is
translated to an assertP representing the precondition of the called method
and an assumeQ representing its postcondition; an if statement is translated
to a choice between the “then” and the “else” branch; the domains of variables
contain Java primitive types and the model of the heap.

To formally capture the semantics of the guarded command language we will
define a weakest precondition predicate transformer. We will do this is two steps,
the first step is called desugaring and it defines the semantics of loops in terms
of other commands. The second step defines a weakest precondition calculus on
the desugared form of the guarded command language.

We will use the following auxiliary functions. The function havoc resets values
of the given variables:

havoc({x1, . . . , xn}) ≡ x1 ← v′1; . . . ;xn ← v′n

where v′1, . . . , v
′
2 are fresh variables. And, let targets(C) be a function that returns

all variables that might be modified by the command C. The desugaring is
captured by the function desugar defined as follows:

desugar ({I}while c do B) ≡
assert I;
havoc(targets(B));assume I;
((assume c; desugar(B);assert I;assume false) 8 (assume¬c))

desugar(C1 8 C2) ≡ desugar(C1) 8 desugar(C2)
desugar(C1;C2) ≡ desugar(C1); desugar(C2)
desugar(C) ≡ C, all other commands

1 ESC/Java2 supports full Java 1.4 source code.

4 Janota

wlp(skip, N, W) ≡ N
wlp(x← expr, N, W) ≡ N [x 7→ expr]
wlp(assume f, N, W) ≡ f ⇒ N
wlp(assert f, N, W) ≡ (f ⇒ N) ∧ (¬f ⇒W)
wlp(C1; C2, N, W) ≡ wlp(C1, wlp(C2, N, W), W)
wlp(C1 8 C2, N, W) ≡ wlp(C1, N, W) ∧ wlp(C2, N, W)

Fig. 2. Weakest precondition calculus.

Intuitively, the initial assertion in the desugaring of a loop is a check for the
invariant when the execution reaches the loop. The left branch of the choice
command represents an arbitrary iteration of the loop and the assume¬c rep-
resents the termination of the loop.

The predicate transformer wlp(C,N, W) defined in Figure 2 captures the se-
mantics of the desugared guarded command language. For a command C and
predicates N and W , if wlp(C,N, W) holds then N holds if C terminates nor-
mally, W holds if C goes wrong or C does not terminate at all. For example,
assume false never terminates or goes wrong.

In this context, the verification condition is defined so that the given program
does not go wrong for any possible output. This is captured by the following
definition.

Definition 21 1. For a program C, the verification condition is the formula:

wlp(desugar(C), true, false)

2. A program C conforms to its specification if and only if:

T |= wlp(desugar(C), true, false)

3 Invariant Inference from Assertions

The presented technique is motivated by a simple observation. In the sub-
command of the desugared version of a loop representing an arbitrary iteration
all we know about the loop’s targets is whatever is in the loop invariant. Since
the ultimate goal of the verification process is to show that the given program
conforms to its specification, we need to ensure that the loop invariant is strong
enough to prove that the assertions inside the loop do not go wrong (see Sec-
tions 4, 5 for examples of assertions and invariants).

To derive such loop invariants, the algorithm back-propagates assertions out-
wards to the outermost loop using the weakest precondition calculus. To explain
the algorithm, we introduce the following terminology. We split the loops in the
analyzed program into layers. The layer 0 contains exactly the loops that are not
inside any other loop in the program. Loops in the layer i are exactly those loops
nested in i other loops. We will refer to the loops in the layer 0 as loop-nests and
we will use Li to denote that the loop Li is in the layer i. We will say that a

Assertion-based Loop Invariant Generation 5

Infer-Invariants(L0, . . . , Li : loops,assert f : command hosted by Li)

loc := location of the given assertion in Li

I := f
preserves := true
for k := i downto 0

do I := back-propagate I from loc to entry of Lk

if (Lk preserves the invariant I)
then add I to the invariant of Lk

else preserves := false
break

if k 6= 0
then loc := location of the entry of Lk in Lk−1

succeeded := preserves ∧ (I holds at the entry of L0)
if ¬succeeded

then remove the added invariants

Fig. 3. Deriving invariants from an assertion.
.

loop Li hosts the command C if and only if Li contains C and there is no loop
Lk with k > i that contains C. We will say that a loop L preserves a formula
f to express that if f held before an arbitrary iteration of L then it will hold
once the iteration terminates; we will discuss the exact meaning of this term and
back-propagation in Section 3.1.

The heart of the algorithm is the derivation of invariants from a given asser-
tion. Consider the following. An assertion assert f is hosted by a loop Li. And
let L0, . . . , Li be a sequence of nested loops, i.e., Lk hosts Lk+1 for k ∈ 0 . . . i− 1.
In this scenario, we use the asserted formula f to infer invariants for the loops
L0, . . . , Li. This inference process starts by back-propagating the formula f to
the top of Li yielding a formula fi. Subsequently, we determine whether fi is pre-
served by Li. If that is true, the process continues by back-propagating fi to the
top of Li−1, yielding a formula fi−1. This is repeated until the outermost loop
L0 is reached with the formula f0. Finally, to verify that the suggested formulas
are indeed invariants, we test whether f0 holds at the entry of the loop-nest L0.
This process is captured by the pseudo-code in Figure 3.

Up to this point we have described how to infer an invariant from a single
assertion. The whole analysis infers invariants from all assertions that are con-
tained in any loop starting from the assertions in the innermost layers. This is
captured by the following pseudo-code.

Analyze(C : command)
for each loop-nest L0 in C, using breadth-first search

do Analyze(L0)

6 Janota

Analyze(L0, . . . , Li : loop)
for each loop K hosted in L, using breadth-first search

do Analyze(L0, . . . , Li,K)
for each assert f hosted in L, using breadth-first search

do Infer-Invariants(L0, . . . , Li,assert f)

So far we have not explained the following: how expressions are back-
propagated, how it is determined that a formula preserves a loop, and that a
formula holds at the entry of a loop-nest. The following section provides details
on these subjects.

3.1 Algorithm Details

For the purpose of this section we consider a control flow graph representation
of the desugared guarded command language. We require that the control flow
graphs have the following properties. Each node in the graph is labeled either
with the command skip, assume f , assert f , or x ← e. The graph is directed
acyclic and it has exactly one entry node, a node that dominates all the other
nodes in the graph. Any subgraph GL resulting from the desugaring of a loop
has one entry node and one exit node. The entry node dominates all nodes in
GL and any path from any node in GL to a node that is not in GL contains the
exit node (a postdominator). It is easy to observe that it is possible to construct
such a graph for any desugared command. For example, the graph of the choice
command has a “diamond” structure where the top and bottom tips are labeled
with skip and the sides are graphs representing each choice.

In the context of a control flow graph G, back-propagation of the formula f
from the node r to the node n is computed by the following function:

preG(n, r, f) ≡ f, if n = r
≡ wlp(Cn,

∧
c is a child of n in G preG(c, r, f), true), otherwise

where Cn denotes the command labeling the node n. In plain English, the prop-
erty of the function preG is that if preG(n, r, f) held in n and the normal exe-
cution reached r then f holds.

Now we can describe back-propagation in an iteration of the loop in procedure
Infer-Invariants (Figure 3). For a loop Lk ≡ {f}while c do B it constructs a
graph G with the entry node nk of the command desugar(assume c;B). It iden-
tifies the entry node nk+1 of the subgraph of G that resulted from the desugaring
of the loop Lk+1. Finally, it sets the suggested invariant I to preG(nk, nk+1, I).

To determine whether the given invariant I holds at the entry of a loop-nest
L0, we construct a graph G with the entry node n from the desugared version of
the whole program being analyzed, identify the entry node n0 of the subgraph
of G resulting from L0, and send the query T |= preG(n, n0, I) to the theorem
prover.

To determine whether the loop L ≡ {I}while c do B preserves a formula f
we send the following query to the theorem prover:

T |= f ⇒ wlp(C; havoc(targets(B));assume f ;assume c; desugar(B), f, true)

Assertion-based Loop Invariant Generation 7

where C is the loop’s context, i.e., the preceding commands in the desuagared
version of the program. For example, the inner loop in the program

C0; ({I0}while c0 do (C1; ({I1}while c1 do B)))

has the following context:

desugar(C0); havoc(targets(C1; {I1}while c1 do B));assume (I0 ∧ c0)

4 Example of Back-propagation

This section illustrates the analysis presented in the last section on an example.
Consider the program in Figure 4, written in pseudo-code, which takes a two-
dimensional array as its input and sets all its elements to zero.

1: INPUT: a: array[1 . . . N][1 . . . M] of N
2: VAR i, j: N;
3: i← 1;
4: while i ≤ N do
5: j ← 1;
6: while j ≤M do
7: ASSERT 1 ≤ i ∧ i ≤ N ;
8: ASSERT 1 ≤ j ∧ j ≤M ;
9: a[i][j]← 0;

10: j ← j + 1;
11: end while
12: i← i + 1;
13: end while

Fig. 4. Example of code with assertions.

The assignment to an element of the array requires that the values of i and
j are in the bounds of the array a. This is captured by the two assertions. We
will illustrate the steps of the algorithm on the first assertion.

The algorithm first back-propagates the assertion to the top of the inner
loop, which results in the following formula:

(j ≤M)⇒ (1 ≤ i ∧ i ≤ N)

Subsequently, the algorithm tests whether this formula is preserved by the
body of the inner loop. This follows from the fact that the inner loop does not
change the value of i.

In the next step the algorithm propagates the previously obtained formula
to the top of the outer loop. This results in the following:

(i ≤ N)⇒ (1 ≤M)⇒ (1 ≤ i ∧ i ≤ N)

8 Janota

This can be simplified to the equivalent formula:

(i ≤ N)⇒ (1 ≤M)⇒ (1 ≤ i)

Further, the algorithm tests whether the outer loop preserves the simplified
formula. This follows from our previous result that the inner loop preserves the
desired property and that i is increased.

The final step tests whether the suggested invariant is established by the
code preceding the outer loop, i.e., the validity:

T |= (1 ≤ N)⇒ (1 ≤M)⇒ (1 ≤ 1)

this immediately follows from the reflexivity of ≤.
At this stage we know that

(i ≤ N)⇒ (1 ≤M)⇒ (1 ≤ i)

is an invariant of the outer loop. And,

(j ≤M)⇒ (1 ≤ i ∧ i ≤ N)

is an invariant for the inner loop. Together, these invariants guarantee that the
first assertion is not violated (does not go wrong).

5 Invariant Alterations

This section describes an extension of the presented invariant inference tech-
nique called invariant alterations. It is obvious that in many cases the invariant
suggested by the procedure Infer-Invariants (Figure 3) will not be strong
enough to prove that it is preserved by the loop even if it is an invariant of that
loop. A possible improvement is to alter the suggested invariant based on some
heuristic.

The following is an example of how to obtain a set of alterations from a
formula f :

{(∀v′•f [v 7→ v′]) • v is free in f and v′ is a fresh variable}

All these alterations are stronger than the original formula f . Therefore, if we
can show that one of these alterations is an invariant, it will still guarantee that
the original assertion does not go wrong.

The rest of this section illustrates the use of alterations on an example. Con-
sider the Java code in Figure 1 without the loop invariants. The assertions that
this code yields are captured in the pseudo-code in Figure 5. Please note that
any access to a pointer or array has to be prepended with the pertaining asser-
tion, including the loop guards. The precondition of the method is translated
into assume commands.

Assertion-based Loop Invariant Generation 9

1: INPUT: a: array[][] of int
2: VAR i, j: int;
3: assume a 6= null;
4: assume ∀m : int•m ≥ 0 ∧m < a.length⇒ a[m] 6= null;
5: i← 0;
6: while assert a 6= null; i < a.length do
7: j ← 0;
8: while assert (a 6= null∧a[i] 6= null∧0 ≤ i ∧ i < a.length); j < a[i].length do
9: assert 0 ≤ i ∧ i < a.length;

10: assert 0 ≤ j ∧ j < a[i].length;
11: assert a 6= null∧a[i] 6= null
12: a[i][j]← 0;
13: j ← j + 1;
14: end while
15: i← i + 1;
16: end while

Fig. 5. Example of code with assertions.

Analogously to the process in the previous example, we obtain the following
invariants. Invariants a 6= null is inferred for both loops. Further, the invariants
for the outer loop will be:

a 6= null∧i < a.length⇒ 0 ≤ i
(j ≥ 0 ∧ j < a[i].length) ∧ (0 ≤ i ∧ i < a.length)⇒ a[i] 6= null

And the invaraints for the inner loop will be:

a 6= null⇒ 0 ≤ i
a 6= null∧0 ≤ i⇒ i < a.length
a 6= null∧0 ≤ i ∧ i < a.length ∧ a[i] 6= null∧j < a[i].length⇒ 0 ≤ j

The interesting case is the non-nullness of a[i]. The algorithm first suggests
the following invariant for the inner loop:

(0 ≤ j ∧ j < a[i].length) ∧ (0 ≤ i ∧ i < a.length)⇒ a[i] 6= null

which is indeed preserved by the inner loop. However, it is not preserved by the
outer loop. If we perform the alteration by quantifying over i, we obtain the
following:

∀i′•(0 ≤ j ∧ j < a[i′].length) ∧ (0 ≤ i′ ∧ i′ < a.length)⇒ a[i′] 6= null

which is preserved by both loops and hence, it is inserted as an invariant for
both loops.

6 Implementation

We have implemented the technique described by the method Analyze (Sec-
tion 3) with the extension of the alterations described in Section 5. The imple-
mentation is build as a subcomponent of ESC/Java2, and utilizes the automated

10 Janota

theorem prover Simplify [6]. Based on our initial experiments with the imple-
mentation we have added the following enhancements to the algorithm.

Heuristic back-propagation. The back-propagation realized as described in Sec-
tion 3.1 generates large formulas. Therefore we approximate the transformer wlp
as follows. When we back-propagate a formula I over a node labeled with the
command assume f or assert f , we first substitute the expression f in I for
true, and then apply wlp only if I and f share at least one free variable.

Simplifications. Even with the heuristic back-propagation, the invariants often
contain redundant information. To alleviate this problem we have implemented
several straight-forward formula propositional simplifications and the following
rule:

∀x•x = E ⇒ F, where x is not free in E
F [x 7→ E]

Assertion breaking. Assertions often come as conjuncts of simpler expressions,
e.g., 0 ≤ j ∧ j < l, and sometimes only one of the literals leads to a successful
invariant discovery. Therefore, it has proven useful to break the assertion into
the individual literals and back-propagate these individually.

The technique has proven successful in finding simple invariants; in particular
invariants that guarantee that a certain variable is nonnegative, certain variable
is non-null, or that a certain variable has the desired type (required by type-
casting). On the other hand, for the technique be useful in practice we believe
that taking into account assertions outside loops is necessary.

7 Related Work

One of the first documented implementation of invariant generation utilizing
a theorem prover was realized by Suzuki and Ishihata [14]. Similarly to our
work, their algorithm aims to prove that a given program does not violate array
bounds.

The predominant approach to invariant generation is abstract interpretation
introduced by Cousot and Cousot [5]. A popular variant of abstract interpreta-
tion is predicate abstraction [9], where the abstract space is formed by boolean
expressions on a finite set of predicates.

One of the key issues in predicate abstraction is to come up with the ap-
propriate set of predicates. An example of a technique that discovers predicates
automatically is counterexample refinement [10]. This technique tries to refine
the model whenever the current model is shown to be too coarse, i.e., when the
model contains an error-trace in the abstract space that does not have a cor-
responding trace in the concrete space. This approach is similar to ours in the
sense that is driven by the undesired behavior.

Assertion-based Loop Invariant Generation 11

The counterexample refinement has proven suitable for implementation as it
was applied to verification of C programs in the tools BLAST 2 and SATABS 3 [4]

Flanagan and Qadeer utilized predicate abstraction for loop invariant gener-
ation in ESC/Java [8]. In this work Flanagan and Qadeer enriched the technique
by introducing skolem constants to be able to infer quantified invariants.

Abstract interpretation is used in the Spec# programming system4 to infer
loop invariants [1]; the implementation operates on the intermediate representa-
tion in the language Boogie PL. Chang and Leino, members of the Spec# team,
in [3] describe how abstract interpretation can be used to infer object invariants.
Further, the authors in [2] propose a technique that allows combining different
abstractions.

8 Conclusion and Future Work

We have introduced a technique for loop invariant generation from assertions in
the context of an automated theorem prover and a weakest precondition calculus.
An advantage of the technique is that it requires relatively small number of
calls to the theorem prover, compared to predicate abstraction for example.
Moreover, it takes into account user’s specifications, which focuses the technique
on the relevant space of loop invariants. The technique is easy to implement as
it does not rely on the underlying theories, such as arithmetics. On the other
hand, this property is at the same time a disadvantage since exploiting the
information specific to a particular domain enables inferring stronger invariants.
It appears that the main disadvantage, however, is the “snowball effect” caused
by the weakest precondition calculus increasing the size of the back-propagated
formula.

We propose the flowing challenges for future work.

Invariant simplifications. How can we identify irrelevant parts of the suggested
invariant and generate simpler invariants?

Invariant alterations. What are the alternations useful in practice? Can other
invariant inference techniques be exploited?

Loop postcondition. In the presented work we utilize only the assertions that are
inside the investigated loop. This approach could be leveraged by taking into
account the assertions after the loop, i.e., the desired postcondition of the loop.

Feedback to the user. The presented implementation operates on the intermedi-
ate language. Therefore, the inferred invariants are difficult to interpret for the
user. Thus, it is desirable to be able to translate the inferred invariants to the
JML notation.
2 http://mtc.epfl.ch/software-tools/blast
3 http://www.verify.ethz.ch/satabs
4 http://research.microsoft.com/specsharp

12 Janota

References

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In Proceeding of CASSIS 2004, volume 3362 of Lecture Notes
in Computer Science. Springer–Verlag, 2004.

2. Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with alien
expressions and heap structures. In Proceeding of 6th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2005), volume
3385 of Lecture Notes in Computer Science. Springer–Verlag, 2005.

3. Bor-Yuh Evan Chang and K. Rustan M. Leino. Inferring object invariants, 2005.
4. Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate

abstraction of ANSI–C programs using SAT. Formal Methods in System Design
(FMSD), 25, 2004.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press.

6. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

7. Extended Static Checker for Java version 2 (ESC/Java2). At
http://secure.ucd.ie/products/opensource/ESCJava2/.

8. Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.
In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM Press, 2002.

9. Suzanne Graf and Hassen Hassen Säıdi. Construction of abstract state graphs
with PVS. In Proceedings of 9th International Conference on Computer Aided
Verification (CAV’97). Springer–Verlag, 1997.

10. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy
abstraction. In Proceedings of the 29th Annual Symposium on Principles of Pro-
gramming Languages (POPL). ACM Press, 2002.

11. Joseph R. Kiniry and David R. Cok. ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2 and a report on a case study
involving the use of ESC/Java2 to verify portions of an Internet voting tally system.
In Construction and Analysis of Safe, Secure and Interoperable Smart Devices:
International Workshop, CASSIS 2004, volume 3362 of Lecture Notes in Computer
Science. Springer–Verlag, January 2005.

12. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Behavioral Specifications of
Business and Systems, chapter JML: A Notation for Detailed Design, pages 175–
188. Kluwer Academic Publishing, 1999.

13. K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs
via guarded commands. Technical Note 1999-002, Compaq SRC, May 1999.

14. Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound checker.
In POPL’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages. ACM Press, 1977.

